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Abstract: This paper develops a disturbance observer-based repetitive control system using
a non-minimal state-space realization in which all state variables are chosen to correspond to
the system’s input and output variables and their past values. To enable the repetitive control
system to follow a periodic reference signal or reject a disturbance signal of the same nature, a
disturbance observer is used to estimate an input disturbance that contains the same frequency
characteristics. This new approach differs from previously published design in repetitive control
because it separates the design procedure into two simple tasks: first, stabilization by the design
of a non-minimal state feedback control; and second, to independently incorporate the periodic
modes via the estimation of the disturbance. Moreover, because this design ensures the stability
of the disturbance observer, its implementation contains an anti-windup mechanism when the
control signal reaches its maximum or minimum value. Without the complication of an observer
for the state variables, the detection of a disturbance occurs earlier and the repetitive controller
acts much faster than in the case of minimal state controller incorporating an observer. This
leads to considerable performance improvement, with excellent disturbance rejection achieved
with smaller control signal variations.

Keywords: repetitive control, non-minimal state-space realization, disturbance observer,
disturbance rejection, anti-windup mechanism.

1. INTRODUCTION

Mathematical models play a fundamental role in control
engineering applications. Two types of models are typically
encountered. One is the class of physical models, such
as those for electrical machines and power converters,
which are based on the application of physical laws.
Another is obtained through data analysis using the tools
from system identification (for background see, e.g., Ljung
[1999], Soderstrom [2018], Young [2012]). The second type
of model is most commonly obtained in transfer-function
form and is typically encountered in process control.

If the state variables cannot be measured in an application
of state feedback control, it is a common practice to use an
observer to estimate them. In the case of transfer-function
models, the state variables are not known unless they
are specifically chosen to correspond to the sets of input
and output variables. This is indeed the framework of
non-minimal state-space (NMSS) feedback control (Young
et al. [1987], Wang and Young [1988], Taylor et al. [2013]).
The non-minimal state-space realization has also been
used in the design of model predictive controllers (Wang

and Young [2006],Wang [2009]). The advantages of exploit-
ing NMSS state feedback control include the avoidance
of observer design and implementation and hence faster
closed-loop response to disturbance rejection.

The main objective of this paper is to explore how the
design of repetitive control systems can be enhanced by
utilising an NMSS model for full state feedback control. In
particular, it considers repetitive control systems that have
the capability to track a multi-frequency periodic reference
signal, or reject the same type of disturbance signal.
To achieve these objectives, the ‘internal model control’
principle (Francis and Wonham [1976]), requires that the
characteristics of the reference signal or the disturbance, as
appropriate, have to be embedded into the control system
design. In this context, there are two interesting related
topics:

(1) First, the use of a disturbance observer to produce
a repetitive control system that will naturally embed
the periodic modes either identified from the reference
signal or the disturbance signal;

(2) second, to avoid the estimation of the state variables
using the NMSS model and hence a reduction of
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the dimensions of the estimated variables, leading to
simplicity in design and implementation.

In practical terms, deploying a disturbance observer in
a repetitive control system design naturally provides an
anti-windup mechanism in the event that the control
signal reaches its operational limits. Next, the required
background results are given.

2. DISTURBANCE OBSERVER BASED REPETITIVE
CONTROL

2.1 Mathematical Model for Repetitive Controller Design

Assume that a discrete-time single-input single-output
linear system is described by the difference equation:

y(k + 1) =−a1y(k)− a2y(k − 1) . . .− any(k − n)

+ b1u(k) + b2u(k − 1) + . . .+ bnu(k − n) (1)

where u(k) and y(k) are the input and output variables.
The model coefficients a1, a2, . . ., an and b1, b2, . . ., bn
are obtained either from system identification or from
mathematical modeling.

Denoting the periodic reference signal by r(k), the error
between the output variable and the reference signal is

e(k) = y(k)− r(k)

If the input periodic disturbance is denoted by µ(k),
the intermediate control signal, with the disturbance, is
written as

ũ(k) = u(k) + µ(k) (2)

Using these reference and the disturbance signals, the
discrete-time model on which subsequent analysis is based
has the form

e(k + 1) =−a1e(k)− a2e(k − 1) . . .− ane(k − n)

+ b1ũ(k) + b2ũ(k − 1) + . . .+ bnũ(k − n) (3)

To convert this model into a state-space form, the state
variables are selected as the input and the output signals,
including their relevant past values, i.e.,

x(k) = [e(k) . . . e(k − n) ũ(k − 1) . . . ũ(k − n)]
T

The non-minimal state-space representation of (3) can
then be written as:

x(k + 1) =Amx(k) +Bmũ(k) (4)

e(k) =Cmx(k) (5)

where

Am =



−a1 −a2 . . . b2 . . . bn
1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 1 0 0 0
0 0 0 0 0 0
0 0 . . . 1 . . . 0
...

...
. . . 0

. . . 0
0 0 . . . 0 1 0


; Bm =



b1
0
...
0
1
0
...
0


Cm = [1 0 0 . . . 0 0]

2.2 Repetitive Control Law

The repetitive control system is based on the design of
a state feedback controller and the disturbance observer.
The controller gain K is chosen such that the closed-loop
system:

x(k + 1) = (Am −BmK)x(k)

is stable with its eigenvalues strictly within the unit circle
of the complex plane. With this design, the intermediate
control signal is calculated as

ũ(k) = −Kx(k)

and the control signal is

u(k) = ũ(k)− µ̂(k)

where µ̂(k) is the estimated disturbance signal.

2.3 Disturbance Observer

It is now necessary to consider how to estimate the periodic
input disturbance µ̂(k) for the repetitive control system
design, given that the whole of the state vector x(k) is
measured.

As in previous work (Wang et al. [2013]), it is assumed that
either the reference signal r(k) or the input disturbance
signal µ(k) has been analyzed to obtain the dominant
frequency components, leading to a polynomial D(q−1),
where q−1 denotes the backward difference operator, as
model of these components. Also the input disturbance
signal µ(k) can be written as:

µ(k) =
ε(k − 1)

D(q−1)
(6)

where ε(k) is a zero-mean white noise sequence. The poly-
nomial D(q−1) has all zeros on the unit circle, as derived
from the frequency analysis of either the reference signal
or the disturbance signal. For example, if the reference
signal is sinusoidal with N samples over a period T , the
corresponding D(q−1) is

D(q−1) = 1− 2 cos
2π

N
q−1 + q−2

Also it is assumed that the D(q−1) polynomial has order
nd and is written as

D(q−1) = 1 + d1q
−1 + d2q

−2 + . . .+ dnd
q−nd (7)

where the coefficients d1, d2, . . ., dnd
are known.

From the definition of the input disturbance (2) and the
state-space model (4), it follows that the input disturbance
µ(k) satisfies the following equation:

Bmµ(k) = x(k + 1)−Amx(k)−Bmu(k) (8)

Multiplying across this equation from the left by Cm gives

CmBmµ(k) =Cmx(k + 1)− CmAmx(k)− CmBmu(k)

= e(k + 1)− CmAmx(k)− CmBmu(k) (9)

and one possible way to reconstruct the input periodic
disturbance µ(k) based on this last equation. However,
this would not be sufficiently accurate to generate the
repetitive control signal because of the uncertainties in
the mathematical model and the requirement to have
available the feedback error e(k+1) at the current time k.
Consequently, the design of an observer to estimate µ(k)
based on the disturbance model (6) is required.
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If (6) is written in the following difference equation form:

µ(k+1) = −d1µ(k)−d2µ(k−1)− . . .−dnd
µ(k−nd)+ε(k)

(10)
then the state vector p(k) can be formulated as

p(k) = [µ(k) µ(k − 1) . . . µ(k − nd)]
T

and the associated state-space model describing the dy-
namics of the disturbance takes the form

p(k + 1) =Adp(k) +Bdε(k) (11)

µ(k) =Cdp(k) (12)

where (in the case of nd = 3 for ease of presentation)

Ad =

[−d1 −d2 −dnd

1 0 0
0 1 0

]
; Bd =

[
1
0
0

]
Cd = [1 0 0]

The measurement of disturbance is CmBmµ(k), based on
the right-hand side of (9). With the assumption CmBm 6=
0, the pair Ad, CmBmCd is observable. Hence a distur-
bance observer is constructed for the estimation of p(k),
leading to:

p̂(k + 1) =Adp̂(k) +Kob(CmBmµ(k)− CmBmCdp̂(k))

=Adp̂(k) +Kob(e(k + 1)− CmAmx(k)

−CmBmu(k)− CmBmCdp̂(k)) (13)

where the observer gain Kob is chosen based on the pair
{Ad, CmBmCd} such that the observer error system is
stable. Here, the observer error system is defined as

p̃(k + 1) = (Ad −KobCmBmCd)p̃(k) +Bdε(k) (14)

where p̃(k) = p(k)− p̂(k). This error system is obtained by
substituting (9) into (13), and subtracting (13) from (11).

The repetitive control system design procedure involves
two tasks. The first is to design the state feedback con-
troller K; and the second is to design the disturbance
observer gain Kob. Both of these tasks can be done in
a straightforward manner. In particular, the disturbance
dynamics are of relatively low order because the use of the
non-minimal state-space model avoids the estimation of
the state variables. This is especially important when the
system model is of higher order.

The repetitive control system with the anti-windup mech-
anism is not implementable in the form given above since
the disturbance observer (13) is not implementable in its
current form since the right-hand side involves the feed-
back error at k + 1. In order to avoid this problem, an
intermediate variable is defined as q̂(k) = p̂(k) −Kobe(k)
and then by routine manipulations

q̂(k + 1) = (Ad −KobCmBmCd)q̂(k)

+ (Ad −KobCmBmCd)Kobe(k)

−Kob(CmAmx(k) + CmBmu(k)) (15)

which is implementable. Given an initial state vector q̂(0)
and the control signal u(k), output signal y(k) and the
reference signal r(k), (15) provides a real-time estimation
of the disturbance signal µ̂(k).

3. IMPLEMENTATION OF REPETITIVE CONTROL
SYSTEM WITH ANTI-WINDUP MECHANISM

In addition to the simplicity in the design of the repeti-
tive control system when using the disturbance observer,
implementation of the control system has a naturally oc-
curring anti-windup mechanism when the control signal
reaches its operational limits. This is because the sinu-
soidal modes that have been embedded into the repetitive
control system are introduced through the estimation,
which is a stable realization (see (15)) in the disturbance
model.

For the implementation of the repetitive control system
with its anti-windup mechanism, we assume that the
control signal is constrained such that

umin ≤ u(k) ≤ umax

At the initial stage, the current and past control signal and
output signal are known so that the initial state vector x(0)
is given, and the initial state q̂(0) is chosen. The resulting
computational algorithm is summarized as follows.

(1) Compute the estimated input disturbance:

p̂(k) = q̂(k) +Kobe(k); µ̂(k) = Cdp̂(k).

(2) Compute the control signal by subtracting the esti-
mated disturbance from the feedback control law:

u(k) = −Kx(k)− µ̂(k).

(3) Implement saturation limits on the control signal:

u(k)act =


umin, if u(k) < umin

u(k), ifumin ≤ u(k) ≤ umax

umax, ifu(k) > umax.

(4) Update the disturbance observer with the saturation
information based on (15), with the control signal
replaced by u(k)act.

(5) Send the control signal u(k)act to the actuator and
repeat from Step 1 when the next sampling period is
available.

4. CASE STUDY 1

To highlight the application of the new design this sec-
tion gives the results of application to the model of the
dynamics of a gantry robot, shown in Figure 1, which
replicates the ‘pick and place’ operation, commonly found
in a variety of industrial applications. Moreover, the oper-
ations required must be performed in synchronization with
a conveyor system.

4.1 Modelling and Control System Design

For modeling and control design purposes, this gantry
robot can be treated as three single-input single-output
systems (one for each axis) that can operate simultane-
ously to locate the end effector anywhere within a cuboid
work envelope. In order to obtain a model for controller
design, each axis of the robot was modeled independently
by means of sinusoidal frequency response tests. Here,
only the X-axis is considered and the following 7th-order
transfer-function (with s denoting the Laplace transform
variable) is used in the design as an approximation of the
dynamics. Sampling at ∆t = 0.01 secs with a zero-order

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1533



G(s) =
(s+ 500.19)(s+ 4.90× 105)(s+ 10.99± j169.93)(s+ 5.29± j106.86)

s(s+ 69.74± j459.75)(s+ 10.69± j141.62)(s+ 12.00± j79.10)
(16)

Fig. 1. The gantry robot

hold gives

G(z−1) =
B(z−1)

A(z−1)
(17)

where the coefficients of the numerator are b1 = 0.5174,
b2 = −0.0108, b3 = 0.2863, b4 = 0.1053, b5 = −0.0816,
b6 = 0.0081, b7 = −0.0006 and those of the denominator
are a1 = −1.5314, a2 = 0.9717, a3 = −0.3821, a4 =
−0.0056, a5 = −0.0557, a6 = 0.0036, a7 = −0.0005.

The non-minimal state-space model is formed by choosing
the measured input and output variables as the state
variables. In this case, although the dimension of the state
vector is quite high at 13 × 1, the implementation of the
state vector is performed by shifting the data vector in
real-time in order to reduce the computational load.

4.2 Controller Design

The state feedback controller is designed based on a linear
quadratic regulator with cost function:

J =

∞∑
k=0

x(k)TQx(k) +

∞∑
k=0

ũ(k)TRũ(k)

where Q is an identity matrix and R = 1. The MATLAB
function dlqr was used to find the state feedback controller
gain K.

4.3 Disturbance Observer Design

The polynomial D(q−1) is

D(q−1) = (1− q−1)(1− 2 cos
2π

N
q−1 + q−2)

where N = 200. The first term in D(q−1) corresponds to
the DC component and the second term to the dominant
frequency in the reference signal (Wang et al. [2013]). For
this design, the system matrix is

Ad =

[
2.999 −2.999 1

1 0 0
0 1 0

]
and the output matrix is

CmBmCd =
[
0.5174× 10−3 0 0

]
Also the design of the disturbance observer is simplified
because of the low dimension of the state variables. The
MATLAB function dlqr was used again to find the observer
gain Kob, where the matrix Q is an identity matrix and

R = 0.1. As measurement noise is one of the challenges for
a repetitive control system, noise is added to the output
to reflect this in the simulations.

4.4 Simulation results

The results were obtained white noise with zero mean and
standard deviation 0.01

Figure 2 (a) compares the output response y(k) with the
reference signal r(k), however, because of the measurement
noise, it is not visible. The error signal r(k)−y(k) is shown
separately in Figure 2 (b). It is clear that the repetitive
control system has tracked the reference signal with small
errors despite of the measurement noise even though
repetitive controllers are sensitive to measurement noise
due to fundamental limitations in feedback control (see
Wang et al. [2013]). The measurement noise was assumed
to be white with zero mean and standard deviation 0.01
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Fig. 2. Trajectory tracking of the X-axis with measurement
noise.

5. CASE STUDY 2

This section compares the new design in this paper with
a minimal state-space model state feedback control law.
The system under study has the transfer-function:

G(z−1) =
(1− 0.1z−1)(1− 0.3z−1)

(1− 0.5z−1)2(1− 0.9z−1)

Also the disturbance signal is a series of step changes with
amplitude ±1. The control objective is to maintain steady-
state operation in the presence of step disturbances and
hence the disturbance model D(q−1) is selected as 1−q−1.
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5.1 Minimal State-space Realization

When the system model is given by a transfer-function, an
observer is usually required to estimate the state variable.
Suppose, therefore that the system considered has an input
disturbance µ(k) and hence the state-space model is:

xp(k + 1) =Apxp(k) +Bp(u(k) + µ(k)) (18)

y(k) =Cpxp(k) (19)

where:

Ap =

[
1.9 −1.15 0.225
1 0 0
0 1 0

]
; Bp =

[
1
0
0

]
Cp = [1 −0.4 0.03]

The function of the observer is to estimate xp(k) together
with the constant disturbance µ(k). To this end, aug-
mented state variables are defined as follows

xF (k) =
[
xp(k)T µ(k)

]T
and the associated system matrices are

AF =

[
Ap Bp

O 1

]
;BF =

[
Bp

0

]
CF = [Cp 0]

The state feedback controller is designed using the pair
(Ap, Bp), and the MATLAB function dlqr produces the
following controller gain vector

Kp = [1.3819 −0.9361 0.1921]

when Q is the identity matrix and R = 1. The associated
closed-loop eigenvalues are 0.1479± j0.3553, 0.2224.

An observer was designed using the pair (AF , CF ) with
the MATLAB dlqr to give

Kob = [2.39 0.9411 −0.0846 0.5177]
T

where Q is the identity matrix and R = 0.1. The closed-
loop error system has eigenvalues at 0.499, 0.3386, 0.0257±
j0.1872.

The minimal state feedback control law based on the above
computations is:

u(k) = −Kpx̂p(k)− µ̂(k)

where x̂p(k) and µ̂(k) are estimated with the observer:

x̂F (k+1) = AF x̂F (k)+BFu(k)+Kob(y(k)−r(k)−CF x̂F (k))

in which r(k) is the reference signal.

5.2 Non-minimal State-space Realization

The non-minimal state-space realization has system ma-
trices:

Am =


1.9 −1.15 0.225 −0.4 0.03
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0

 ; Bm =


1
0
0
1
0


Cm = [1 0 0 0 0]

and application of the MATAB dlqr function gives

K = [1.2087 −0.8638 0.1819 −0.3146 0.0243]

The closed-loop eigenvalues for the state feedback control
system are then 0.3230±j0.2965, 0.3599, with the remain-
ing two at zero.

The disturbance observer is a first order system but, to
be consistent, the MATLAB dlqr function is again used
to find the observer gain Kob = 0.9161, which corresponds
to a closed-loop eigenvalue of the observer error system at
0.0839. For this design, the matrices Q and R are scalar
and selected as Q = 1 and R = 0.1.

5.3 Simulation Results

To evaluate the two repetitive control systems, measure-
ment noise with zero mean and standard deviation of 0.01
is added to the output measurement, with a step reference
signal applied at the beginning of the simulation. As an
input disturbance, a square wave signal with amplitude
of ±1 is added after 150 samples and the control signal
amplitude is constrained to ±2.5.

5.4 Disturbance rejection

Figure 3 gives comparative data the closed-loop responses
under identical simulation conditions where a step dis-
turbance with amplitude of 2 is introduced at sampling
instant k = 300. From the top plot in this figure it is seen
that both control systems maintain steady-state operation
in the presence of a disturbance amplitude of 2. The repet-
itive controller using the non-minimal state-space realiza-
tion, quickly detects the disturbance and responds very
quickly (see red Line (1)), so that the maximum deviation
from the steady-state operation occurs at sampling instant
301 and is equal to the amplitude of the disturbance (2). In
contrast, the control system with minimal state-space real-
ization detects the disturbance slower and responds more
slowly (see the black dash-dot Line (2)). A consequence of
this is that the maximum deviation from the steady-state
operation occurs at sampling instant 302 and has value 5,
i.e. the maximum deviation is 2.5 times that of the original
disturbance amplitude.

The behavior of the control signals are also entirely differ-
ent for the two implementations, as shown in Figure 3 (b),
where the control signal in the non-minimal state-space
realization requires a smaller amplitude to achieve a better
disturbance rejection. Conversely, the later detection of the
disturbance by the minimal state-space realization con-
troller means that the feedback error becomes much larger
and it produces a large amplitude input to compensate for
the effect of disturbance. Note that both control signals
have triggered the saturation limit and the anti-windup
mechanisms has become active in both cases.

5.5 Reference Input following

Figures 4 (a) and (b) show the closed-loop output response
and the control signal response to a step reference signal. It
is clear that the early detection of the reference change by
the repetitive controller results in better transient perfor-
mance and reduces the required control signal amplitude.

One question that arises is: can the closed-loop perfor-
mance be improve if a deadbeat observer is used for the
minimal state-space realization, where all the closed-loop
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Fig. 3. Comparative studies: disturbance rejection. Key:
line (1) Non-minimal realization repetitive control
system; line (2) Minimal realization repetitive control
system.
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Fig. 4. Comparative studies: reference following. Key: line
(1) Non-minimal realization repetitive control system;
line (2) Minimal realization repetitive control system.

poles of the observer error system are positioned at zero?
In which context, simulation studies have shown that this
does not provide early detection of the disturbance and

does not reduce the maximum deviation of the response.
Moreover, due to the higher gain of the observer, the
measurement noise is more amplified in the control signal.

6. CONCLUSIONS

This paper has developed a disturbance observer-based
repetitive control system using a non-minimal state-space
realization. By choosing the state variables based directly
on the plant input and output variables, there is no need to
use an observer to estimate the state variables. The task of
repetitive control system design then becomes two simple,
yet independent, tasks: first, the design of a state feedback
control law and secondly the design of a disturbance
observer that embeds the characteristics of the disturbance
signal or the reference signal into the control algorithm.
The associated simulation studies demonstrate the efficacy
of the resulting robotic arm control. Furthermore, the
related comparative studies illustrate that the repetitive
control system using a non-minimal state-space realization
can have considerable advantages over a repetitive control
system design using a minimal state-space realization.

Ongoing research includes experimental validation on the
gantry robot used in this paper.
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