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Abstract:
Government subsidies for energy storage and renewable generation have led to the cost of energy
storage come down during recent years. This has motivated people to deploy behind-the-meter
energy storage units, to reduce their monthly electricity bill. For optimal control of the battery to
incorporate maximum photovoltaic energy generation as well as demand charge reduction, data-
driven and advanced Battery Energy Storage System (BESS) control strategies are required.
This paper explores different use cases where customers could deploy energy storage systems
for demand charge reduction as well as when customers could deploy energy storage systems for
demand charge reduction while satisfying a utility set objective. From historical load and PV
data, different use cases are simulated using a Model Predictive Control (MPC) based BESS
control model. MPC requires machine-learning (ML) based forecasts of photovoltaic (PV) as
well as load as inputs. A sensitivity analysis on the effect of different energy forecasts on the
performance of MPC is presented in the paper. A degradation analysis with as a function of
charge/discharge cycles is also presented in the paper to evaluate the trade-off between economic
objectives and battery health.

Keywords: Energy storage control, energy forecasting, MPC, demand charge management,
degradation analysis, benefit stacking, machine learning

1. INTRODUCTION

With the increasing world population, the demand for
energy has increased significantly. It has been largely
met by traditional sources of energy such as fossil fuels,
however in the last decade, there has been a push towards
renewable sources of energy. But, integrating renewable
energy sources into the grid comes with its challenges.
Due to their dependency on weather conditions, renewable
energy sources are intermittent in nature, which makes
it difficult to rely completely on these alternate energy
sources. Energy storage offers a solution to this challenge.
With recent government grants and incentives, the cost
of energy storage has gone down in past few years (John,
2013). This has led to a drastic increase in the adaptation
of energy storage.

Energy storage is flexible in its operation and can be
deployed at various levels of the grid. A common use
case for energy storage is customer-sited energy storage.
Economically driven customers are deploying behind-the-
meter energy storage systems for services such as demand
charge reduction, maximizing renewable generation, mar-
ket participation, among others. Electricity bill for cus-
tomers such as large buildings, schools, offices, etc can

be very large. Customers are motivated to use energy
storage systems to reduce their monthly electricity bill.
Electricity bills are made up of energy charges and demand
charges, the later being derived from the peak power used
during a billing cycle. A major share of the electricity bill
can be due to demand charges (Neubauer and Simpson,
2015). Thus, using energy storage systems for demand
charge reduction and energy charge reduction based on
time-of-use rate can offer a solution to customers. Energy
storage dispatch strategies for demand charge reduction
have been explored in (Hanna et al., 2014; Zheng et al.,
2015). As promising as battery storage can be, there are
some operational nuances that must be considered, and
are often overlooked. Battery degradation is a major driver
of the storage system’s value proposition. In many cases,
battery cycling can be so costly that shifting energy over
time to reduce a electricity bill can be a bad idea. However,
it is uncommon in energy storage management literature
to find works that directly incorporate the effect of degra-
dation in the decision-making process. Moreover, there is
little analysis on the degradation outcome due to different
operational strategies.

Using energy storage systems for multiple objectives can
be achieved by using an optimization-based control strat-
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egy. A Model Predictive Control (MPC) based controller
with fast feedback offers a solution for optimal dispatch
of the battery (Xie et al., 2012; Neubauer and Simpson,
2015). In MPC, at each time-step the controller solves
an optimization problem. The solution of the MPC is
updated using a fast feedback loop Wang and Boyd (2010).
However, MPC requires future predictions as inputs, which
have some level of error and uncertainty associated with
them. Thus, for reliable control of the battery, accurate
forecasts are required.

With development in machine learning and computational
capacity, highly advanced techniques have been applied
effectively in load and renewable forecasting. Techniques
such as Artificial Neural Networks (ANN) (Drezga and
Rahman, 1998; Sharma et al., 2018; Cali et al., 2009; Cali,
2011), Gradient Boosting (Taieb and Hyndman, 2014),
Support Vector Machines (Chen et al., 2004) and Linear
Regression (Hong et al., 2011) have been used in renewable
and load forecasting. With energy forecasts being one
of the most crucial inputs in the functioning of MPC,
the accuracy of the forecasts going into the MPC would
play an important role in the performance of the entire
system. An analysis of effect of the forecast error on the
performance of the MPC model has not been addressed in
detail in literature. It would be of interest to observe the
effect of forecast accuracy on the performance of MPC.

This paper looks into the practical aspects of MPC for
energy storage control: effect of forecast accuracy and
degradation management. An MPC based controller with
fast feedback to reduce the customers electricity bill and
maximize the use of photovoltaic generation is present.
A scenario when the customer deployed the battery for
its bill reduction (customer-benefit) is explored, moreover
a scenario where the energy storage system reduces the
customers electricity bill as well as supports the utility to
use the battery to avoid the feeder load exceed the thermal
limit (stack-benefit). Three different types of forecasting
techniques–namely, persistence, Support Vector Machines
and perfect forecast were developed and their effect on
the performance of the MPC controller were studied.
Customer electricity bill and the number of violations at
the feeder are analysed for customer-benefit and stacked-
benefit scenarios for different forecasting techniques. Sub-
sequently, a degradation analysis of the battery is also pre-
sented, to understand the effect of a relaxed degradation
model in the optimization algorithm.

2. PROBLEM FORMULATION

The system configuration for this analysis is that of a
commercial or industrial customer with PV solar gener-
ation and a battery system. Without loss of generality,
the battery system and the PV system are AC-coupled.
An orchestrating system has been deployed on the site to
control both the PV as well as the battery system. This
control is capable of running linear programming models,
and diverse machine learning algorithms. The controller is
connected to different power meters that monitor the AC
power flowing into the customer load, in and out of the
battery system, and out of the PV system.

The controller is used to carry out smart management of
the customer’s bill, while being able to support intercon-

nection constraints that can be imposed by the distribu-
tion utility. These constraints can be aimed at stopping
the back-flow into the grid, or requesting an increase in
the customer’s generation to support a grid capacity need.
The customer’s bill may have a time of use (TOU) energy
charge, and multiple demand charges that affect different
times of the day. The controller must generate dispatch
setpoints that reduce the customer’s bill, while ensuring
that the battery system is able to support interconnection
constraints, and ensuring that the battery degradation is
taken into account in all dispatch decisions.

2.1 Mathematical model

The customer site is modeled as an AC bus where power is
injected by a set Γ of elements that includes the customer
load, the PV generation, and the battery system. The
power balance in the bus is given by:∑

q∈Γ

P qt = PPCCt , (1)

where PPCCt is the power flowing between the grid and
the customer at time t. A negative value corresponds to
power flowing from the customer to the grid, and a positive
value corresponds to power flowing from the grid to the
customer.

Battery model: The battery model captures the main
aspects of a Li-ion battery system that are needed for
a quasi-steady state time series (QSTS) simulation: i)
state of charge SOC evolution, roundtrip efficiency ηRT ,
power capacity PBattmax which limits the charge and dis-
charge power, and energy capacity Emax which limits the
maximum energy that can be stored in the battery.

State of Charge (SOC) State of charge is defined as the
ratio of the available energy in the battery by its maximum
energy capacity. Energy storage operates between certain
limits (max/min) of charge based on its capacity. This
affects the operation of the battery as the SOC must
always remain in certain limits at all time for proper
functioning of the battery.

Charging and discharging Energy storage can function
within certain boundaries of maximum and minimum
charging and discharging capacities. The charging and
discharging values depend on the maximum and minimum
state of charge (SOC) and the maximum available battery
capacity.

Efficiency There is a loss of energy while operating the
battery which affects the operation of the battery. Effi-
ciency directly affects the loss of energy during charging
and discharging.

The SOC evolution is modeled as follows:

Et = Et−1 + (ηRT ∗ Ct −Dt)∆t (2)

SOCt = Et/Emax (3)

The non-negative variables Ct and discharge Dt represent
the battery power dispatch PBattt = Ct−Dt during a time
period t. The variables SOCt and Et correspond to the
state of charge and state of energy respectively at the end
of the time period t. The term ∆t is the length of the time
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period t in hours. In order to respect the physical limits of
the system, it must hold that:

SOCt ∈ [0, 1] (4)

Ct ∈ [0, PBattmax ] (5)

Dt ∈ [0, PBattmax ] (6)

State of Health (Degradation) Battery degradation is
the loss of retention capacity available for charging. With
continuous charging and discharging cycles, there is a loss
or degradation in the maximum available capacity and the
efficiency of the battery. Battery degradation is a crucial
factor in calculating the economic benefit of energy storage
as the battery might need replacement after some years.

The degradation aspect of the battery system is captured
by the sum of two elements: calendar degradation and
cycling degradation. Degradation is measured as the loss
of state of health SOH. SOH is a variable in [0, 1], which
is 1 when the battery system is new, and 0 when it needs
replacement. Cycling degradation is a function of the SOC
evolution over a given time period. Each cycle is the event
of the SOC variable going back to an initial value after
having gone sufficiently far from it. This movement is
referred to as depth of discharge. Each cycle within the
SOC evolution will affect the SOH differently, according
to its depth of discharge. Let SOC[0,T ] be the evolution
of the SOC of a battery over the time interval [0, T ]. Let
i ∈ I[0,T ] be all the cycles existing in SOC[0,T ]. The depth
of cycle i is denoted by δ(i). The loss of SOH due to
cycling is modeled as:

SOHcycling
loss =

∑
i∈I[0,T ]

1

fDoD(δ(i))
(7)

where fDoD is a function that represents the number of
cycles of a fixed depth of discharge that the battery system
may undergo before needing replacement. The function f
is known from battery cycling experiments. The number
of cycles and the corresponding depth of discharge of each
cycle is calculated using a Rainflow Counting Algorithm,
which takes the SOC signal for a given time interval and
return the depth of discharge of each cycle found within
the signal. We omit the details on the Rainflow Counting
Algorithm for brevity. However, the algorithm is a highly
non-convex function, making it difficult to incorporate
directly in an optimization algorithm. In a subsequent
section, we introduce a relaxation to indirectly account
for degradation in the decision-making process, and then
in the simulation analysis, we evaluate the effect of the
operation in the non-convex model.

PV solar model: The PV solar model is simply a stochas-
tic process that represents the AC solar power availability
at any time t. It is given by PPVmax,t, and for the controllable
PV inverter, the AC power output is the non-positive
variable PPVt . The physical limits of the PV system are
represented by the equation:

PPVt ∈ [−PPVmax,t, 0] (8)

Load model: The load is modeled as a non-negative
stochastic process Loadt. Much like the PV solar model,
the stochastic processes associated to these phenomena
are assumed to have certain predictability. The power
associated to the load during the time t is P loadt = Loadt.

Fig. 1. MPC architecture

Tariff rate: The most complicated tariff rates in the
United States can be modeled in the framework presented
in the following. For each month m ∈ {1, . . . , 12}, metering
intervals t ∈ Λm, and demand charges l ∈ Λm, the
customer bill is given by:

Billm = FR+
∑
t∈m

cetP
PCC
t +

∑
l∈Λm

cDCl max
σ∈m(Λm)

PPCCσ

(9)

The first term is the customer’s fixed charge (FR), the
second term is the energy charge, and the third term is
the sum of all demand charges in the tariff.

2.2 MPC approach for PV and battery management

The decision-making approach followed in this work is
a model predictive control (MPC) that uses a system
model, along with forecast of the solar PV generation
and customer’s load to determine the best setpoint for
the battery system and PV. There are two advantages of
this approach. First, the optimization formulation makes
it possible to capture the economic objectives of the cus-
tomer, while addressing the constraints related to the
system technical features and interconnection constraints.
It also allows to include degradation management in the
decision-making process. Second, recalculating the set-
points frequently allows to incorporate new information
from refreshed forecast, new measurements, and latest
system state into the new decision.

The formulation for this analysis is flexible in terms
of the prediction horizon and the control step, but for
convenience, we present it with a fixed control step of
1 hour and a prediction horizon of 24 hours. It means
that the optimization problem must run every hour, and
calculate system variables for up to 24 hours later.
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minimize
∑

s∈[t,t+24]

cetP
PCC
t +

∑
l∈Λm

cDCl max
σ∈[t,t+24](Λm)

PPCCσ , lmaxt +

κ
∑

s∈[t,t+24]

Dt

subject to:

Es = Es−1 + (ηRT ∗ Cs −Ds) ∆s

SOCs = Es/Emax
SOCs ∈ [0, 1]

Cs ∈ [0, PBattmax ]

Ds ∈ [0, PBattmax ]

PPVs ∈ [−PPVmax,s, 0]

P loads = Loads∑
q∈Γ

P qs = PPCCs for all s ∈ [t, t+ 24].

Since the effect of operation on degradation is highly
non-linear and non-convex, we use a simplified convex
approach. The term κ

∑
s∈[t,t+24]Dt is used to manage

battery degradation by setting a penalty on the battery
discharge. The terms lmaxt correspond to the maximum
demand seen in month m before time t associated to
demand charge l. It allows to reduce battery activity when
there is no value in reducing subsequent peaks. In the
simulation analysis, we analyze the actual degradation
produced by the operational profile in the non-linear
degradation model.

The values of PPVmax,s and Loads for the next 24 hours
come from forecast processes, which will not be discussed
in detail in this work.

3. SIMULATION CASE

The proposed system is evaluated and analysed with dif-
ferent sensitivities. For each sensitive analysis, the system
is run for two cases:

Customer benefit: In this case, the aim of the system is to
reduce the customers monthly electricity bill. This is done
by reducing the amount of electricity bought during peak
hours by utilizing PV and storage to reduce the customer’s
electricity bill.

Benefit Stacking: In this case, the primary aim of the
system is to control the battery such that there are
no violations at the feeder while trying to reduce the
customer’s electricity bill. Since two objectives are stacked
on top of each other, this adds more value to energy
storage.

3.1 Data

The data consists of a virtual feeder with five customers.
Each customer has load, PV generation and tariff rate data
associated with them. The data consists of 1 year of load
and PV values with an hourly horizon from 1st January .
The thermal limit at the feeder is assumed to be 17MW.

The battery is modeled be a 4 hour battery with 90%
efficiency.

3.2 Energy Forecasting

Energy forecasting is the process of estimating the future
values of an energy time-series using historical values of
the time-series. In this paper, the available one year of
data is split into training and testing sets. The training
set consists of 3 months of data and testing set consists
of 9 months of data. The following forecasting techniques
are implemented to generate forecasts of feeder load, load
and PV generation.

Perfect Forecast: A perfect forecast is one in which the
forecasted values are equal to the actual values for each
point in the data set. No forecasting model can create a
perfect forecast. Using a perfect forecast actually means
assuming that we can peak ahead into the future.

Persistence Forecast: In persistence forecasting method,
the forecasts are generated by taking the last observation
in the training period and using it as the forecast for
each of the points of the forecast horizon. The persistence
method assumes that there will be no change in the
conditions at the time of the forecast.

Support Vector Regression: Support vector regression
(SVR) is an extension to support vector machine (SVM)
classification introduced by Müller et al. (1997). In SVM,
a hyper-plane is found such that a given data-set is di-
vided into two parts, maximising the distance between
the hyper-plane and the nearest point from either group.
We omit the details of SVM in this manuscript for
brevity, a detailed explanation can be found in (Smola and
Schölkopf, 2004).
The inputs for training the SVR model were 3 months of
historical load or PV values and a 24-hour lag time series
of the historical load or PV values. The lag time-series
provides the model information about the recent trend
of the time-series, giving more importance to the newer
information.

3.3 Forecast error analysis

The aim of this study is to analyse the effect of forecast
accuracy on the control system. Feeder load, customer load
and PV generation forecasts using different forecasting
techniques with different accuracy are modelled and are
given as inputs to the MPC and their effects are analysed.
For this analysis, an SVM forecasting model is developed
and compared to two benchmark forecasts, namely persis-
tence forecast and perfect forecast. The forecast accuracy
of the SVM model lies between the accuracy of perfect
forecast and persistence forecast. The forecasts are made
at each hour of the day for the next 24 hours. Since
there is no information regarding the future going into
the forecasting model, the forecasts for the recent hours
are more accurate than for the later hours. To present a
comparison of the different scenarios, a base case without
energy storage is simulated. This case is the the no-control
scenario. Figure ?? shows the plot comparing the forecasts
for 24 hours. From Table 1 and Table 2 it can be observed
that the customer’s bill savings decrease with decrease in
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Table 1. 9-month customer bill saving from stacked benefits

Stacked benefit Customer 1 Customer 2 Customer 3 Customer 4 Customer 5

Perfect forecast $143,230 $107,894 $124,564 $142,015 $172,450

SVM $96,814 $106,734 $89,561 $113,277 $111,498

Persistence $91,408 $102,072 $83,465 $106,286 $110,597

Table 2. 9-month customer bill saving from customer benefits

Customer Benefit Customer 1 Customer 2 Customer 3 Customer 4 Customer 5

Perfect forecast $153,557 $111,783 $135,296 $140,917 $183,550

SVM $110,817 $111,175 $101,431 $111,018 $121,147

Persistence $109,216 $108,053 $101,905 $108,228 $125,116

forecast accuracy. The electricity bill savings reduce by
23% in case of SVM and approximately by 27% in case
of persistence forecast for stacked benefit. For customer
benefit, the electricity bill savings reduce by 22% in case
of SVM and approximately by 23% in case of persistence
forecast. Another important parameter while evaluating
the performance of the system is the number of violations.
In case of customer benefit, the system does not try to
reduce the number of violations, but for the stacked benefit
case, the primary objective for the system is to avoid
any violations. Similar to the customer bill evaluation, the
number of violations in each case is compared to the no-
control scenario. From Table 3, it can be seen that for
the no-control case there are 83 violations. The number
of violations for each customer are reduced with energy
storage and control. The number of violations occurring in
case of persistence forecast and SVM forecast is due to the
error in the forecast. In principal, SVM is more accurate
than persistence forecast but since the SVM model does
not have any information about the future (e.g. weather
forecast), there can be an error in predicting the peaks in
the next 24 hours that might results in a violation at the
feeder. In case of perfect forecast, there are no violations
observed.

Fig. 2. Benefit stacking: 9-month electricity bill savings

3.4 Degradation sensitivity analysis

Energy storage systems are a relatively expensive asset to
own and maintain for a customer and hence its longevity

Fig. 3. Customer benefit: 9-month electricity bill savings

Table 3. Number of violations for different
forecast accuracy

No Ctrl Persist. SVM Perfect

Customer 1 83 5 5 0

Customer 2 83 18 20 0

Customer 3 83 11 13 0

Customer 4 83 13 12 0

Customer 5 83 0 0 0

becomes one of the most important factor to consider while
managing the energy system. The health of the battery is
affected by the number of charging and discharging cycles
in its operation. In the present work, a sensitivity is run
on the MPC system by adding a penalty term on battery
discharge. The penalty term is varied to run a sensitivity
analysis for different penalties. The reduction in the state
of health of the battery is evaluated for different penalties.
The results are present in Figure 4 and Figure 5. Ideally, as
the penalty is increased to a higher value, the percentage
of degradation in the state of health of the battery should
decrease due to conservation in the charging-discharging
cycles. For the customer benefit, the results are observed
to be consistent with the ideal scenario but for benefit
stacking, there is very less variation in degradation values
with change in the penalty term. This needs to be further
analysed in future work.

4. CONCLUSION

This work looks into the practical implementation of an
MPC based energy dispatch control algorithm for a system
consisting of solar plus storage. The effect of forecast
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Fig. 4. Benefit stacking: Degradation sensitivity analysis

Fig. 5. Customer benefit: Degradation sensitivity analysis

accuracy on the performance of the system is analysed
by using different forecasting techniques with varying
forecast error. Secondly, a battery degradation analysis
is done by introducing a penalty term associated with
each discharging cycle. A sensitivity analysis of the effect
of discharge penalty on the battery degradation is also
presented.

MPC based energy dispatch control, using real data from
five different customers is simulated for two scenarios:
Customer benefit, when the system tries to minimize the
customer’s monthly electricity bill; and Benefit stacking,
when the system reduces the customer’s electricity bill
while supporting the utility’s objective. It is observed
that the customers make significant savings by deploying
the proposed system for demand charge reduction while
supporting the utility as well. The accuracy of the forecast
highly affects the performance of the model which can
be measured by the customer’s electricity bill. Secondly,
the degradation in the state of health of the battery is
much more for lower penalty terms and it is less for higher
penalty terms. The penalty on the discharging cycles, in-
creases the life of the battery by reducing its degradation.
For future research, different forecasting algorithms can
be explored. Using Numerical Weather Prediction (NWP)
data to make load and solar forecasts can significantly
increase the accuracy and the quality of the forecasts. The
length of the testing data can also impact the accuracy of
the forecasts. using more amount of data for training the
models can improve the accuracy of the models. Further
research is required to completely understand the impact
of the penalty associated with discharging cycles on the
degradation of the battery.
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