
A Distributed Algorithm for Nonconvex
Quadratically Constrained Programs ?

M.E. Ashour and C.M. Lagoa ∗

∗Department of Electrical Engineering and Computer Science,
The Pennsylvania State University.

Abstract: This paper considers nonconvex quadratically constrained programs over undirected
connected graphs. We focus on problems whose quadratic constraint forms have sparse hessians,
i.e., each constraint only involves a small subset of variables. We present both centralized and
distributed treatment of the problem, where the centralized method is used as a benchmark
with which we compare the performance of the proposed distributed algorithm. Towards this
objective, we derive a lower bound on the optimal value of the problem using a semidefinite
relaxation. Then, we develop a decentralized algorithm based on proximal gradient ADMM that
exploits the structure of the constraints to distribute the computations among the graph nodes.
Indeed, the proposed algorithm does away with a central node. Each node updates its local
variables via solving a simple subproblem, then communicate with its immediate neighbors. An
application of this work is the AC optimal power flow problem in power networks for which we
provide preliminary numerical results to validate our findings.

Keywords: Distributed optimization, convex relaxation.

1. INTRODUCTION

In this paper, we consider optimization problems where
the objective function is convex but the constraints are
not. More precisely, we allow for the existence of quadratic
equality constraints. The problem setup considered en-
compasses the so-called AC optimal power flow problem,
where, apart from a set of convex constraints, quadratic
equality constraints arise when modeling the power bal-
ance at each bus. Such problems are known to be NP-hard;
see for example Bienstock and Verma (2015); Cain et al.
(2012); Lehmann et al. (2016) and references therein.
Hence, several numerical approaches propose approxima-
tions based e.g. on Newton methods Dommel and Tinney
(1968), interior point based methods Yan and Quintana
(1999) or global optimization heuristics Abido (2002);
Lai et al. (1997). More recently, approximations based
on semidefinite programming have been proposed; see for
instance the recent two-part tutorial Low (2014a,b) and
references therein.

However, all of the approaches mentioned above have a
common limitation: lack of scalability. Their complexity
rises quickly with the size of the network with quite a
few of these becoming unusable for medium to large size
problems. Guo et al. (2017) use ADMM with variable aug-
mented Lagrangian penalty parameter to tackle the non-
convex optimization problem required for power systems
in a distributed fashion. However, the technique proposed
requires solving nonconvex ADMM subproblems which the
reference does not elaborate on how to find local optima
for these subproblems. An interesting study appears in Sun

? This work was partially supported by National Institutes of Health
(NIH) Grant R01 HL142732, and National Science Foundation (NSF)
Grant 1808266.

et al. (2013), which introduces local copies of the coupled
variables at nodes, and demand that these local copies
match the true ones, i.e., a similar idea to a consensus
formulation. Their approach relies also on solving sub-
problems with nonconvex quadratic constraints, and do
not explicitly mention ways of tackling these subproblems
apart from using numerical solvers. Furthermore, there
seems to be no hard evidence for a general convergence
theory for ADMM on nonconvex problems, although this a
hot research area now, see for instance Sun (2019). Kraning
et al. (2014) present a proximal message passing algorithm
for network energy management and highlight that conver-
gence is not guaranteed with nonconvex subproblems.

To address the previously mentioned concerns, we follow a
relax then distribute approach to the problem. In particu-
lar, we present a semidefinite relaxation of the problem in-
spired by d’Aspremont and Boyd (2003). Then, we propose
a consensus based decentralized algorithm that exploits
sparsity of the constraints to distribute the computations
among the nodes on the network inspired by the proximal
gradient ADMM (PG-ADMM) algorithm proposed by Ay-
bat et al. (2018). The main contributions of this work are:

• We present a convex relaxation to the problem for
which there exist concrete solution algorithms, rather
than using a numerical solver.

• We use a distributed algorithm in which each node
solves a convex subproblem and communicates with
its neighbors. We show that the computational com-
plexity per node scales with the node’s degree, not
with the network size. Hence, the solution is scalable.

• The proposed distributed algorithm is theoretically
guaranteed to converge to a solution of the relaxed
convex problem Aybat et al. (2018).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 4318

1.1 Notation

We represent scalars by lowercase light letters, e.g., x,
vectors by boldface lowercase letters, e.g., x, matrices
with boldface uppercase letters, e.g., X, and sets with
caligraphic letters, e.g., X . Vectors are viewed as column
vectors and the transpose of x is x>. The i-th entry of x is
xi, and the (i, j)-th entry of the matrix X is Xij . The trace
of X is tr(X). The cardinality of X is |X |, and a vector
whose elements are the diagonal entries of X is denoted
by diag(X). Let ΠX (y) = argmin{‖x − y‖ : x ∈ X} be
the projection of y onto X . The indicator function to the
convex set X is denoted by 1X , i.e., 1X (x) = 0 if x ∈ X ,
and is +∞ otherwise. Vectors of all ones and all zeros are 1
and 0, respectively. Inequalities of vectors are with respect
to the nonnegative orthant, and inequalities of matrices are
with respect to the positive semidefinite cone. For n ∈ Z+,
denote the index set {1, . . . , n} by [n].

2. PROBLEM FORMULATION

Let G = (N , E) be a connected undirected graph with a
set of nodes N = [N] for some N ∈ Z+, and a set of
edges E ⊂ N ×N . Assume without loss of generality that
(i, j) ∈ E implies that i < j. Moreover, let Ni = {j ∈ N :
(i, j) ∈ E or (j, i) ∈ E} be the set of neighbors of node i,
and define Oi = Ni∪{i}. Let x = [xi]i∈N and consider the
following nonconvex quadratically constrained program:

min
x

f(x) ,
∑
i∈N

fi(xi)

s.t. x>Wi`x + (wi`)>x + ri` = 0, i ∈ N , ` ∈ [mi]

[xj]j∈Oi
∈ Xi, i ∈ N ,

(1)
where for each i ∈ N , fi : R→ R is a differentiable convex
function with a Lipschitz continuous gradient whose Lips-
chitz constant is Li, and Xi is a convex set. Furthermore,
mi ∈ Z+, and for all ` ∈ [mi], r

i` ∈ R, Wi`
kj = 0 for

(k, j) 6∈ Oi × Oi, and wi`j = 0 for j 6∈ Oi. We impose no

definiteness assumptions on the matrices Wi`.

In the following lines, we state the motivation behind
considering problem (1). Although f and ∩i∈NXi are
convex, the quadratic equality constraints render problem
(1) nonconvex; hence, hard to solve. Furthermore, the
complexity of finding a solution for (1) rapidly grows
with N . Thus, we seek to develop a scalable decentralized
algorithm that exploits the structure of (1) to approximate
its solution. Indeed, problems of practical interest usually
have lots of structure to be exploited, and some can be
cast as in (1). A well known problem that fits the setup
considered in this paper is the so-called AC optimal power
flow problem. Let G represent a power network ofN buses,
and let z = [zi]i∈N , y = [yi]i∈N . Consider the following
problem:

min
z,y

f(z) ,
∑
i∈N

fi(zi)

s.t. zi =
∑
j∈Ni

yi(yi − yj)wij + ri, i ∈ N

zmini
≤ zi ≤ zmaxi

, i ∈ N
|yi| ≤ ymax, i ∈ N .

(2)

Let zi be the power generated at node i ∈ N , yi be
the voltage of node i, wij be the admittance of the
transmission line connecting nodes i and j, ri be the power
consumed by the load at node i, and f(z) be the cost
of power generation. Then, problem (2) is the optimal
power flow problem that minimizes the cost of power
generation subject to balancing the supply and demand.
In particular, the quadratic constraint in (2) represents the
power balance equations that need to be satisfied at each
node. Problem (2) lends itself to the formulation in (1).

A centralized solution to problem (1) is not desirable.
Indeed, a centralized solution requires the presence of a
central node that possesses the knowledge of the global
topology of the graph G. Moreover, the complexity of a
centralized solution rapidly increases with the size of the
network; thus hinders its scalability. That said, we aim
in this work to provide a solution that resolves the two
aforementioned issues, namely, the nonconvexity of the
problem and the pressing need for a decentralized scalable
algorithm that exploits the structure of the quadratic
constraint to distribute the computations among the graph
nodes while maintaining a low overhead of communication
in the network.

Remark 1. For a generic program with quadratic equality
constraints, one could construct a graph of dependencies
for coupled decision variables to cast the problem as in (1).

Indeed, if one picks random quadratic constraints, it
might end up being the case that the generated graph is
complete. However, practical problems as the one shown in
(2) usually have structure that might lead to a graph with
sparse connectivity. Nevertheless, the method described
here works for complete graphs, but with a relatively high
overhead generated by control signaling among nodes.

3. CONVEX RELAXATION

In this section, we establish the basis of the proposed
distributed algorithm by relaxing problem (1) into a con-
vex semidefinite program, d’Aspremont and Boyd (2003).
Note that x>Wi`x = tr(Wi`xx>); thus, problem (1) is
equivalent to:

min
x,X

∑
i∈N

fi(xi)

s.t. tr(Wi`X)+(wi`)>x+ri`=0, i ∈ N , ` ∈ [mi]

X = xx>

[xj]j∈Oi
∈ Xi, i ∈ N .

(3)

Introducing the matrix X ∈ RN×N transforms the
quadratic equality constraint into an affine one; hence,
convex. However, X = xx> is a nonconvex constraint.
This constraint is replaced with the semidefinite constraint
X � xx>. Using Schur complement d’Aspremont and
Boyd (2003), one can formulate the convex relaxation of
(3) as:

min
x,X

∑
i∈N

fi(xi) + θtr(X)

s.t. tr(Wi`X)+(wi`)>x+ri`=0, i ∈ N , ` ∈ [mi]

[xj]j∈Oi ∈ Xi, i ∈ N[
X x
x> 1

]
� 0,

(4)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4319

where θ ∈ R+ is a regularization parameter. The reg-
ularization tr(X) induces a sparsification effect on the
eigenvalues of X; hence, favors low rank solutions. In fact,
a rank 1 matrix X produced by solving (4) with θ = 0
implies that (4) and (3) are equivalent; consequently, (4)
and (1) are equivalent in this case. However, solving (4)
provides a lower bound on the optimal value of (1).

4. DISTRIBUTED ALGORITHM

A centralized solution to problem (4) necessitates that
each node i ∈ N reveal its private cost function fi, and
requires the knowledge of the global topology of the graph
G. Herein, we reformulate (1) to exploit the structure
of the quadratic constraints. This opens room for the
development of a distributed algorithm that makes use
only of the local topology known at each node, i.e., each
node only needs to know who its immediate neighbors are.

A first step towards our goal is to note that the equality
constraints in (1) can be written in a simpler form. Let
x̄i = [xj]j∈Oi

, then problem (1) is equivalent to:

min
x

∑
i∈N

fi(xi)

s.t. x̄>i W̄
i`x̄i + (w̄i`)>x̄i + ri` = 0, i ∈ N , ` ∈ [mi]

x̄i ∈ Xi, i ∈ N ,
(5)

with the matrices W̄i` ∈ R|Oi|×|Oi| constructed appropri-
ately as submatrices of Wi`. Clearly, W̄i` is considered
local data known at node i.

The formulation in (5) is amenable to decentralization. We
now let xi = [xij]j∈Oi

be the variables kept locally at node
i. For all i ∈ N , xij represents the belief node i has about
the decision of node j ∈ Ni, and xii is node’s i true local
decision. Thus, problem (5) can be cast in consensus form,
i.e., demanding that local beliefs at each node about the
decision of its neighbors match their true ones. Evidently,
problem (5) is equivalent to:

min
[xi]i∈N

∑
i∈N

fi(xii)

s.t. x>i W̄
i`xi + (w̄i`)>xi + ri`, i ∈ N , ` ∈ [mi]

xi ∈ Xi, i ∈ N
xii = xji, xij = xjj , (i, j) ∈ E .

(6)
The consensus constraints xii = xji and xij = xjj for all
(i, j) ∈ E imply that the copies of a node’s decision are
the same at all neighboring nodes. This establishes the
equivalence of (5) and (6).

We make use of the semidefinite relaxation introduced
in Section 3 to formulate a convex relaxation of (6). In
particular, consider the following problem:

min
xi,Xi

∑
i∈N

fi(xii)

s.t. tr(W̄i`Xi) + (w̄i`)>xi + ri`, i ∈ N , ` ∈ [mi]

xi ∈ Xi, i ∈ N
xii = xji, xij = xjj (i, j) ∈ E[
Xi xi
x>i 1

]
� 0.

(7)

Algorithm 1 {x0
i , X0

i , γi, ci}i∈N

1: Set ∀i ∈ N : s0ii =
∑

j∈Oi
Γijx

0
ji, s

0
ij = Γij(x0jj − x

0
ij), j ∈ Ni,

s0i = [s0ij]j∈Oi
, p0

i = [p0ij]j∈Oi
= 0.

2: for k = 0, 1, . . . and each i ∈ N do
3: x̄kii ← xkii − ci[∇fi(x

k
ii) + skii + pkii]

4: x̄kij ← xkij − ci[s
k
ij + pkij], j ∈ Ni

5: x̄k
i ← [x̄kij]j∈Oi

6: (xk+1
i ,Xk+1

i)← ΠIi
(x̄k

i ,X
k
i)

7: sk+1
ii ←

∑
j∈Oi

Γijx
k+1
ji

8: sk+1
ij ← Γij(xk+1

jj − xk+1
ij), j ∈ Ni

9: pk+1
i ← pk

i + sk+1
i

Aybat et al. (2018) propose a distributed PG-ADMM al-
gorithm suitable for solving consensus optimization prob-
lems. We propose a distributed algorithm based on Aybat
et al. (2018) customized to problem (7). To simplify nota-
tion, we group all the constraints in (7) that are local to
node i in a set Ii. In particular, let

Ii =

{
(x,X) ∈ R|Oi| × R|Oi|×|Oi| :

tr(W̄i`X) + (w̄i`)>x + ri` = 0, ` ∈ [mi], x ∈ Xi,[
X x
x> 1

]
� 0

}
. (8)

Moreover, define Γ ∈ RN×N such that for each i ∈
N , Γij = 0 for j 6∈ Ni, Γij = − γiγj

γi+γj
for j ∈ Ni,

and Γii =
∑
j∈Ni

γiγj
γi+γj

, with γi ∈ R+ for all i ∈
N . Algorithm 1 summarizes the proposed distributed
algorithm for approximating the solution of (1), where the
superscript k denotes the iteration index.

We highlight the key steps of Algorithm 1 and defer its
derivation to Appendix A. Iteration k of Algorithm 1
consists of the following steps:

• In step 6, each i ∈ N updates its local variables
(xi,Xi) via solving the semidefinite program (SDP):

min ‖xi − x̄ki ‖2 + ‖Xi −Xk
i ‖2F + θitr(Xi)

s.t. (xi,Xi) ∈ Ii
(9)

based solely on available local information, where
‖.‖F denotes the Frobenius norm. The dimension of
the SDP depends only on |Ni| which is negligible
compared to |N | in large scale networks. The penalty
on the trace of Xi is used to induce low rank solutions,
and θi ∈ R+.

• In steps 7 and 8, each node exchanges information
with its immediate neighbors. More precisely, each
i ∈ N broadcasts xk+1

ii to all j ∈ Ni, sends xk+1
ij to

node j ∈ Ni, and receives xk+1
ji from node j ∈ Ni.

We emphasize on the scalability of Algorithm 1. In fact, the
computational load at each node originates from solving
the local SDP whose complexity is almost independent of
the size of the network. Instead, it depends on the degree
of the node which is expected to grow extremely slowly as
|N | increases. In contrast, the complexity of a centralized
solution adversely grows as |N | increases.

5. NUMERICAL RESULTS

This section presents an example application of Algorithm
1 to approximate the solution of an instance of problem

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4320

(2). In particular, we consider an optimal power flow
allocation problem on a power network. We randomly
generate a graph G of |N | = 20 nodes, where the graph
is generated such that an edge exists between any pair of
nodes with an initial probability 0.01, and that probability
is gradually increased until a connected graph is obtained.
The weight of any edge, wij , is drawn from a folded normal
distribution, precisely, as the absolute value of a standard
Gaussian random variable, independently and identically
distributed across all edges (i, j) ∈ E . Three generator
nodes out of N are picked at random, denoted by G ⊂ N ,
while the rest of nodes generate no power.

The objective is to minimize the power generation cost
subject to power balance constraints at each node repre-
sented by the quadratic equality constraints in (2). More
precisely, let zi denote the power generated at node i ∈ N ,
which is obviously forced to be zero if i 6∈ G, and the
cost at node i ∈ G is fi(zi) = z2i . Furthermore, let yi
denote the voltage of node i ∈ N , ri denote the power
consumed by the load connected to node i, and wij to be
the admittance of the transmission line represented by the
edge (i, j) ∈ E . For each node i ∈ N , ri is independently
drawn from a uniform distribution on the interval [0, 1]. We
set zmini

= 0, zmaxi
= 5 for all i ∈ G, zmini

= zmaxi
= 0

for i 6∈ G, and ymax = 5. We then rewrite problem (2) to
fit our formulation as follows:

min
z,y

∑
i∈N

fi(zi)

s.t. zi = y>Wiy + ri, i ∈ N
zmini

≤ zi ≤ zmaxi
, i ∈ N

|yi| ≤ ymax, i ∈ N .

(10)

The symmetric matrix Wi is constructed such that Wi
ii =∑

j∈Ni
wij , W

i
ij =

−wij

2 for j ∈ Ni, and zero elsewhere.

The centralized convex relaxation of (10) is then given by:

min
z,Y

∑
i∈N

fi(zi)

s.t. zi = tr(WiY) + ri, i ∈ N
zmini

≤ zi ≤ zmaxi
, i ∈ N

0 � diag(Y) � y2max1

Y � 0,

(11)

It is worth noting that y no longer exists in (11) to sim-
plify the implementation. Nevertheless, an approximate
retrieval of y∗ can be done using an eigen decomposition of
the matrix Y∗ produced by solving (11). For instance, pick
y∗ =

√
λmaxuλmax

, where λmax is the maximum eigenvalue
of Y∗ and uλmax

is its corresponding eigenvector. Thus,

y∗y∗
>

is the rank 1 matrix closest to Y∗ in Frobenius norm
by the matrix approximation lemma Eckart and Young
(1936). We solve problem (11) in a centralized fashion with
the purpose of using its solution as a benchmark with
which we compare the performance of Algorithm 1. To
solve problem (11) we use CVX, a package for specifying
and solving convex programs Grant and Boyd (2014).

Next, we use the ideas presented in Section 4 to cast
problem (11) in consensus form as follows:

min
z,{di,Yi}i∈N

∑
i∈N

fi(zi)

s.t. zi = tr(W̄iYi) + ri, i ∈ N
Yi � 0, i ∈ N
di = diag(Yi), i ∈ N
zmini

≤ zi ≤ zmaxi

0 ≤ dij ≤ y2max, i ∈ N , j ∈ Ni ∪ {i}
dii = dji, dij = djj , (i, j) ∈ E .

(12)
Ideally, if one is able to find rank 1 matrices Yi via solving
(12), then their diagonal entries dij , for j ∈ Ni ∪ {i},
are precisely equivalent to the squared variables yij in
problem (11). This motivates the choice of the consensus
constraints to be on the diagonal entries of the matrices
Yi in (12), since they act as a proxy for y2ij .

After performing the appropriate mapping between prob-
lems (12) and (7), we use Algorithm 1 to find a solution for
problem (12). We evaluate the performance of Algorithm
1 according to the following metrics.

• Violation of the consensus constraints in (6). Indeed,
in each iteration of the algorithm, we reconstruct
yki = [ykij]j∈Oi by finding the nearest rank 1 matrix

to Yk
i Eckart and Young (1936). We then use two

measures of consensus violation, the first of which
termed max-to-min distance, computed at iteration
k as:

max
i∈N

{
max
j∈Oi

ykji − min
j∈Oi

ykji

}
, (13)

and the other termed distance to mean computed at
iteration k as:

1

|N |
∑
i∈N

1

|Oi|
∑
j∈Oi

(ykji −
1

|Oi|
∑
`∈Oi

yk`i). (14)

• Infeasibility of the iterates generated by Algorithm
1 with respect to the quadratic equality constraints
in the original nonconvex problem (10). In each
iteration k, yki = [ykij]j∈Oi

is reconstructed from Yk
i

for each i ∈ N . Then, we let y = [ykii]i∈N , i.e., the
vector of true decisions at all nodes, not their copies
kept locally at their neighbors. Max infeasibility at
iteration k is then measured as:

max
i∈N

|zki − (yk)>Wiyk − ri|, (15)

and average infeasibility at iteration k is computed
as:

1

|N |
∑
i∈N
|zki − (yk)>Wiyk − ri|. (16)

• Suboptimality of the iterates generated by Algorithm
1 relative to the centralized solution of problem (11).
More precisely, let f∗ be the optimal objective value
of (11), then the relative suboptimality is computed
at iteration k as:

‖zk‖ −
√
f∗√

f∗
. (17)

Fig. 1, 2, and 3 show the performance of Algorithm 1 with
respect to the three aforementioned metrics. We choose
γi = 0.3 for all i ∈ N , and set ci = (Li + γi|Ni|)−1, where
Li = 1 for all i ∈ N according to the chosen cost function
fi. We initialize z0i and each entry of d0

i as realizations

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4321

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

10-6

10-5

10-4

10-3

10-2

10-1

100

101

C
on

se
ns

us
 v

io
la

tio
n

Distance to mean
Max-to-min distance

Fig. 1. Consensus violation of Algorithm 1’s iterates.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

10-5

10-4

10-3

10-2

10-1

100

101

102

In
fe

as
ib

ili
ty

Max infeasibility
Mean infeasibility

Fig. 2. Infeasibility of Algorithm 1’s iterates.

of uniform distributions on the intervals [zmini , zmaxi] and
[0, y2max], respectively. Furthermore, we set Y0

i to a rank 1
matrix with the entries of d0

i being its diagonal elements.

Fig. 1 serves as an evidence that Algorithm 1 performs
quite well in terms of consensus among neighboring nodes.
In Fig. 2, we show that Algorithm 1 iterates approach the
feasible set of (10) as time progresses. Finally, Fig. 3 shows
that the iterates generated by Algorithm 1 lead to a cost
that approaches its optimal value obtained by solving (11),
which provides a lower bound on the optimal value of (10).

6. CONCLUSION

In this paper we propose an algorithm for solving opti-
mization problems with quadratic equality constraints, a
problem known to be NP-hard. By exploiting sparsity of
the constraints, we are able to decentralize the computa-
tions and develop an approach that scales well with the size
of the network. Effectiveness of the proposed algorithm is
demonstrated using randomly generated problems. Effort
is now being put in extending the proposed approach
to problems where the constraints are uncertain, and in
performing large-scale simulations.

REFERENCES

Abido, M. (2002). Optimal power flow using particle
swarm optimization. International Journal of Electrical
Power & Energy Systems, 24(7), 563–571.

Aybat, N.S., Wang, Z., Lin, T., and Ma, S. (2018). Dis-
tributed linearized alternating direction method of mul-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
su

bo
pt

im
al

ity

Fig. 3. Suboptimality of Algorithm 1’s iterates.

tipliers for composite convex consensus optimization.
IEEE Transactions on Automatic Control, 63(1), 5–20.

Bienstock, D. and Verma, A. (2015). Strong NP-
hardness of AC power flows feasibility. arXiv preprint
arXiv:1512.07315.

Cain, M.B., O’Neill, R.P., and Castillo, A. (2012). History
of optimal power flow and formulations (opf paper
1). Technical report, US Federal Energy Resource
Commission (FERC).

d’Aspremont, A. and Boyd, S. (2003). Relaxations and
randomized methods for nonconvex qcqps. EE392o
Class Notes, Stanford University, 1, 1–16.

Dommel, H. and Tinney, W. (1968). Optimal power flow
solutions. IEEE transactions on power apparatus and
systems, 10, 1866–1876.

Eckart, C. and Young, G. (1936). The approximation of
one matrix by another of lower rank. Psychometrika,
1(3), 211–218.

Grant, M. and Boyd, S. (2014). CVX: Matlab soft-
ware for disciplined convex programming, version 2.1.
http://cvxr.com/cvx.

Guo, J., Hug, G., and Tonguz, O.K. (2017). A case for
nonconvex distributed optimization in large-scale power
systems. IEEE Transactions on Power Systems, 32(5),
3842–3851.

Kraning, M., Chu, E., Lavaei, J., Boyd, S., et al. (2014).
Dynamic network energy management via proximal
message passing. Foundations and Trends R© in Opti-
mization, 1(2), 73–126.

Lai, L., Ma, J., Yokoyama, R., and Zhao, M. (1997).
Improved genetic algorithms for optimal power flow
under both normal and contingent operation states.
International Journal of Electrical Power & Energy
Systems, 19(5), 287–292.

Lehmann, K., Grastien, A., and Van Hentenryck, P.
(2016). Ac-feasibility on tree networks is np-hard. IEEE
Transactions on Power Systems, 31, 798–801.

Low, S.H. (2014a). Convex relaxation of optimal power
flow; Part I: formulations and equivalence. IEEE Trans-
actions on Control of Network Systems, 1(1), 15–27. doi:
10.1109/TCNS.2014.2309732.

Low, S.H. (2014b). Convex relaxation of optimal
power flow; Part II: exactness. IEEE Transactions
on Control of Network Systems, 1(2), 177–189. doi:
10.1109/TCNS.2014.2323634.

Sun, A.X., Phan, D.T., and Ghosh, S. (2013). Fully
decentralized AC optimal power flow algorithms. In

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4322

2013 IEEE Power & Energy Society General Meeting,
1–5.

Sun, Kaizhao, X.A. (2019). A two-level distributed
algorithm for general constrained non-convex opti-
mization with global convergence. arXiv preprint
arXiv:1902.07654.

Yan, X. and Quintana, V. (1999). Improving an interior-
point-based opf by dynamic adjustments of step sizes
and tolerances. IEEE Transactions on Power Systems,
14(2), 709–717.

Appendix A. DERIVATION OF ALGORITHM 1

Algorithm 1 uses a version of PG-ADMM proposed by
Aybat et al. (2018) customized to problem (7). The deriva-
tion presented next follows similar ideas to those presented
by Aybat et al. (2018). However, in our case each node
does not share all of its local decision with its neighbors.
Instead, it shares different subsets of its local decision
depending on the identity of its neighbors. We outline the
main steps used in the derivation.

Problem (7) can be cast as follows:

min
{xi,Xi}i∈N

∑
i∈N

[fi(xii) + 1Ii(xi,Xi)]

s.t. Aijxi = Mijxj , (i, j) ∈ E ,
(A.1)

where the matrices Aij and Mij are constructed appropri-
ately to enforce the consensus constraints in (7). Introduce
the primal variable y = [yij](i,j)∈E and consider:

min
y,{xi,Xi}i∈N

∑
i∈N

[fi(xii) + 1Ii(xi,Xi)]

s.t. Aijxi = yij , (i, j) ∈ E
Mijxj = yij , (i, j) ∈ E ,

(A.2)

Let α = [αij](i,j)∈E and β = [βij](i,j)∈E be the dual
variables associated with the equality constraints in (A.2).
Also let x = [xi]i∈N , and X = [Xi]i∈N . The augmented
Lagrangian function is then given by:

L(x,X,y,α,β)=
∑
i∈N

1Ii(xi,Xi)+φ(x,X,y,α,β), (A.3)

where the differentiable part of L, φ, is given by:

φ(x,X,y,α,β) =
∑
i∈N

fi(xii)

+
∑

(i,j)∈E

[
α>ij(Aijxi − yij) + β>ij(Mijxj − yij)

]
+
∑

(i,j)∈E

[γi
2
‖Aijxi − yij‖2 +

γj
2
‖Mijxj − yij‖2

]
.

(A.4)

PG-ADMM updates the variables following Aybat et al.
(2018) as:

(xi,Xi)
k+1 =ΠIi((xi,Xi)

k−ci∇φ(x,X,y,α,β)k) (A.5)

yk+1
ij = argmin

yij

{−(αkij + βkij)
>yij

+
γi
2
‖Aijx

k+1
i −yij‖2+

γj
2
‖Mijx

k
j−yij‖2} (A.6)

αk+1
ij = αkij + γi(Aijx

k+1
i − yk+1

ij) (A.7)

βk+1
ij = βkij + γj(Mijx

k+1
j − yk+1

ij), (A.8)

where (A.5) is for all i ∈ N and the gradient of φ is with
respect to (xi,Xi). Moreover, (A.6), (A.7) and (A.8) are

for all (i, j) ∈ E . Note that (A.6) implies that yij admits
a closed form update. Without much effort, one can show
that this closed form update together with (A.7) and (A.8)

imply that for all (i, j) ∈ E , αkij + βkij = 0 for all k ≥ 0

if one initializes α0 = β0 = 0. This renders yij being
updated as:

ykij =
γiAijx

k
i + γjMijx

k
j

γi + γj
, ∀k ≥ 1. (A.9)

Substituting (A.9) in (A.7) and (A.8) yields:

αkij =
γiγj
γi + γj

k∑
`=1

(Aijx
`
i −Mijx

`
j) (A.10)

βkij =
γiγj
γi + γj

k∑
`=1

(Mijx
`
j −Aijx

`
i) (A.11)

Using (A.9), (A.10) and (A.11), one can show that
∇xi

φ(x,X,y,α,β)k is given by:∑
j:(i,j)∈E

γiγjA
>
ij

γi + γj

[(
Aijx

k
i −Mijx

k
j

)
+

k∑
`=1

(
Aijx

`
i−Mijx

`
j

)]

+
∑

j:(j,i)∈E

γiγjM
>
ji

γi+γj

[(
Mjix

k
i −Ajix

k
j

)
+

k∑
`=1

(
Mjix

`
i−Ajix

`
j

)]
(A.12)

Examining the structure of Aij and Mij for all (i, j) ∈ E ,
one concludes that for each i ∈ N , ∇xiiφ(x,X,y,α,β)k

is given by:

∇fi(xkii)+
∑
j∈Ni

γiγj
γi+γj

[
(xkii−dkji)+

k∑
`=1

(x`ii−x`ji)

]
, (A.13)

and for each i ∈ N and j ∈ Ni, ∇xijφ(x,X,y,α,β)k is
given by:

γiγj
γi + γj

[
(xkij − xkjj) +

k∑
`=1

(x`ij − x`jj)

]
. (A.14)

Finally, using the definition of Γ in Section 4, set for each
i ∈ N , skii =

∑
j∈Oi

Γijx
k
ji and skij = Γij(x

k
jj − xkij) for

k ≥ 0, and let pki =
∑k
`=1 s

`
i with the initialization p0

i = 0,
where si = [sij]i∈Oi

. It follows from (A.13) and (A.14) that

∇xi
φ(x,X,y,α,β)k = pki + ski . (A.15)

We substitute (A.15) in (A.5) to get the distributed
algorithm outlined in Algorithm 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4323

