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Abstract: As a means of secondary utilization of resources, waste incineration power generation
has received more and more attention in recent years. However, due to various uncertainties,
municipal solid waste(MSW) combustion is unstable. Owing to the large time-delay from
the combustion state to conventional process measurements, it is difficult to reflect the
combustion state of the incinerator. This paper uses a combustion video stream to identify
the combustion state in real-time. The PCA-k-means clustering method is proposed to cluster
different combustion states to distinguish abnormal flames from normal ones, which do not need
any operators’ attention. Based on the clustering, alarms on abnormal combustion states can be
implemented to alert an operator to adjust incinerator operation conditions so that the desired
combustion state can be achieved.
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1. INTRODUCTION

With the development of the city, the amount of munici-
pal solid waste(MSW) is increasing rapidly. Since MSWs
occupy a large amount of valuable land space and deteri-
orate the surrounding environment, it has to be disposed
of quickly. MSW incineration is the main way of MSW
disposal. It recycles waste to generate electricity. However,
the quality of waste classification and pretreatment meth-
ods before incineration are different all over the world.
In some regions, due to poor waste classification, the
calorific value, density, and viscosity of MSW are unevenly
distributed. When incinerating such MSW, the quality of
MSW combustion is difficult to be maintained. This, in
turn, causes a low overall efficiency of the entire power
generation plant operation.

To maintain MSW combustion in a desired state requires
appropriate measurements. However, the measurement
for direct monitoring of the state of MSW combustion
in MSW incineration power plants is short due to its
low-profit margin. Conventional process measurements,
such as temperature of flue gas and steam flow, have a
large time delay to monitor the combustion state, hence
are not suitable for combustion state control in real-
time. When the effect of a poor combustion state can
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be identified in-process measurements, the MSW which
causes the consequence has already been removed from
the combustion area.

A poor combustion state will not only impact on the
operating profit but also the environment protection. An
instability of the incineration process may cause secondary
pollution. For example, if the temperature of the flue gas
is not up to standard, dioxin will be produced, which will
cause serious environmental pollution.

Therefore, it is very important to make MSW combustion
stable. Nevertheless, since existing control systems could
not consistently maintain a stable MSW combustion state,
operators have to manually intervene the operation to
avoid inadequate combustion. As long as the stability
of MSW combustion increases, the quality of control
throughout the process will improve significantly and the
operator’s work intensity will be greatly reduced.

Experienced operators can take action by observing the
state of combustion. This suggests that a real-time image,
such as a video stream, of combustion contains a lot of
information which is useful for operating, such as the area
of combustion. If the operator’s experience is formalized,
information and knowledge extracted from a combustion
video stream can be used to enhance incineration control.
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There are many studies on combustion image processing
reported in the literature. Most of them focus on monitor-
ing of pulverized fuel combustion. Bai et al. (2017) applied
random weight network techniques to monitor the com-
bustion with the combustion image from an experimental
device. Chen et al. (2011) considered the hidden Markov
model to extract the features among spatial relationships.
Zhou et al. (2002) used multiple charge-coupled device
(CCD) cameras to reconstruct three-dimensional temper-
ature distributions. Compared to pulverized fuels, MSW
combustion is much less stable and harder to control.
Besides, there are many types of poor combustion states,
referred to as faults in the rest of the work, and some of
them need no attention because they have little impact
on the whole process or the duration of them is too short
to react. So it is necessary to distinguish various faults in
MSW combustion.

In general, a combustion video image contains rich infor-
mation and has great potential. The current research is
biased towards the monitoring of the combustion state,
but there is little research on how to apply combustion
images directly to control.

In this paper, a distinction is made among various states
of combustion, such as uneven combustion and dirty lens.
The idea of fault diagnosis is used to separate the normal
situation from other various abnormal situations, to avoid
class-imbalance caused by a few fault samples. An unsu-
pervised method is employed to classify the combustion
states. A classification model is trained off-line to distin-
guish combustion states online. The on-line application of
the model can alert operators on abnormal combustion
situations so that proper adjustment on incinerator oper-
ation can be manually made. The on-line application will
further calculate knowledge about MSW incineration in
order to improve the algorithm in the future so that closed-
loop control of the incineration process can be eventually
achieved.

The paper is structured as follows. After the introduc-
tion, knowledge-based combustion feature extraction is
described briefly. Then PCA-k-means is described con-
cisely as a method of clustering. Finally, knowledge-based
combustion feature extraction and PCA-k-means method
are applied to data collected from an MSW incinerator
in Eastern China. The robustness of the proposed state
clustering method is tested.

2. METHODOLOGY

Video images usually are high-resolution. But only a few
features of the image play a major role. This work is to
extract features to characterize the combustion state. Two
ways are used to extract combustion video image features.
As Fig. 1 shows, one of them is based on the knowledge
of the operators, and establishing mathematical models
to extract these features from the image. The other is to
use the data-driven approach to consider the correlation
between the image and the control target.

The first method is simpler, easier to operate, more un-
derstandable and more intuitive, but may lose some of
the information that is valid for the control objectives.
The second method is more complicated, but the use of

Fig. 1. Combustion feature extraction

image information is more thorough. This work uses the
first approach experimentally to verify the feasibility of
the overall approach.

2.1 Knowledge-based Combustion Feature Extraction

After a long period of experience accumulation, the op-
erator can usually judge the combustion state by watch-
ing the flame through the monitoring window, and then
adjust incinerator accordingly. After communicating with
many experienced operators, the characteristics of the
combustion are composed of three aspects: the brightness
of combustion, position of combustion center, and the area
of combustion.

The area of combustion To simplify the calculation, the
RGB images are converted into a grays image. The number
of pixels is used to represent the area of combustion
Af . The image is binarized through the Otus algorithm
which is proposed by Yang et al. (2012) and divided the
combustion region by selecting the appropriate threshold.
Specifically, the input image can be binarized by the
following transformation.

b(i, j) =

{
1 g(i, j) ≥ Th
0 g(i, j) < Th

(1)

where g(i, j) and b(i, j) represents the input and output
image’s pixel of the i-th row and j-th column. Th stands
for the threshold.

And (2) is used to calculate Af .

Af =

n∑
i=1

m∑
j=1

b(i, j) (2)

The brightness of combustion The brightness of com-
bustion usually reflects the temperature of combustion,
which is important for the entire waste incineration pro-
cess. Gray value is used to represent the brightness. The
gray matrix of combustion Gf is constructed using the
Hadamard product of the gray matrix of the image G and
the binarized matrix B.

Gf = G�B (3)

where � represents the Hadamard product.
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The position of combustion centre The centroid calcu-
lation method is referred to define the centre position of
combustion as the gray scale centroid.

xf =

∑n
i=1

∑m
j=1 i× gf (i, j)∑n

i=1

∑m
j=1 gf (i, j)

yf =

∑n
i=1

∑m
j=1 j × gf (i, j)∑n

i=1

∑m
j=1 gf (i, j)

(4)

where xf and yf is horizontal and vertical coordinates of
the center position of combustion.

2.2 k-means Clustering via Principal Component Analysis

Based on the feature extracted above, the next step is to
gain insight into data and identify a pattern. Clustering
the data to find a natural classification of the combustion
state is the main objective. k-means is a prototype-based
clustering that is widely used in sociology, physics, biology,
statistics and so on. k-means uses a greedy algorithm to
minimize the sum of the squared error over all K clusters.

min

K∑
k=1

∑
xi∈ck

‖xi − µk‖2 (5)

where ck is the k-th cluster in clustering results. µk =
1
|ck|
∑
xi∈ck xi is the mean of cluster ck.

However, the data under normal conditions is much more
than the others. Thus the unbalance data will seriously
affect the effect of clustering. How to identify the normal
conditions, in other words, is to identify the abnormality.
It is consistent with the idea of fault diagnosis. In this
paper, principal components analysis(PCA) is used to
detect anomaly.

PCA is a method of multivariate statistical analysis. PCA
is usually used for data reduction, information enrichment,
or dimensionality reduction. It has already been success-
fully applied to detect and diagnose faults. Through linear
transformation, PCA separates a plurality of indicators
that are independent of each other and can fully reflect the
overall information. It is convenient to further analyze the
information of the original variables as much as possible,
and they are not related to each other.

Data of n observations from m measurement variables
stack the matrix X ∈ Rn×m . The linear variation matrix
which is called the loading matrix is calculated via the
Singular Value Decomposition (SVD).

X = UΣV T (6)

where U ∈ Rn×n and V ∈ Rm×m are unitary matri-
ces and the diagonal matrix Σ ∈ Rn×m contains the
non-negative real singular values of decreasing magnitude
(σ1 ≥ σ2 ≥ . . . σm ≥ 0) . The V is the loading matrix.

Tpc = XP (7)

where P ∈ Rm×a is the first a columns of V . The original
space X is projected along P to get the principal com-
ponent Tpc. Based on the assumption that the variables
subject to Gauss distribution, Hotelling’s T 2 statistic is
employed to characterize normal states.

T 2 = xTPΣ−2a PTx (8)

Fig. 2. Model training process

where Σa contains the first a rows and columns of Σ. The
probability distribution is used to calculate the threshold
for T 2 statistic.

T 2
α =

(
n2 − 1

)
a

n(n− a)
Fα(a, n− a) (9)

where Fα(a, n − a) is the upper 100α% critical point of
the F-distribution with a and n − a degrees of freedom.
See MacGregor and Kourti (1995).

2.3 Model Training Process

As shown in Fig. 2, the raw image is first converted into
a gray image and a binary image. Second, use the gray
image and binary image to calculate the seven features
which proposed in Section 2. And then, employ PCA to
distinguish the normal and abnormal, and reduce dimen-
sion at the same time. Finally, principal components are
put into the clustering model k-means.

3. CASE STUDY

3.1 Case Background

The data set used in this work comes from an MSW
incinerator in Eastern China. This plant disposes of 1,350
tons of domestic MSW every day. As shown in Fig. 3, Area
Blue is the drying area, Area Red is the incineration area,
and Area Green is the burnout area. The gray area stands
for the MSW. The camera monitors the area covered by
the blue line. A continuous five hours video is used to train
the model, and validate the method with another two and
half hours of data.

3.2 Combustion Feature Principal Component Extraction

Using the method proposed in Section 2, the seven features
of combustion are extracted.

As shown in Fig. 4, the original image signal is converted
into a gray image firstly. And then, the Otus algorithm is
used to calculate the optimal threshold to distinguish the
flame area from other areas. Converting the gray image
to the binary image through (1), and then by (2)-(4), the
seven features of combustion are extracted.

After extracting features, (6)-(9) are applied to transform
the extracted features into the principal component space.

And the number of retained PCs should be determined.
There are several methods proposed for this task, such as
screen tests, the average eigenvalue approach, and cross-
validation, but none of them dominates. In this paper,
the number of PCs that contributed over 90% of the total
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Fig. 3. Video shooting area

Fig. 4. Original combustion image to gray image and
binarization

Table 1. Variance Contribution

Number of Principal Variance Cumulative Variance
Components Contribution Contribution

1 63.42 63.42
2 23.66 87.08
3 11.05 98.14
4 1.652 99.79
5 0.152 99.94
6 0.051 99.99
7 0.004 100.0

variance were retained. As see in Table 1, although the two
principal components do not reach 90%, three components
are almost 100% and may contain noise. Therefore, two
principal components are selected.

3.3 Combustion State Clustering Analysis

There are much more normal state samples than abnormal
ones, underlined by the fact that MSW incineration is sta-
ble for most of the time. It will cause class-imbalance which
will seriously damage the clustering effect. In this paper,
a method is proposed to distinguish between normal and
abnormal samples in an unsupervised way, by combining
the idea of fault detection. The PCA, which is used in fault
detection, is usually trained using normal states’ data, and
the appropriate confidence level is chosen to delineate the
T 2 statistical limit. In the PCA subspace, the area with
greater concentration is considered normal because the
time of normal combustion is much longer than the abnor-
mal combustion, and the normal combustion images look
similar. On the contrary, there is a large difference between
normal and abnormal combustion images. Therefore, the
distance of each sample to the cluster centroid is measured
by Hotelling’s T 2 statistic. Assuming the distance obeys F-
distribution, the appropriate confidence is chosen to deter-
mine the normal and abnormal boundaries, by observing
the original image of the point near the decision boundary.

Fig. 5. Principal Component of Training Set

As see in Fig. 5, normal sample has high concentration.
Abnormal combustion conditions are monitored at 99%
confidence(Fig. 6) After pre-processing, the next step is
to cluster the fault with k-means. Two types of index are
proposed to determine the true number of clusters from
the data itself. They are Davies-Bouldin Index (DBI) and
Dunn Index (DI). Among many DBI and DI, the most
widely used are sum of the squared errors (SSE) and Sil-
houette Coefficient. (See Tibshirani et al. (2001)) However,
it is difficult to have a perfect mathematical criterion,
because there is no clear definition of a ’cluster’. Yang et al.
(2012) discusses a number of heuristics for estimating the
cluster effect. In Fig. 7, when K is greater than 3, the SSE
decrease amplitude reduces sharply. Because when K is
smaller than the actual number of clusters, the increase
of K will greatly increase the degree of polymerization of
each cluster, so the decreased amplitude of SSE will be
high, and when K reaches the number of real clusters, the
degree of polymerization obtained by adding K is rapidly
reduced. So 3 clusters are selected. The clustering results
are shown in Fig. 8. Since the combustion video image can
be directly observed with the naked eye for abnormality,
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Fig. 6. Abnormal Monitoring of Training Set

Fig. 7. SSE under different clusters of numbers

Fig. 8. Clustering for Training Set

the clustering result is checked by capturing an image
of the corresponding time. In addition to the cluster of
normal conditions, there are four clusters. Fig. 9 shows
the effect of clustering.

By communicating with a skilled operator, Cluster 1 repre-
sents the offset of combustion, Cluster 2 and Cluster 3 rep-

Fig. 9. Three Clusters Image of Training Set

resents flying ash. In practice, only the offset of combustion
needs to be adjusted, and no other is needed. Therefore, it
is only necessary to identify the space represented by Clus-
ter 1 to recognize the combustion offset. By monitoring
combustion status online, identifying combustion faults,
and then alerting the operator to make adjustments to re-
cover stable incineration. Therefore, an on-line application
of this model can greatly alleviate the intensity of manual
observation to monitor the combustion state.

3.4 Test of Robustness

To test the robustness of PCA-k-means clustering model of
combustion state, test samples are used to simulate real-
time monitoring. The normalities and abnormalities are
also distinguished by the same T 2 threshold, and then the
k-means model obtained from the previous training is used
for classification, and the results are shown in Fig. 10 and
Fig. 11.

Fig. 10. Principal Component of Test Set

The combustion video images corresponding to test results
of clustering are shown in Fig. 12. Finally, cross-compare
the clustering results with the workers’ experience results.

The results are shown in the table. Since Cluster 2 and
Cluster 3 are consistent in practice, we will merge the two.
The results are shown in Table 2. In the three-hour test,
the identification of the offset has a low false alarm rate,
but the identification of the ash flying still needs to be
improved.

Table 2. Variance Contribution

Ash Flying Offset

total 71 7
correct 62 7
error 9 0

false alarm rate 12.7% 0%
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Fig. 11. Clustering for Testing Set

Fig. 12. Three Clusters Image of Testing Set

4. CONCLUSION

In this paper, a method that can identify abnormal com-
bustion states in an unsupervised manner is proposed.
After testing, the PCA-k-means method is demonstrated
having good feasibility for the online monitoring of com-
bustion state. However, in the actual test, Cluster 1 can
be identified effectively, and can directly correspond to
the abnormal combustion state in the real process. But
the Clusters 2 and 3 belong to a same category in the
real process. Fortunately, both cases do not need to be
attended, and there is no need to distinguish between them
in actual operation. Improvement in selection of combus-
tion characteristics may be of use to overcome the problem
The dynamic variation characteristics of combustion are
not considered in this paper. In a future study, it is hoped
that some methods of image processing and deep learning
can be used to extract combustion features in a data-
driven manner to further improve the reliability of the
algorithm.
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