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Abstract: This article describes the design and calibration of a five degree-of-freedom linear
and angular displacement sensor utilizing piezoresistive strain gages. A simple decentralized
controller is then implemented to follow linear and angular reference signals. The foremost
difficulty with piezoresistive sensors is their high-temperature sensitivity. In addition, they are
sensitive to motion in multiple degrees of freedom, which must be decoupled before use as a
displacement sensor. A new sensing design is proposed which provides decoupled measurements
of linear and angular displacements in multi-axis monolithic nanopositioning stages. The
proposed method employs system identification and feedforward techniques to calibrate each
axis and minimize cross-coupling.
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1. INTRODUCTION

Nanopositioners are electro-mechanical devices capable of
generating high-resolution motion in up to six degrees
of freedom (DOF) (Fleming and Leang (2014)). Com-
mon nanopositioning applications include scanning probe
microscopy (Ruppert et al. (2019)), lithography (Ghale-
hbeygi et al. (2017)), and nanofabrication (Gates et al.
(2004)).

In this paper, a new monolithic nanopositioner is intro-
duced (Fleming and Yong (2017)). Parallel actuators driv-
ing a central platform are etched into a bimorph piezoelec-
tric sheet to provide both actuation and guidance of the
moving platform (Moore et al. (2018); Omidbeike et al.
(2017)). The actuator configuration for this stage yields
five DOF. The stage, mounted on an insulated base, is
shown in Fig. 1. Details on the design and manufactur-
ing process can be found in Fleming and Yong (2017)
and Omidbeike et al. (2019).

The sensor requirements of a nanopositioning system are
among the most demanding of any control system (Flem-
ing and Leang (2014)). Among the various types of sens-
ing techniques available in the literature, capacitive sens-
ing (Moore et al. (2019)), piezoelectric sensing (Omidbeike
et al. (2017)), piezoresistive sensing (Omidbeike et al.
(2018)) and optical type sensors (Fleming and Routley
(2015)), can be identified as the most common types
available. Each of these sensors has its own advantages
and disadvantages based on their applications.

Due to their high sensitivity and low noise, piezoresistive
sensors have been widely used in nanopositioning appli-
cations (Fleming and Leang (2014)). As a displacement
sensor, piezoresistive sensors are mostly employed for the
measurement of only a single variable, i.e. either rotation
or linear displacement but not both. Examples include

Fig. 1. Monolithic bimorph nanopositioner mounted on a
base.

piezoresistive strain sensor embedded in the atomic force
microscopy (AFM) cantilever introduced in Tortonese
et al. (1993) and linear displacement measurement in
nanopositioning systems proposed in Sun et al. (2008). For
the simultaneous measurement of several displacements
and rotation angles, various sensors utilizing capacitive
or optical sensing schemes have been introduced includ-
ing Anandan and George (2017) and Sommargren (1989).

The foremost difficulty with piezoresistive sensors is
the high-temperature sensitivity of both the total resis-
tance and gage factor. The Wheatstone-bridge discussed
in Ekelof (2001) is the most common configuration for tem-
perature compensation in strain gage sensors. However,
this method can only be used for a single axis displacement
measurement where equal and opposite strain is available.

This article presents a five-DOF linear and angular dis-
placement sensor instrumented with a set of eight piezore-
sistive sensors. The eight sensors are configured in a
way which naturally provides temperature stability for all
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Fig. 2. The five-axis motions generated with different applied voltages.

five degrees-of-freedom. System identification methods are
then used to calibrate the sensors and minimize error due
to cross-coupling.

2. MONOLITHIC NANOPOSITIONER

The design and manufacturing process of the nanoposi-
tioning stage used in this work is the same as the mono-
lithic stage described in Fleming and Yong (2017) but
here a bimorph piezoelectric sheet is used to provide out-
of-plane displacement (z-axis) and rotation around the X
and Y axis. The nanopositioning stage is mounted on an
insulating base as shown in Fig. 1. An analysis of the
design is reported in Omidbeike et al. (2019).

The five-axis motions generated from different applied
voltages are shown in Fig. 2. Each piezoelectric layer
is outwardly poled. With the middle layer grounded, a
positive voltage applied to the top and bottom electrodes
will cause the beam to expand and displace the central
platform away from the positive voltage. For example,
when a positive voltage is applied to vxt+ and vxb+, and an
equal and opposite voltage is applied to vxt− and vxb−, the
central platform will translate in the negative X-direction.

The stage has 8 inputs and 5 outputs, where the inputs
are the applied voltages to the top and bottom electrodes
and the outputs are the translations along the X, Y
and Z axes and the rotations about the X and Y axes.
The electrode voltages can be grouped to correspond to
the three translations and two rotations. This is done by
creating a transformation matrix that maps the five inputs
to the eight electrode voltages. Using this transformation,
the system is square with five inputs and five outputs. The
inputs are ux, uy, uz, uθx and uθy and the outputs are the
translations dx, dy and dz and rotations θx and θy.

2.1 Transformation Matrix (Jacobian)

The transformation matrix is denoted J, and maps the five
inputs

u = [ux uy uz uθx uθy ]T

to the eight physical electrode voltages

v = [vxt+ vxb+ vxt− vxb− vyt+ vyb+ vyt− vyb−]T

using the expression v = Ju. The transformation matrix
J encodes how the inputs u generates motion via the
electrode voltages v. For example, the first column of J
corresponds to translation along the X-axis where the top
and bottom actuators on each side are driven with equal
and opposite voltages. Therefore, electrodes for the motion
in the X-axis are selected by using elements ±1, where
the sign is determined by the required polarity of the
applied voltage. Similarly, selecting the electrodes using
elements ±1 according to which motions are desired, the
transformation from u to v can be constructed as

vxt+
vxb+
vxt−
vxb−
vyt+
vyb+
vyt−
vyb−


=



1 0 1 0 1
1 0 −1 0 −1
−1 0 1 0 −1
−1 0 −1 0 1
0 1 1 1 0
0 1 −1 −1 0
0 −1 1 −1 0
0 −1 −1 1 1




ux
uy
uz
uθx
uθy

 . (1)

The naming convention used for the electrode voltages v
is according to Fig. 2, where the subscript denotes the
direction and layer. The product Ju is

vxt+
vxb+
vxt−
vxb−
vyt+
vyb+
vyt−
vyb−


=



ux + uz + uθy
ux − uz − uθy
−ux + uz − uθy
−ux − uz + uθy
uy + uz + uθx
uy − uz − uθx
uy + uz − uθx
uy − uz + uθx


. (2)

Considering equation (1), it can be seen that J is the
Jacobian matrix of the right hand side of equation (2).

3. SENSOR CONFIGURATION AND CALIBRATION
PROCESS

3.1 Sensor Configuration

Fig. 3 shows the proposed piezoresistive sensing configu-
ration for displacement measurement in five DOF. The
translational and rotational motions can be estimated
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Fig. 3. Bar shaped Piezoresistive sensors mounted on the
top and bottom surfaces of the middle flexures located
on four sides of the nanopositioner.

from the output of eight piezoresistive sensors bonded to
the top and bottom surfaces of the middle electrodes. The
piezoresistive sensors used in this design are bar-shaped
semiconductor gages from the Micron Instruments. For an
optimum sensor output, piezoresistive sensors are placed
at positions where maximum strain is presented. The sen-
sor locations were chosen based on a finite element analysis
(FEA) to maximize sensitivity to the desired strain.

To measure the surface strain, each piezoresistive sensor
is connected to a circuit capable of measuring resistance
change corresponding to strain. The circuit diagram of the
piezoresistive strain measurement is shown in Fig. 4. The
circuit output voltage measured between the middle node
of the voltage divider is a function of the sensor resistance
and therefore proportional to the applied strain.

3.2 Temperature Compensation

The foremost difficulty associated with piezoresistive sen-
sors is the high temperature dependency of both the total
resistance and gage factor. The differential measurement
from a Wheatstone-bridge is the most common tempera-
ture compensation technique for strain gage sensors. To
create a differential measurement similar to that of a
Wheatstone bridge, a thermal stability matrix forcing dif-
ferential measurement is created. As sensors are at the
same temperature and mounted on the same material, any
changes in temperature will affect the measured voltages in
the same way. Therefore, differential measurement of the
sensor voltages will cancel the effect of the temperature
variation. This can be done using a matrix that maps the
eight sensor voltages

vs = [vsxt+
vsxb+

vsxt− vsxb− vsyt+
vsyb+

vsyt− vsyb− ]T

to the five outputs which are the displacement voltages

vt = [vx, vy, vz, vθx , vθy ]T

using the expression vs = Tvvt. The naming convention
used for the sensor voltages in vs is according to Fig. 3,

R
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–
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XY

Z

Fig. 4. Circuit diagram of the piezoresistive strain mea-
surement.
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Fig. 5. The signal processing chain of the sensor cali-
bration. P is the nanopositioner, Ts is the sensor
matrix, Tv is the thermal stability matrix, Tc is the
calibration matrix and TA is the calibration sensor.

where the subscript denotes the sensor location in the
XY plane and layer. The thermal stability matrix Tv

encodes the information of which sensors should be used
for strain measurement with temperature compensation in
each axis. For example, sensors for the displacement in the
X-axis are selected by using elements ±1, where the sign
is determined by the polarity of the sensor voltage to force
differential measurement. Similarly, selecting the sensors
using elements ±1 according to the displacement axis, the
transformation from vs to vt is constructed as


vx
vy
vz
vθx
vθy

 =


1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
0 0 0 0 1 −1 1 −1
1 −1 1 −1 0 0 0 0





vsxt+

vsxb+

vsxt−
vsxb−
vsyt+

vsyb+

vsyt−

vsyb−


. (3)

Note that the thermal stability matrix Tv is a transpose
of J described in Section 2.1.

3.3 Calibration Process

The signal processing chain of the sensor is shown in
Fig. 5. Here, P is the monolithic nanopositioner, TA is the
Attocube laser interferometer used as a calibration device,
Ts is the sensor matrix with eight output voltages, Tv

is the thermal stability matrix and Tc is the calibration
matrix. Our objective is to identify Tc, based on matrices
Ts and Tv to minimize the error

e = d− d̂, (4)

where d is the true displacement measured from the

calibration device and d̂ is the estimated displacement.
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Fig. 6. Experimental configuration of the monolithic nanopositioner.

The equation relating the estimated displacement vector

d̂ to the true displacement d can be written as,

d̂ = TcTvTsd. (5)

The objective is to find a matrix Tc that makes d̂ = d
therefore,

In = TcTvTs. (6)
Matrix Tv is already found in Section 3.2 therefore by
identifying Ts, the calibration matrix Tc can be identified
from

Tc = (TvTs)
−1
. (7)

To identify Ts from measurements of d and vs, consider a
general case for a sensor with n inputs and m outputs

Ts ∈ Rm×n,d ∈ Rn×1and vs ∈ Rm×1 (8)

where in this case,

d = [dx dy dz dθx dθy ]T , (9)

and

vs = [vsxt+
vsxb+

vsxt− vsxb− vsyt+
vsyb+

vsyt− vsyb− ]T. (10)

Exciting the system one input at a time in full-range and
recording the true displacement d and the sensor voltages
vs will result in measurement pairs

D = [d1,d2, . . . ,dn] D ∈ Rn×n,
V = [vs1,vs2, . . . ,vsm] V ∈ Rm×n.

(11)

Note that as the data is recorded in full-range and under
the assumption of a linear system, matrices D and V
will contain all the required information regarding linear
and angular displacements and the cross-coupling motions.
The transformation matrix that maps the input displace-
ments to the sensor voltages can be expressed as,

TsD = V. (12)

The matrix dimensions in equation (12) do not agree
therefore the solution for Ts is not trivial. Vectorizing both
sides of equation (12),

vec(TsD) = vec(V), (13)

the left-hand-side of equation (13) can be expressed by
Kronecker product (Macedo and Oliveira (2013)) as,

(DT ⊗ Im)︸ ︷︷ ︸
A

vec(Ts)︸ ︷︷ ︸
x

= vec(V)︸ ︷︷ ︸
b

. (14)

This is a linear program Ax = b with solution

x = (ATA)−1AT b. (15)

Solving for x ∈ Rmn×1 and reshaping will give Ts ∈ Rm×n.
The ideal outcome for the calibration process is to achieve

identity when dividing the estimated matrix D̂ by the true
displacement matrix D as follow

N =
D̂

D
= In. (16)

4. EXPERIMENTAL SET-UP

The experimental set-up is shown in Fig. 6. The true
translation and rotations, dx,dy dz, θx and θy, were mea-
sured by an Attocube FPS3010 laser interferometer. The
calibration process was implemented using a dSPACE
DS1103 hardware system via Simulink Coder. The sensor
voltages were read through a custom made flexible PCB
circuit shown in Fig. 1. A custom circuit implementing the
Jacobian matrix J was used to produce the eight electrode
voltages. The stage was driven by an eight-channel high-
voltage amplifier, where each channel has a gain of 25. The
full operating range of the nanopositioner is from −200 V
to +500 V. However, for safety reasons, a range of −200 V
to +200 V was chosen.

5. CALIBRATION RESULTS

The experimental set-up shown in Fig. 6 is used for
the data acquisition purposes. The sensor matrix Ts is
identified following the process described in Section 3.3.
Matrix Tv is already known and is given by equation (3),
therefore the calibration matrix Tc can be identified from
equation (7). The ideal outcome for the calibration process
is to achieve identity in equation (16). The result of the
calibration is shown below:

N =
D̂

D
=


1.0032 0.0110 0.0306 0.0075 0.0130
0.0360 1.0016 0.0167 0.0070 0.0126
0.0153 0.0007 1.0425 0.0014 0.0088
0.0031 0.0089 0.0012 1.0123 0.0018
0.4326 0.0416 0.2416 0.0405 0.9291

 (17)
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It can be observed that the matrix N is close to identity
with 1’s in diagonal elements and 0’s in off-diagonal
elements; however, some residual cross-coupling can be
observed in equation (17). These elements are not heavily
weighted in the optimization due to their naturally low
gain, and are not of practical concern.

6. DECENTRALIZED CONTROL

The performance of the proposed sensing design in closed-
loop is evaluated by implementing a decentralized con-
trol law. For closed-loop control, a decentralized inte-
gral controller, and a decentralized integral and notch
controller were implemented on a dSPACE-ds1103 board
using Simulink coder. The vertical and rotational motions
are measured using the proposed sensor. The block dia-
gram of the control law is shown in Fig. 7 where C is a
diagonal controller, G is the plant and S is the proposed
sensor. The open-loop frequency response of the system
measured by the sensor S is depicted in Fig. 8. The general
diagonal controller for this system can be written as

C(s) = diag{[c1(s), c2(s), c3(s), c4(s), c5(s)]} (18)

where for the integral controller the transfer function of
the diagonal elements are given by

ci(s) =
ki
s
, i ∈ {1, 2, ... 5}. (19)

Each element in the diagonal controller C(s) in equa-
tion (18) is designed based on the corresponding diagonal

Table 1. Controller Parameters

Controller Para X Y Z θx θy

I ki 1000 1000 5 -2 -3

I+Notch
ki 1000 1000 400 -25 -25
ζn - - 0.01 0.01 0.01

ωn (kHz) - - 0.9 1.88 1.88

element ofG(s) (Skogestad and Postlethwaite (2007)). The
loop pairings have been chosen based on the frequency-
dependent RGA with a diagonally dominant element RGA
= Λ = I at frequencies of up to 1 kHz. With all loops
closed, the overall response of the system to the reference
input r can be written as

y = GC(I +GC)−1r = Tr, (20)

where T is the overall complementary sensitivity function.
The complementary transfer function in loop i can be
written as

T (i) =
giici

1 + giici
, i ∈ {1, 2, ... 5} (21)

where gii is the i’th diagonal elements of plantG. To ensure
the stability of the individual parts of the system, each
loop is designed independently. The closed-loop stability
in loop i is examined by the gain and phase margin of the
loop transfer function Li = giici. The chosen integral gains
are summarized in Table 1. The controllers are designed
to maintain a gain and phase margin of at least 5 dB and
50◦.

The open-loop and closed-loop frequency responses for
each input-output pair of the 5 × 5 system are shown in
Fig. 8. The open-loop frequency responses of the transla-
tional motions in the X and Y-axis exhibits a relatively
constant response over a wide frequency range, therefore,
a simple integral controller would be sufficient for in-plane
motions. However, in out-of-plane, the maximum useful
frequency is limited by the first and second resonant modes
occurring at 900 Hz in the Z-axis and 1880 Hz in both
θx and θy. To improve the bandwidth, notch filters are
designed and tuned to the lowest resonance frequencies
of the corresponding diagonal frequency responses. For
translation in the Z-axis, the notch filter is tuned to 900 Hz
and for rotations about the X and Y-axis, the filters are
tuned to 1.88 kHz. The transfer function of the integral and
notch controllers for the out-of-plane elements are given by

ci(s) =

(
ki
s

)
s2 + 2ωnζns+ ω2

n

(s+ ωn)2
, i ∈ {3, 4, 5} (22)

here ζn and ωn are the damping ratio and the reso-
nance frequency of the nanopositioner (Fleming and Leang
(2014)) and ki is the integral gain. For in-plane motions
with i ∈ {1, 2}, the controllers will have the same gain
and structure as equation (19). The controller parameters
are summarized in Table 1. The closed-loop frequency
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Table 2. Closed-loop Bandwidth

Controller X Y Z θx θy

I BW (Hz) 428 449 10 98 99

I+Notch BW (Hz) 428 449 853 1450 1450
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Fig. 9. The experimental closed-loop step responses.

responses are plotted in Fig. 8. The performance of the
controllers in response to a step change is depicted in
Fig. 9. The controller with the combined integrator and
notch filter provides a better response than that of the
integrator. The results also show a significant reduction
in cross-coupling motions. The closed-loop performance of
the system for each controller is summarized in Table. 2.

7. CONCLUSIONS

The article describes a new sensing design for linear and
angular displacement measurements in multi-axis nanopo-
sitioning systems utilizing piezoresistive strain sensors.
The proposed design employs system identification and
feedforward techniques to provide decoupled measure-
ments of linear and angular motions. The performance of
the sensors in closed-loop is validated by implementing
a decentralized controller. The experimental results show
reference tracking in five-DOF using the proposed sensor.
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