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Abstract: In this paper, an online evolving framework is proposed to detect and revise a
controller’s imperfect decision-making in advance. The framework consists of three modules:
the evolving Finite State Machine (e-FSM), action-reviser, and controller modules. The e-
FSM module evolves a stochastic model (e.g., Discrete-Time Markov Chain) from scratch
by determining new states and identifying transition probabilities repeatedly. With the latest
stochastic model and given criteria, the action-reviser module checks validity of the controller’s
chosen action by predicting future states. Then, if the chosen action is not appropriate, another
action is inspected and selected. In order to show the advantage of the proposed framework, the
Deep Deterministic Policy Gradient (DDPG) w/ and w/o the online evolving framework are
applied to control an ego-vehicle in the car-following scenario where control criteria are set by
speed and safety. Experimental results show that inappropriate actions chosen by the DDPG
controller are detected and revised appropriately through our proposed framework, resulting in
no control failures after a few iterations.

Keywords: evolving controller, reinforcement learning, automated vehicle, machine learning.

1. INTRODUCTION

For many decades, various methodologies have been pro-
posed for safe or efficient automated vehicle (AV) con-
trol under different situations. Rule-based, supervised-
learning, and reinforcement-learning are widely studied
and applied to control AVs.

As a rule-based approach, the Finite State Machines
(FSMs) which consist of the finite number of predefined
states and transition-conditions has been implemented for
decision-making under known situations. In the FSMs,
either actions or control-strategies are described in each
state, and the transitions occur when pre-determined con-
ditions are met. So, the FSMs based controller returns
the appropriate action based on the system’s conditions.
Kurt and Özgüner (2008) and Redmill et al. (2008) im-
plement the Hierarchical FSMs as a high-level decision-
maker within the Hybrid State System (HSS) to control
automated vehicles (AVs) under the given several scenarios
in the 2007 DARPA Urban Challenge. Although the AV
(called OSU-ACT) is controlled via appropriate decision-
making under complex situations, the capability of the
rule-based controller is fully subordinate to the initially
defined rules and conditions. For example, if unexpected
situations are encountered, the controller can neither rec-
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ognize the situations nor make the right decision due to
no existing proper rules.

The Supervised Learning (SL) is focused on seeking the
best coefficients or weights of the predefined control mod-
els by using a given cost-function and ground truth data.
The data consists of pairs of inputs (situations or con-
ditions) and outputs (optimal actions), and the optimal
coefficients or weights are obtained by exploring the con-
figuration which minimizes differences between the ground
truth and the model’s output. In Gadepally et al. (2013);
Kuge et al. (2000), the Hidden Markov Model (HMM)
is implemented for obtaining a general driver model that
enables AV controllers to predict other vehicles’ behaviors,
which is helpful for safer driving control. The HMM-based
driver model is designed by the fixed number of hidden
states and observations, and the transition and emission
probabilities are identified via the Viterbi algorithm. In
addition, various types of Deep Neural Network (DNN) are
implemented to create AV control or driver model for pre-
dicting future traffic situations or choosing optimal actions
respectively. Han et al. (2019b) proposes to train DNN
by using raw observations and estimated general driving
characteristics to predict other vehicle’s lane-change be-
havior on the highway. Also, the end-to-end learning-based
driving controller, which maps raw camera-images with
optimal controls via the Convolutional Neural Network
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(CNN), is derived by Bojarski et al. (2016). Al-Qizwini
et al. (2017) implements the GoogLeNet to obtain accu-
rate affordance parameters which are essential to take the
optimal driving actions. Even though the SL approach has
been widely used to get optimal models, a large amount of
labeled data and off-line training procedure are required.

The Reinforcement Learning (RL) approach has been sug-
gested to get an optimal controller which can improve its
performance by updating its policy iteratively based on
experiences. Unlike the SL, the ground truth data and pre-
training process are not necessary, but a reward-function
needs to be pre-defined appropriately. While the RL based
controller explores or exploits actions at different states,
its policy is updated repeatedly in a way to get the highest
value (sum of future discounted rewards) at every state.
The policy is represented by matrices or DNN. Since the
DNN can well approximate value-function, various types
of multilayer perceptron (MLP) have been proposed to
represent the RL’s policy. Mnih et al. (2015) proposes Deep
Q Network (DQN), and Van Hasselt et al. (2016) suggests
Double Deep Q-Network (DDQN) which can prevent the
over-optimistic value estimation problem observed in the
DQN. Since DQN and DDQN can only handle the dis-
crete type of actions, Deep Deterministic Policy Gradient
(DDPG) is proposed by Lillicrap et al. (2015) for the con-
tinuous type of actions. Nageshrao et al. (2019b) proposed
the DRL agent control architecture, which implements
DDQN for safe and adaptive AV control.

Due to the model-free attribution, the RL with MLP
controller can find the optimal actions under unexpected
situations, unlike the rule-based and SL approaches. How-
ever, a well-designed reward-function is still required. In
this paper, instead of paying efforts for designing a perfect
model or reward-function by hand, we propose an evolving
methodology (called evolving Finite State Machine), which
can derive a stochastic model from scratch by observing
variations of system-conditions. Also, the derived stochas-
tic model is used within the online evolving framework
to check and revise the action which is chosen by the
controller.

This paper is organized as follows: Section 2 describes
the details of three modules within an on-line evolving
framework. Section 3 introduces the DDPG AV controller
and the car-following scenario settings. Section 4 explains
the on-line evolving framework settings for the DDPG
controller. Section 5 analyzes car-following performances
of the DDPG controller w/ and w/o the suggested frame-
work. Lastly, our contributions and further discussion are
summarized in section 6.

2. AN ON-LINE EVOLVING FRAMEWORK

An on-line evolving framework is proposed to inspect or
revise an action selected by a controller. In order to inspect
the action, it needs to predict future states depending
on the action. In the framework shown in Fig. 1, there
are a controller, evolving Finite State Machine (e-FSM),
and action-reviser modules for choosing an optimal action,
creating a stochastic model, and inspecting & revising the
controller’s actions respectively.

A set of observations zt at time-step t is fed into the
controller and e-FSM modules. The control module makes

Fig. 1. An on-line evolving framework for controllers

a decision to choose the best action; the e-FSM module
derives a stochastic model which consists of states and
state-transition dynamics based on the applied actions;
the action-reviser module checks validity of the chosen
action at and revises the action if necessary. Note that

at, Prob(St), P
a(r)
t ∀r, and L(St) refer to an action chosen

by the controller at time t, probability distributions over
states (e.g., driving situations) which are determined by
time t, identified state-transition probabilities with respect
to actions, and a set of state attributions. In the following
sub-sections, details of the e-FSM and the action-reviser
modules are described.

2.1 evolving Finite State Machine(e-FSM)

The e-FSM, an on-line evolving method designed for
supporting optimal decision-making, is a hybrid Markov
model with states representing specific situations. The
states are identified as clusters in the state space, and
state dynamics is determined through a set of transition
probability matrices associated with the inputs (actions).
The framework of e-FSM is shown in Fig. 2, and some of
the key features (online state-determination, state flagging
and recognition, and online transition-identification) are
described in this paper; see Han et al. (2019a) for e-FSM’s
further specific properties and descriptions.

Fig. 2. The framework of an evolving Finite State Machine

- Online State Determination In the e-FSM, states
represent situations that a controller could be encountered.
Due to the difficulty of pre-determining all possible situ-
ations, the e-FSM aims to determine a state whenever a
new situation is observed over time. This feature enables
the controller to have opportunities to find the best action
by recognizing initially unexpected situations.
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To realize the online state determination, a set of observa-
tions zt = [ot(1), ..., ot(k)]T at every time t is clustered,
and each cluster-center is considered as a state, repre-
senting individual situation. The evolving Takagi-Sugeno
(eTS) online clustering method proposed by Filev and Kol-
manovsky (2010) is implemented so that infinite number
of unknown states can be determined; the eTS can have
infinite number of clusters. A state-set can be written by
St≥1 = {st(1), ..., st(nt)} where the states st(i), 1 ≤ i ≤ nt,
are cluster-centers, and nt is the total number of the states
determined by time t. This feature enables the structure
of the stochastic model to evolve.

- Flagging and Recognition of State The e-FSM deter-
mines states, in which each represents a distinguished
situation. Instead of labeling all states, the states are
flagged by either unfavorable states or not, where the
unfavorable states are defined based on the given criteria.
For example, if a given criterion of AV control is safety, the
recognized state at the moment of collision is flagged as the
unfavorable state. A set of the state attributions at time t,
L(St), is transferred to the action-reviser as shown in Fig.
1, where L(st(i)) ∈ {none, unfavorablej}, 1 ≤ i ≤ nt,
1 ≤ j ≤ cn; cn is the total number of given criteria.

Given zt, the current situation is represented by prob-
ability distributions over the states determined by time
t, denoted as Prob(St) = [Prob(st(1)), ..., P rob(st(nt))]

T ,
where each probability of state Prob(st(·)) is obtained by
calculating a similarity, λit(zt), between zt and st(i), 1 ≤
i ≤ nt as defined in Eq.(1).

λit(zt) =
ηit(zt)∑
j η

j(zt)

where ηit(zt) = exp

(
− (zt − sit)T (zt − sit)

var(sit)

) (1)

- Online State-Transitions Identification The identifi-
cation of state-transitions w.r.t. actions is important to
predict future states precisely. For example, if an AV
controller knows in advance what the future state would
be based on the chosen action, it can get more chances to
make a better decision. In the e-FSM, the state-transitions
are represented by transition probability matrices (TPMs),
of which each matrix is correlated to individual action in
the action-set.

The action-set written by Ad = {a(1), ..., a(q)} is initially
defined to have the fixed q number of elements unlike
the state-set St which is a variant set. The e-FSM uses
discrete action-set but is compatible to controllers that
have continuous action-set (Ac) by encoding to discrete
action-set (Ad) with an arbitrary interval δ. For example,
the continuous action-set Ac = [−2.0 2.0] can be encoded
with the interval δ = 1.0 to the discrete action-set such as
Ad = {a(1), a(2), a(3), a(4)} where a(1) = [−2.0 − 1.0),
a(2) = [−1.0 0.0), a(3) = [0.0 1.0), a(4) = [1.0 2.0].

The state-transitions w.r.t. actions are represented by the

q number of TPMs. And, each TPM P
a(r)
t ∀r ∈ Rnt×nt

is correlated to each discrete action a(r) ∈ Ad, where
1 ≤ r ≤ q and q is the total number of discrete actions
in Ad. The TPMs are defined by:

P
a(r)
t = {P a(r)t (i, j)}, 1 ≤ i, j ≤ nt

where P
a(r)
t (i, j) = Prob (st+1 = s(j)|st = s(i), at = a(r))

(2)
When a new state is determined, the dimension of all
TPMs is expanded by adding a column and a row, follow-
ing the proposed method; see detail steps and an example
given by Han et al. (2019a). Otherwise one of TPMs which
is correlated to a chosen action is identified via Eq.(3) and
(4) in a recursive way, designed by Filev and Kolmanovsky
(2010). Note τ(t) and γ(t) are probability distributions
over states at time t− 1 and t, Prob(St−1) and Prob(St);
ϕ and 1nt

are a learning rate and the nt-dimensional
vector of ones respectively. In the beginning, F a(r)(0) and

F
a(r)
o (0) are initialized by ε̄ which is a small non-negative

constant.

P
a(r)
t = diag(F

a(r)
0 (t))−1F a(r)(t) (3)

F a(r)(t) = F a(r)(t− 1) + ϕ(τ(t)γ(t)T − F a(r)(t− 1))

F a(r)o (t) = F a(r)o (t− 1) + ϕ(τ(t)γ(t)T 1nt
− F a(r)o (t− 1))

(4)
By using identified TPMs, the future states can be pre-
dictable by calculating probability distributions over states
at time t+1. Given probability distributions over states at
t and an action selected by the controller at t, probability
distributions over state at t+1 or t+k can be obtained by
Eq.(5) and (6). As shown in Eq.(7), P∗

t is a marginal TPM,
where Prob(at = a(r)) is set by uniform distribution such
as 1/q ∀r.

Probpred(St+1) = P
a(r)
t · Prob(St) (5)

Probpred(St+k) = P∗
t · Prob(St+1) (6)

P∗
t = {P ∗

t (i.j)}, 1 ≤ i, j ≤ nt,where

P ∗
t (i, j) =

q∑
r=1

Prob (st+1 = s(j)|st = s(i), at = a(r))

· Prob(at = a(r))
(7)

2.2 Action-Reviser Module

This module inspects and revises an action at chosen by
a controller if required. The revision of chosen action is
decided based on predicted probabilities of unfavorable
states. Given L(St) and at, if predicted probabilities of
the unfavorable states are higher than a threshold %t, at
will be revised. Otherwise, at is applied.

The predicted probability distributions of states at t + 1,
Probpred(St+1), can be obtained by using Eq. (5), where

L(St), Prob(St) and P
a(·)
t are provided from the e-FSM

module, and the action a(r) is chosen by a controller.
The variant threshold %t is set such that if a variance of
Probpred(St+1) is larger, then %t is smaller and vice versa
as shown in Alg. 1.

Algorithm 1 getV ariantThreshold (Probpred(St+1))

1: procedure %t = fthreshold(Probpred(St+1))
2: X ← Probpred(St+1)
3: X ← Sort X by descending order
4: E[X] =

∑nt

j=1 j ·X(j)

5: %t ← X (floor (E[X]))

For revising the chosen action, the action-reviser in-
spects other possible actions. For example, assuming
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that a given criterion for AV control is safety in a
car-following scenario, an action at is chosen by 1.0,
and the action-set (longitudinal acceleration) is defined
by {−2.0,−1.0, 0.0, 1.0, 2.0}[m/s2], the action-reviser in-
spects at via calculating Probpred(St+1) and %t. If the
predicted probability of the unfavorable states (e.g. colli-
sion states) are larger than %t, at will be considered as an
inappropriate action and replaced by one of other actions
in the action-set which is slower than 1.0.

3. A TARGET SCENARIO AND THE DDPG
CONTROLLER SETTINGS

The DDPG based controller is applied within the on-
line evolving framework. In this section, a target car-
following scenario and the DDPG based controller settings
are discussed. The control performances w/ and w/o the
on-line evolving framework under the scenario will be
compared in Section 5.

3.1 Target Car-Following Scenario

A target scenario is car-following on a single lane road
as shown in Fig. 3. The ego vehicle (vehego) and lead
vehicle (vehlead) are initialized by randomly assigning
speeds and positions as far as the initial distance between
two vehicles (headwaydist) is less than 100[m]. The ranges
of acceleration and velocity for the both vehicles are
set by [−2.0 2.0][m/s2] and [0.0 32.0][m/s] respectively.
The ego vehicle’s acceleration is chosen by the DDPG
controller at every simulation time-step t=0.25secs, while
the lead vehicle’s acceleration is assigned by randomly
selecting 200 secs (800 steps) of velocity profile from the 11
hours of realistic driving profile. The vehicle model in the
simulation is a point-mass model defined as Eq.(8) where
xt(vehi), ẋt(vehi), and ẍt(vehi) are position, velocity, and
acceleration of vehi at time t.

xt+1(vehi) = xt(vehi) + ẋt(vehi) ·∆t
ẋt+1(vehi) = ẋt(vehi) + ẍt(vehi) ·∆t (8)

The goal of the scenario is controlling the ego vehicle to
follow the lead vehicle as fast and safe as possible. The
episode is terminated in the following three cases: simula-
tion step reaches the maximum step 800, the headwaydist
is longer than 200[m], and the ego vehicle collides to the
lead vehicle.

Fig. 3. A target car-following scenario

3.2 DDPG Controller

The DDPG is implemented as the ego vehicle’s controller.
It is one of the RL with MLP controllers, of which policy
is represented by multilayered neural network. The policy
is trained in a way to get the maximum value at every
state given a pre-defined reward-function. As proposed by
Van Hasselt et al. (2016), the fixed size ω of histories are
stored and implemented to train a policy of the RL with
MLP controller; the stored histories can be represented
by Ht = {ht−ω+1, ..., ht} where ht = [z̄t, at, z̄t+1, ηt];
z̄t, z̄t+1, at, and ηt are current and next states, an action

selected by the controller, and a reward. Especially, the
DDPG controller consists of the actor µ(z̄|θµ) and critic
Q(z̄, a|θQ) networks and implements “soft-update” instead
of directly copying weights of the networks in updating
target-networks; see descriptions of Lillicrap et al. (2015)
for details about the DDPG controller.

In a similar way in Nageshrao et al. (2019a), the DDPG
controller is configured for the given car-following sce-
nario as the following: the ego vehicle’s acceleration is
set by accelt(vehego) = µ(z̄t|θµ) + N , where z̄t is a set
of observations defined as Eq.(9), and N is the tempo-
rally correlated exploration noise generated by using the
Ornstein-Uhlenbeck noise process proposed by Uhlenbeck
and Ornstein (1930). Also, the Adam method is applied
for training the networks, as suggested by Kingma and Ba
(2014). Learning rates for the actor and critic networks are
set by 10−4 and 10−3 respectively, and a discount factor
is set by 0.95.

z̄t = [vt(vehego), headwaydist, vt(vehlead),
accelt−1(vehego)]

T (9)

Since the given control criteria in the scenario is speed and
safety, Nageshrao et al. (2019a) designs a reward function
to minimize velocity difference and distance between two
vehicles, and variation of ego vehicle’s acceleration as
shown in Eq.(10-12), where headwayconst and dsafe are
a constant headway-time and a minimum safe distance.
The reward ηt is defined by sum of ηvelt , ηdistt , and ηaccelt .

ηvelt = e−
(vt(vehego)−vt(vehlead))2

vmax − 1 (10)

ηdistt = e
−

(headwaydist−headwayconst·dsafe)2

2·headwayconst·dsafe − 1 (11)

ηaccelt = e−
(∆accel(vehego)2

2·accelmax − 1 (12)

4. THE ON-LINE EVOLVING FRAMEWORK
SETTINGS WITH DDPG CONTROLLER

The on-line evolving framework with the RL with MLP
controller can be represented by Fig. 4. In this section, the
configurations of e-FSM and action-reviser modules are
discussed for the given car-following scenario.

Fig. 4. An on-line evolving framework with DDPG

4.1 e-FSM Configurations

As we discussed, the AV control criteria in the given sce-
nario are safety and speed. In simulating the scenario, the
DDPG controller chooses longitudinal accelerations via its
policy at every time t, and the e-FSM determines states
and identifies state-transitions independently. Among the
states determined by the e-FSM, some will be flagged
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as the unfavorable states, which represent either unsafe
(collision) or slow-speed driving situation (headwawydist
is longer than 200[m]). At every time-step, st(i), where
{st(i) ∈ St|i = argmaxi(Prob (st(i))}, is flagged by:

L(st(i)) =

{
ln(none) : neither crash nor large-distance
ls (unfavorablesafety) : crash
lld(unfavorablespeed) : large-distance

As shown in Eq.(13), three observations are selected to
represent states in the e-FSM. The coefficients of eTS
within the e-FSM module, ρ and ε, are set by 0.7 and 0.3
respectively. Since the DDPG controller uses the continu-
ous action-space, the continuous action-set is encoded to
the discrete action-set by using an interval δ = 0.2[m/s2].
The continuous action set Ac = [−2.0 2.0][m/s2] is given
for the both vehicles in the scenario, and encoded to the
q = 20 number of discrete actions.

zt = {vt(vehego), headwaydist, vt(vehlead)} (13)

4.2 Action-Reviser Configurations

If it is predicted that the selected action at causes a
transition to one of the unfavorable states, the action-
reviser explores and selects another action as discussed
in section 2.2.

The DDPG controller chooses an action at ∈ Ac at every
time-step, and at is encoded to a discrete action a(r) ∈
Ad. Then, future probability distributions over states are
calculated via Eq.(5) to inspect a(r). In the predicted
probability distributions, if any of the unfavorable states
(ls or lld) have a higher probability than the dynamic
threshold %t, the action-reviser revises a(r). Otherwise,
at is returned and applied. The action-reviser continues
exploring a discrete action space (Ad) until an appropriate
action is found. Specific steps are shown in Alg. 2.

After action-revising process, a(r) is decoded to a con-
tinuous action ât by calculating a mean of corresponded
range since each discrete action represents an individual

Algorithm 2 actionsReviser

1: procedure ât = fAR(Prob(St), at, Ad,P
a(·)
t ,L(St))

2: r ← encode(at, Ad)

3: Probpred(St+1)← P
a(r)
t · Prob(St)

4: I ← fIA (Probpred(St+1),L(St)) . Alg. 3
5: if I = 0 then . ls is expected
6: while I = 0 & r > 0 do
7: r ← r − 1
8: Probpred(St+1)← P

a(r)
t · Prob(St)

9: I ← fIA (Probpred(St+1),L(St))

10: āt ← decode(a(r), Ad) + N̂ (0, V )
11: return ât ← min(max(āt, amin), amax)
12: else if I = 1 then . lld is expected
13: while I = 1 & r < q do
14: r ← r + 1
15: Probpred(St+1)← P

a(r)
t · Prob(St)

16: I ← fIA (Probpred(St+1),L(St))

17: āt ← decode(a(r), Ad) + N̂ (0, V )
18: return ât ← min(max(āt, amin), amax)
19: else . ln is expected
20: return ât ← at

Algorithm 3 inspectAction

1: procedure I = fIA(Probpred(St+1),L(St))
2: %t ← fthreshold (Probpred(St+1)) . Alg. 1
3: for i = 1, 2, ..., nt do
4: if Probpred(st+1(i)) ≥ % then
5: if L(st+1(i)) = ls then
6: return I ← 0
7: else if L(st+1(i)) = lld then
8: return I ← 1
9: else

10: return I ← 2

partial range of the continuous action-set. For example,
if the selected discrete action is a(r) = [0.2 0.4), 0.3 is
returned as a revised action ât. In addition, the Gaussian
noise with a decreasing variance N̂ (0, V ) is defined as
shown in Eq.(14) and implemented to explore the action
space for identifying the e-FSM’s TPMs.

where V =
amax

max (1, (K ∗ Iterepisode)) (14)

Initially, V is set by the maximum acceleration of the
vehicle, but it is decreased over the number of the episode
iterations. Note K, amax, amin, and Iterepisode are an in-
variant constant, the maximum/minimum accelerations of
the vehicle, and the number of episode iterations. Since
the e-FSM does not have any states in the beginning, ap-
propriate inspection and revision of the chosen action are
not possible. Thus, the action-reviser module is activated
after the ξ number of episode iterations; K and ξ are set
by 0.001 and 50 in this study.

5. EXPERIMENTAL RESULTS

The car-following control performances of the DDPG w/
and w/o the on-line evolving framework are compared in
terms of safety and speed criteria. In the beginning of
every first episode, the DDPG and e-FSM modules are
initialized such that weights of critic and actor networks in
the DDPG are randomly assigned, the state-set of e-FSM

is set by empty-set S0 = {}, and F
a(r)
o (0) and F a(r)(0) are

set by ε̄ for all r. While running the scenario repeatedly,
the critic and actor networks are updated, and the e-
FSM derives a stochastic model by determining states and
identifying state-transitions over time.

Since every episode is terminated when the controller
fails to avoid collisions or maintain headwaydist less than
200[m], the controller’s performance can be analyzed by
comparing the total number of simulated steps in each
episode, where the maximum step is 800. The Fig. 5 plots
the evolution of the car-following performances for DDPG
w/ and w/o the on-line evolving framework averaged over
10 different runs; 1500 episodes are iterated in each run.
The different number of succeeded and failed episodes
(in total 15000 episodes) are observed depending on the
implementation of the proposed framework as below table.

Type Success Large-distance Collision

DDPG 12249 (81.6%) 1251 1500

Our Approach 14719 (98.1%) 76 205

As shown in Fig. 5, the control performances of the both
approaches are enhanced over iterations. But, the DDPG
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Fig. 5. The control performance evolution in car-following
by DDPG w/o (left) and w/ on-line evolving frame-
work (center). The averaged number of interventions
for revising actions chosen by DDPG (right).

w/ the on-line evolving framework (proposed approach)
achieves the given control-goal (driving safe and fast) with
fewer iterations. Also, our approach does not fail after 68
iterations, but the DDPG w/o the framework does. it is
observed the number of interventions for revising actions
is decreasing as DDPG policy is more optimized; there
are no interventions during the first 50 episodes because
the action-reviser is inactivated. These results imply that
the DDPG controller’s wrong decision-making is detected
and revised appropriately within our proposed framework.
Besides, it is noticed that a stochastic model is properly
created by the e-FSM module, enabling precise prediction
of future states based on the choice of actions.

Since the available maximum speed of ego vehicle depends
on the lead vehicle’s speed in the car-following, the best
way to satisfy the speed criterion is driving as fast as the
lead vehicle. Thus, the speed difference between ego and
lead vehicles among succeeded episodes is quantified. The
overall mean and variance of the velocity difference are
2.0460 and 1.7800 for the DDPG with the on-line evolving
framework, while 1.9497 and 1.8057 for the DDPG only.

Although the DDPG w/ the on-line evolving framework
controls the ego vehicle slightly slower than the DDPG
only, it achieves both criteria, safety and speed, more
successfully by trading off priority of the two criteria.

6. DISCUSSION AND CONCLUSION

In this work, the on-line evolving framework is proposed
to advance the decision-making capability of controllers.
Since the e-FSM module can create a stochastic model
by evolving the model’s structure and identifying state-
transition dynamics through experiences, it becomes pos-
sible to predict future states based on the choice of actions.
The action-reviser module checks if an action chosen by the
controller causes unfavorable situations in the future. And,
if one of the unfavorable situations is highly expected, it
explores the given action-space to choose another action.

In the given car-following scenario, DDPG w/ and w/o
the on-line evolving framework are implemented to control
the ego vehicle as fast and safe as possible. As shown in
the experimental results, the crashes and large-distances
does not occur with our proposed framework after few
episode iterations whereas the control failures are contin-
uously occurred w/o the framework. It shows that the e-
FSM generates a stochastic model precisely which enables
to detect incorrect decisions effectively and revise them
appropriately within the on-line evolving framework.

REFERENCES

Al-Qizwini, M., Barjasteh, I., Al-Qassab, H., and Radha,
H. (2017). Deep learning algorithm for autonomous
driving using googlenet. In 2017 IEEE Intelligent
Vehicles Symposium (IV), 89–96. IEEE.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller,
U., Zhang, J., et al. (2016). End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316.

Filev, D.P. and Kolmanovsky, I. (2010). Markov chain
modeling approaches for on board applications. In
Proceedings of the 2010 American Control Conference,
4139–4145. IEEE.

Gadepally, V., Krishnamurthy, A., and Ozguner, U.
(2013). A framework for estimating driver decisions
near intersections. IEEE Transactions on Intelligent
Transportation Systems, 15(2), 637–646.

Han, T., Filev, D., and Ozguner, U. (2019a). An online
evolving framework for modeling the safe autonomous
vehicle control system via online recognition of latent
risks. arXiv preprint arXiv:1908.10823.
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