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Abstract: A novel robust Kalman filter based on Gaussian-Student’s t mixture (GSTM)
distribution is proposed to address the filtering problem of a linear system with non-stationary
heavy-tailed measurement noise. The mixing probability is recursively estimated by using
its previous estimates as prior information, and the state vector, the auxiliary parameter,
the Bernoulli random variable and the mixing probability are jointly estimated utilizing the
variational Bayesian method. The excellent performance of the proposed robust Kalman filter,
compared with the existing state-of-the-art filters, is illustrated by a target tracking simulation
results under the case of non-stationary heavy-tailed measurement noise.
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1. INTRODUCTION

The Kalman filter (KF) is a optimal estimator in terms
of minimum mean square error (MMSE) under the case
of a Gaussian distributed measurement noise. However,
the measurement noise may have a non-Gaussian heavy-
tailed distribution when measurement is contaminated
by outliers from unreliable sensors in many actual ap-
plication (Roth et al., 2013), (Huang et al., 2016). And
then the estimation accuracy of the KF may degrade
dramatically when the measurement noise has a non-
Gaussian heavy-tailed distribution. Lots of filtering algo-
rithms have been derived to address the scenario with
non-Gaussian heavy-tailed measurement noise, such as
the Huber-based Kalman filter (HKF) (Gandhi and Mili,
2010), (Durgaprasad and Thakur, 1998), (Karlgaard and
Schaub, 2007), the maximum correntropy criterion based
Kalman filter (MCCKF) (Cinar and Prncipe, 2012), (Chen
and Principe, 2012), (Izanloo et al., 2016), and the robust
Student’s t-based Kalman filter (Huang et al., 2017a),
(Huang et al., 2019a), (Huang et al., 2017b). However,
the above filters is no longer suitable for the scenario with
non-stationary heavy-tailed measurement noise (NHMN),
because these filters are specifically designed for stationary
heavy-tailed measurement noise.

Recently, a novel robust Gaussian-Student’s t mixture
(GSTM) distribution based KF (RGSTMDKF) has been

⋆ This work was supported in part by the National Natural Science
Foundation of China under Grants 61903097 and 61773133, in part
by the Fundamental Research Funds for the Central Universities un-
der Grants 3072019CFJ0411 and GK204026025901. Corresponding
author is Y. L. Huang.

derived for the scenario with non-stationary heavy-tailed
process and measurement noises, in which the likeli-
hood probability density function (PDF) is modelled as
a weighted sum of a Gaussian distribution and a Stu-
dent’s t distribution under the case of NHMN, and the
mixing probability of the measurement likelihood PDF is
estimated based on fixed prior information (Huang et al.,
2019b). However, the prior for the mixing probability may
be slowly time-varying under the case of NHMN. Then,
the performance of the existing GSTM based KF may
degrade since it employs unreliable fixed prior information.
Our idea is that the mixing probability can be recursively
estimated by using its previous estimates as prior infor-
mation, and then the state vector together with the aux-
iliary parameter, the Bernoulli random variable and the
mixing probability can be estimated using the variational
Bayesian (VB) method.

In this paper, a novel robust KF is therefore derived
for the scenario with NHMN. Firstly, by introducing a
Bernoulli random variable, the conditional likelihood PDF
can be rewritten as an exponential multiplication for
Gaussian PDFs. Secondly, a novel robust KF is derived
by utilizing the previous estimates to provide the prior
information for the mixing probability, and then the state
vector together with the auxiliary parameter, the Bernoulli
random variable and the mixing probability are jointly
inferred using the variational Bayesian (VB) method.
Finally, the excellent performance of the proposed filter,
compared with the existing filters, is illustrated in a target
tracking simulation of a linear stochastic system with
NHMN.
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2. MAIN RESULTS

Consider the following linear state-space model with
NHMN

xn
k = Fk−1x

n
k−1 +wk−1 (1)

znk = Hkx
n
k + vk (2)

where Fk ∈ Rn×n denotes the state transition matrix,
and Hk ∈ Rm×n denotes the observation matrix, and
xn
k ∈ Rn is the state vector, and znk ∈ Rm is the

measurement vector, and wk ∈ Rn represents the process
noise vector that has a Gaussian distribution with zero
means and covariance matrix Qk, and vk ∈ Rm represents
the measurement noise vector that has a non-stationary
heavy-tailed distribution. The initial state vector xn

0 ∈
Rn is assumed that it has a Gaussian distribution i.
e., p(xn

0 ) = N(xn
k ; x̂

n
0|0,P0|0). Moreover, xn

0 , wk, vk are

mutually independent in this paper.

In this paper, the PDF of NHMN is modelled as a GSTM
distribution formulated as follows (Huang et al., 2019b)

p(vk) = τkN(vk;0,Rk) + (1− τk)St(vk;0,Rk, ν) (3)

where N(xn;µ,Σ) is the Gaussian PDF with mean vector
µ and covariance matrixΣ, and St(xn;µ,Σ, ν) denotes the
Student’s t PDF with mean vector µ, scale matrix Σ and
the degrees of freedom (dof) parameter ν, and τk denotes
the mixing probability at time k.

Using (3), the likelihood PDF conditioned on the mixing
probability p(znk |xn

k , τk) can be formulated as

p(znk |xn
k , τk) = pvk

(znk −Hkx
n
k )

= τkN(z
n
k −Hkx

n
k ;0,Rk)

+(1− τk)St(z
n
k −Hkx

n
k ;0,Rk, ν)

= τkN(znk ;Hkx
n
k ,Rk)

+(1− τk)St(z
n
k ;Hkx

n
k ,Rk, ν) (4)

After introducing a Bernoulli random variable ξk, the like-
lihood PDF p(znk |xn

k , τk) can be rewritten as the following
form (Huang et al., 2019b)

p(znk |xn
k , τk) =

1∑
ξk=0

p(ξk|τk)p(znk |xn
k , ξk)

=

1∑
ξk=0

{
τ ξkk [N(znk ;Hkx

n
k ,Rk)]

ξk(1− τk)
(1−ξk)

× [St(znk ;Hkx
n
k ,Rk, ν)]

(1−ξk)
}

(5)

where the probability mass function (PMF) of the Bernoul-
li random variable ξk and the conditional likelihood PDF
p(znk |xn

k , ξk) are, respectively, given by

p(ξk|τk) = τ ξkk (1− τk)
(1−ξk) (6)

p(znk |xn
k , ξk) = [N(znk ;Hkx

n
k ,Rk)]

ξk

×[St(znk ;Hkx
n
k ,Rk, ν)]

(1−ξk) (7)

where the Bernoulli random variable ξk takes the value of
1 with probability τk.

The mixing probability of the measurement likelihood
PDF has been estimated based on a fixed prior information

using the VB approach (Huang et al., 2019b). However, the
prior information of the mixing probability may be slowly
time-varying under the case of NHMN. The estimation
accuracy of the existing filter may break down by using
the fixed prior information under the case of NHMN. To
address scenario with NHMN, the mixing probability is
recursively estimated by using its previous estimates as its
prior information under the case of NHMN in this paper.

2.1 Choices of prior PDFs

Firstly, in the scenario with NHMN, the one-step predic-
tion PDF p(xn

k |zn1:k−1) is formulated as

p(xn
k |zn1:k−1) = N(xn

k ; x̂
n
k|k−1,Pk|k−1) (8)

where x̂n
k|k−1 and Pk|k−1 can be derived by the traditional

KF.

Secondly, utilizing the property of Student’s t distribution,
the exponential multiplication PDF p(znk |xn

k , ξk) can be
rewritten a hierarchical Gaussian form as follows

p(znk |xn
k , λk, ξk) = [N(znk ;Hkx

n
k ,Rk)]

ξk

×[N(znk ;Hkx
n
k ,Rk/λk)]

(1−ξk) (9)

p(λk) = G(λk;
νk
2
,
νk
2
) (10)

Thirdly, according to (6), (8) and (10), the prior PDF
p(xn

k , λk, ξk, τk|zn1:k−1) need to computer from

p(Ξ|zn1:k−1) = p(xn
k |zn1:k−1)p(λk)p(ξk|τk)p(τk|zn1:k−1)

= N(xn
k ; x̂

n
k|k−1,Pk|k−1)G(λk;

νk
2
,
νk
2
)τ ξkk (1− τk)

(1−ξk)

×p(τk|zn1:k−1) (11)

Ξ , {xn
k , λk, ξk, τk} (12)

where p(τk|zn1:k−1) describes the prior information for τk.

To guarantee that the prior PDF for the mixing probability
τk has conjugacy, the Beta distribution has been select-
ed as the conjugate prior for the mixing probability τk
(Huang et al., 2019b). In this paper, the prior distribution
p(τk|zn1:k−1) is chosen by

p(τk|zn1:k−1) = Be(τk; α̂k|k−1, β̂k|k−1) (13)

where α̂k|k−1 and β̂k|k−1 are, respectively, the prior pa-
rameters of the Beta distribution p(τk|zn1:k−1). According
to Bayes’ theorem, the prior PDF p(τk|zn1:k−1) is given by

p(τk|zn1:k−1) =

∫
p(τk|τk−1)p(τk−1|zn1:k−1) dτk−1 (14)

where p(τk−1|zn1:k−1) represents the posterior distribution
of τk−1, and this distribution can be selected as a Beta
distribution as follow

p(τk−1|zn1:k−1) = Be(τk−1; α̂k−1, β̂k−1) (15)

where α̂k−1 and β̂k−1, respectively, represent the posterior
parameters of τk−1. However, the details for spread process
of the mixing probability in (14) is unknown, the accurate
PDF p(τk|zn1:k−1) is unavailable. In this paper, the prior
information for the mixing probability is provided by
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spreading the previous information through a forgetting

factor ρ ∈ (0, 1], and α̂k|k−1 and β̂k|k−1 become{
α̂k|k−1 = ρα̂k−1

β̂k|k−1 = ρβ̂k−1
(16)

In this paper, it is assumed that the initial prior distri-
bution for the mixing probability is a Beta distribution,

i.e., p(τ0) = Be(τ0; α̂0|0, β̂0|0). Utilizing the property of the
Beta distribution, the initial shape parameters α̂0|0 and

β̂0|0 need to satisfy the following equation

E[τ0] =
α̂0|0

α̂0|0 + β̂0|0
= τ̂0 (17)

where τ̂0 denotes the initial nominal mixing probability.

2.2 Updating Approximations Posterior Distributions

In this paper, to estimate xn
k together with λk, ξk, and

τk, the joint posterior distribution p(Ξ|zn1:k) needs to be
firstly computed. Since the analytical solution for the true
joint posterior PDF p(Ξ|zn1:k) is not obtainable, the fac-
tored approximate posterior PDF P (xn

k )P (λk)P (ξk)P (τk)
is used to approximate this true joint posterior PDF by
employing the VB method, i.e., (Bishop, 2007), (Tzikas
et al., 2008)

p(Ξ|zn1:k) ≈ P (xn
k )P (λk)P (ξk)P (τk) (18)

where the approximate posterior PDFs can be determined
by

lnP (ϑ) = EΞ−ϑ [ln p(Ξ, zn1:k)] + cϑ (19)

where ϑ represents an arbitrary element of Ξ, and EΞ−ϑ [·]
represents the expectation operation for the remaining
elements of Ξ except for ϑ, and cϑ represents the constant
with respect to ϑ. To solve P (xn

k ), P (λk), P (ξk) and P (τk),
we need to use the fixed-point iterative method, in which
only one element of Ξ is updated while others keeping fixed
(Bishop, 2007), (Tzikas et al., 2008).

Exploiting (9), (11) and (13), the PDF p(Ξ, zn1:k) is given
by

p(Ξ, zn1:k) = p(znk |xn
k , λk, ξk)p(x

n
k |zn1:k−1)p(λk)p(ξk|τk)

×p(τk|zn1:k−1)p(z
n
1:k−1)

= N(xn
k ; x̂

n
k|k−1,Pk|k−1)[N(z

n
k ;Hkx

n
k ,Rk)]

ξk

×[N(znk ;Hkx
n
k ,Rk/λk)]

(1−ξk)G(λk;
νk
2
,
νk
2
)τ ξkk

×(1− τk)
(1−ξk)Be(τk; α̂k|k−1, β̂k|k−1)p(z

n
1:k−1) (20)

Using (20), ln p(Ξ, zn1:k) can be formulated as

ln p(Ξ, zn1:k) = −0.5[ξk + λk(1− ξk)](z
n
k −Hkx

n
k )

TR−1
k

×(znk −Hkx
n
k )− 0.5(xn

k − x̂n
k|k−1)

TP−1
k|k−1(x

n
k − x̂n

k|k−1)

+[0.5m(1− ξk) + 0.5νk − 1] lnλk − 0.5νkλk + (ξk

+α̂k|k−1 − 1
)
ln τk + (β̂k|k−1 − ξk) ln(1− τk) + cΞ (21)

where cΞ denotes a constant with respect to any element
of Ξ.

Let ϑ = xn
k and substituting (21) into (19), then, we get

lnP (l+1)(xn
k ) = −0.5(E(l)[ξk] + E(l)[λk]E(l)[1− ξk])

×(znk −Hkx
n
k )

TR−1
k (znk −Hkx

n
k )− 0.5(xn

k − x̂n
k|k−1)

T

×P−1
k|k−1(x

n
k − x̂n

k|k−1) + cxn (22)

where P (l)(·) and E(l)[ϑ], which are, the approximated
distribution for P (·) and the expectation operation for ϑ
at the l-th iteration, respectively.

The correctional measurement noise covariance matrix
R̂

(l+1)
k is formulated as

R̂
(l+1)
k =

Rk

E(l)[ξk] + E(l)[λk]E(l)[1− ξk]
(23)

where the expectations E(l)[λk], E(l)[ξk] and E(l)[1 − ξk]
can be, respectively, obtained through (40) and (42)-(43)
at the l-th iteration.

Utilizing (23), P (l+1)(xn
k ) can be updated as a Gaussian

distribution, i.e.,

P (l+1)(xn
k ) = N(xn

k ; x̂
n(l+1)
k|k ,P

(l+1)
k|k ) (24)

where x̂
n(l+1)
k|k and P

(l+1)
k|k , which are, respectively, calcu-

lated by the following equations

K
h(l+1)
k = Pk|k−1H

T
k

(
HkPk|k−1H

T
k + R̂

(l+1)
k

)−1

(25)

x̂
n(l+1)
k|k = x̂n

k|k−1 +K
h(l+1)
k

(
znk −Hkx̂

n
k|k−1

)
(26)

P
(l+1)
k|k = P̂

(l+1)
k|k−1 −K

h(l+1)
k HkPk|k−1 (27)

Let ϑ = λk and substituting (21) into (19), then, we get

lnP (l+1)(λk) = −0.5(E(l)[1− ξk]tr(B
(l+1)
k R−1

k ))λk

+(0.5mE(l)[1− ξk] + 0.5νk − 1) lnλk + cλ (28)

where B
(l+1)
k can be obtained by

B
(l+1)
k = E(l+1)[(znk −Hkx

n
k )(z

n
k −Hkx

n
k )

T |zn1:k−1]

= (znk −Hkx̂
n(l+1)
k|k )(znk −Hkx̂

n(l+1)
k|k )T +HkP

(l+1)
k|k HT

k

(29)

Utilizing (28), P (l+1)(λk) can be updated as a Gamma
distribution as follows

P (l+1)(λk) = G(λk; ϕ̂
(l+1)
k , φ̂

(l+1)
k ) (30)

where the shape parameters ϕ̂
(l+1)
k and φ̂

(l+1)
k can be,

respectively, obtained by

ϕ̂
(l+1)
k = 0.5mE(l)[1− ξk] + 0.5νk (31)

φ̂
(l+1)
k = 0.5E(l)[1− ξk]tr(B

(l+1)
k R−1

k ) + 0.5νk (32)

Let ϑ = ξk and substituting (21) into (19), then, we get

lnP (l+1)(ξk) = −0.5(tr(B
(l+1)
k R−1

k ) + E(l)[ln τk])ξk

+(0.5mE(l+1)[lnλk]− 0.5E(l+1)[λk]tr(B
(l+1)
k R−1

k )

+E(l)[ln(1− τk)]
)
(1− ξk) + cξ (33)

where E(l)[ln τk] and E(l)[ln(1 − τk)] are, respectively,
calculated through (44) and (45) at the l-th iteration,
and the expectations E(l+1)[λk] and E(l+1)[lnλk] can be,
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respectively, obtained through (40) and (41) at the (l+1)-
th iteration.

Exploiting (33), P (l+1)(ξk) is updated as a Bernoulli distri-

bution, then the PDFs Pr(l+1)(ξk = 1) and Pr(l+1)(ξk = 0)
are, respectively, calculated by the following equations

Pr(l+1)(ξk = 1) =Λ(l+1)exp
{
tr(B

(l+1)
k R−1

k )

+E(l)[ln τk]
}

(34)

Pr(l+1)(ξk = 0) = Λ(l+1)exp
{
0.5mE(l+1)[lnλk]

−0.5E(l+1)[λk]tr(B
(l+1)
k R−1

k ) + E(l)[ln(1− τk)]
}
(35)

where Λ(l+1) represents a constant with respect to the
Bernoulli random variable ξk.

Let ϑ = τk and substituting (21) into (19), then, we get

lnP (l+1)(τk) = (α̂k|k−1 + E(l+1)[ξk]− 1) ln τk

+(β̂k|k−1 + E(l+1)[1− ξk]− 1) ln(1− τk) + cτ (36)

where E(l+1)[ξk] and E(l+1)[1 − ξk] can be, respectively,
obtained through (42) and (43) at the (l+1)-th iteration.

Utilizing (36), P (l+1)(τk) can be updated as a Beta distri-
bution, i.e.,

P (l+1)(τk) = Be(τk; α̂
(l+1)
k , β̂

(l+1)
k ) (37)

where the shape parameters α̂
(l+1)
k and β̂

(l+1)
k are, respec-

tively, obtained by

α̂
(l+1)
k = α̂k|k−1 + E(l+1)[ξk] (38)

β̂
(l+1)
k = β̂k|k−1 + E(l+1)[1− ξk] (39)

The expectations E(l+1)[λk], E(l+1)[lnλk], E(l+1)[ξk], E(l+1)[1−
ξk], E(l+1)[ln τk] and E(l+1)[ln(1−τk)] can be, respectively,
formulated as follows

E(l+1)[λk] =
ϕ̂
(l+1)
k

φ̂
(l+1)
k

(40)

E(l+1)[lnλk] = ψ(ϕ̂
(l+1)
k )− ln φ̂

(l+1)
k (41)

E(l+1)[ξk] =
Pr(l+1)(ξk = 1)

Pr(l+1)(ξk = 1) + Pr(l+1)(ξk = 0)
(42)

E(l+1)[1− ξk] = 1− E(l+1)[ξk] (43)

E(l+1)[ln τk] = ψ(α
(l+1)
k )− ψ(α

(l+1)
k + β

(l+1)
k ) (44)

E(l+1)[ln(1− τk)] = ψ(β
(l+1)
k )− ψ(α

(l+1)
k + β

(l+1)
k ) (45)

where ψ denotes a digamma function in (Zhu et al., 2013).
The proposed filter consists of (16), (23), (25)-(27), (29),
(31)-(32), (34)-(35) and (38)-(45), and its implementation
details are shown in Algorithm 1.

3. SIMULATIONS

The excellent performance of the proposed robust KF,
compared with the existing state-of-the-art filtersis illus-
trated in a target tracking simulation of a linear stochastic

Algorithm 1: The proposed filtering algorithm with NHMN.

Inputs: x̂n
k−1|k−1

, Pk−1|k−1, Fk−1, Hk, z
n
k , Qk−1, Rk, α̂k−1,

β̂k−1, νk, n, m, ρ, δ, Nm

Time update:

1. x̂n
k|k−1

and Pk|k−1 can be derived by the traditional KF,

2. The prior shape parameters α̂k|k−1 and β̂k|k−1 are obtained

by (16),

Measurement update:

3. Initialization: x̂
(0)

k|k = x̂n
k|k−1

, P
(0)

k|k = Pk|k−1, E(0)[λk] = 1,

E(0)[lnλk] = 0, α̂
(0)
k

= α̂k|k−1, β̂
(0)
k

= β̂k|k−1,

E(0)[ξk] = α̂
(0)
k
/(α̂

(0)
k

+ β̂
(0)
k

),

E(0)[ln τk] = ψ(α̂
(0)
k

)− ψ(α̂
(0)
k

+ β̂
(0)
k

),

E(0)[ln(1− τk)] = ψ(β̂
(0)
k

)− ψ(α̂
(0)
k

+ β̂
(0)
k

),

for l = 0 : Nm − 1

Update P (l+1)(xn
k ) = N(xn

k ; x̂
n(l+1)

k|k ,P
(l+1)

k|k ) given E(l)[λk],

E(l)[ξk] and E(l)[1− ξk]:

4. Calculate x̂
n(l+1)

k|k and P
(l+1)

k|k using (23) and (25)-(27)

Update P (l+1)(λk) = G(λk; ϕ̂
(l+1)
k

, φ̂
(l+1)
k

) given P (l+1)(xn
k )

and E(l)[1− ξk]:

5. Calculate ϕ̂
(l+1)
k

and φ̂
(l+1)
k

using (29) and (31)-(32)

Update P (l+1)(ξk) as a Bernoulli distribution given P (l+1)(xn
k ),

P (l+1)(λk), E(l)[ln τk] and E(l)[ln(1− τk)]:

6. Calculate Pr(l+1)(ξk = 1) and Pr(l+1)(ξk = 0) using (29),

(34)-(35), and (40)-(41)

Update P (l+1)(τk) = Be(τk; α̂
(l+1)
k

, β̂
(l+1)
k

) given P (l+1)(ξk):

7. Calculate α̂
(l+1)
k

and β̂
(l+1)
k

using (38)-(39) and (42)-(43),

8. Calculate the expectations E(l+1)[λk], E(l+1)[lnλk],

E(l+1)[ξk], E(l+1)[1− ξk], E(l+1)[ln τk] and E(l+1)[ln(1− τk)]

using (40)-(45)

9. If ∥ x
n(l+1)

k|k − x
n(l)

k|k ∥ / ∥ x
n(l)

k|k ∥≤ δ, stop iteration,

end for

x̂n
k|k = x̂

n(l)

k|k , Pk|k = P
(l)

k|k, α̂k = α̂
(l)
k

, β̂k = β̂
(l)
k

,

Outputs: x̂n
k|k, Pk|k, α̂k, β̂k

system with NHMN. The linear stochastic system is given
by

xn
k =

[
I2 ∆tI2
0 I2

]
xn
k−1 +wk−1 (46)

znk = [ I2 0 ]xn
k + vk (47)

where the state vector is xn
k = [ιk κk ι̇k κ̇k]

T , ιk and
κk, respectively, represent the positions in the X axial
and Y axial of the cartesian coordinates, and ι̇k and κ̇k,
respectively, represent the corresponding velocities (Huang
et al., 2017a). The process noise vector wk has a Gaussian
distribution with zero mean vector and covariance matrix
Qk formulated as follow

Qk = q

 ∆t3

3
I2

∆t2

2
I2

∆t2

2
I2 ∆tI2

 (48)

where ∆t = 1s denotes the sampling interval.
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Similar to (Huang et al., 2019b), the NHMN vk is simu-
lated according to

vk ∼ N(0,Rk), 1 ≤ k ≤ 100

vk ∼
{
N(0,Rk) w.p. 0.99
N(0, 100Rk) w.p. 0.01

, 101 ≤ k ≤ 200

vk ∼
{
N(0,Rk) w.p. 0.95
N(0, 100Rk) w.p. 0.05

, 201 ≤ k ≤ 300

vk ∼ N(0,Rk), 301 ≤ k ≤ 400
(49)

where the covariance matrix Rk is formulated as follows

Rk =

[
r 0
0 r

]
(50)

In this simulation, the KF with the nominal covariance
matrices (KFNCM), the KF with the true instantaneous
covariance matrices (KFTICM), the HKF (Karlgaard and
Schaub, 2007), the RSTKF with the true one-step pre-
diction error covariance matrix (Huang et al., 2017b),
the RGSTMDKF with the true one-step prediction error
covariance matrix (Huang et al., 2019b) and the proposed
filter are compered. Note that the true instantaneous co-
variance matrices cannot be obtained in practical engi-
neering applications, resluting that the KFTICM cannot
be applied in above applications. The parameters are set
as q = 1m2/s3, r = 100m2 in this simulation, and the
total of simulation time is set as T = 400s. The filtering
parameters in this simulation are given in Table I. To
test the estimation accuracy of the different filters, the
root mean square errors (RMSEs) and averaged RMSEs
(ARMSEs) of position and velocity are selected as perfor-
mance measures. As an example, the RMSE and ARMSE
of position is defined as (Huang et al., 2017a):

RMSEpos ,

√√√√ 1

M

M∑
s=1

(
(aik − âik)

2 + (bik − b̂ik)
2
)

ARMSEpos ,

√√√√ 1

MT

T∑
k=1

M∑
i=1

(
(aik − âik)

2 + (bik − b̂ik)
2
)

(51)

where (aik, b
i
k) and (âik, b̂

i
k) are, respectively, the true and

estimated positions at the i-th Monte Carlo run. Similarly,
the RMSE and ARMSE of velocity can be also defined.

Table 1. The filtering parameters

Index Parameters

Initial prior parameter α0 5
Initial prior parameter β0 5

Dof parameter νk 5
The forgetting factor ρ 0.99

The maximum number of iteration Nm 50
Determine convergence parameter δ 10−16

Fig. 1 shows the RMSEs of position and velocity from
different filters over 1000 Monte Carlo runs. Since KF
is an optimal state estimator in terms of MMSE for
the linear stochastic system with a Gaussian distributed
measurement noise, the performance of the KFTICM
is optimal in this simulation. Note that the RMSEs of
RSTKF is not a constant bias compared with the RMSEs
of the KFTICM. From these figures, the proposed filter
is closer to the KFTICM than the existing filters, which
is illustrated that the proposed robust filter has better
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Fig. 1. RMSEpos and RMSEvel with different filters.
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Fig. 2. ARMSEpos and ARMSEvel from different filters
with different dof parameters.
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Fig. 3. ARMSEpos and ARMSEvel from different filters
with different forgetting factors.
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Fig. 4. ARMSEpos and ARMSEvel from different filters
with different initial prior parameters.

performance than the existing filters in the scenario with
NHMN.

The ARMSEpos and ARMSEvel from different filters with
different dof parameters over 1000 Monte Carlo runs are
shown in Fig. 2. From Fig. 2, the proposed filter with
different dof parameters has the essentially consistent
estimation error and is smaller than the existing filters,
which is illustrated that the proposed filter with different
dof parameters has better estimation performance than
the existing filters in the scenario with NHMN.

The forgetting factor is selected as ρ = 0.95 : 0.005 : 0.99,
and the values of other parameters are the same as those
in Table I. Fig. 3 shows the ARMSEpos and ARMSEvel

from different filters with different forgetting factors over
1000 Monte Carlo runs. As shown in Fig. 3, the proposed
filter has smaller ARMSEs than the existing filters, and
the ARMSEs of the proposed filter almost remain the same
when the forgetting factor is selected as ρ = 0.95 : 0.005 :
0.99 in the scenario with NHMN.

The ARMSEpos and ARMSEvel from the proposed filter
with initial prior parameters (α0, β0) ∈ [1, 50]× [1, 50] over
1000 Monte Carlo runs are shown in Fig. 4. From Fig.
5, the estimation error from the proposed filter with the
initial prior parameter β0 ∈ [1, 5] may increase. This is
owing to the estimation of the mixing probability tending
to be the value of 1, which is no longer suitable for the
scenario with NHMN, under the case of the initial prior
parameter β0 selected as a very small value. Thus, in
practical application, it is suggest that selecting a large
value for β0 to guarantee the proposed filter exhibits a
good performance, such as the proposed filter with initial
prior parameters (α0, β0) ∈ [1, 50] × [5, 50] exhibiting a
good estimation accuracy as shown in Fig. 4.

4. CONCLUSION

In this paper, a novel robust KF was derived for the
linear system with NHMN, where the mixing probability
is recursively estimated by using its previous estimates
as prior information. Compared with the existing filters,
the excellent performance of the proposed robust KF is

illustrated in the target tracking simulation results under
the case of NHMN.

REFERENCES

Bishop, C.M. (2007). A variational bayesian approach to
robust sensor fusion based on student’s t distribution.
Patt. Recogni. and Machi. Learni.

Chen, B. and Principe, J.C. (2012). Maximum correntropy
estimation is a smoothed map estimation. IEEE Signal
Processing Letters, 19(8), 491–494.

Cinar, G.T. and Prncipe, J.C. (2012). Hidden state
estimation using the correntropy filter with fixed point
update and adaptive kernel size. The 2012 International
Joint Conference on Neural Networks (IJCNN), 1–6.

Durgaprasad, G. and Thakur, S.S. (1998). Robust dy-
namic state estimation of power systems based on m-
estimation and realistic modeling of system dynamics.
IEEE Transactions on Power Systems, 13(4), 1331–
1336.

Gandhi, M.A. and Mili, L. (2010). Robust kalman filter
based on a generalized maximum-likelihood-type esti-
mator. IEEE Transactions on Signal Processing, 58(5),
2509–2520.

Huang, Y., Zhang, Y., Li, N., Mohsen.Naqvi, S., and
Chambers, J. (2016). A robust student’s t based cu-
bature filter. 2016 19th International Conference on
Information Fusion (FUSION), 9–16.

Huang, Y., Zhang, Y., Li, N., Wu, Z., and Chambers,
J.A. (2017a). A novel robust student’s t-based kalman
filter. IEEE Transactions on Aerospace and Electronic
Systems, 53(3), 1545–1554.

Huang, Y., Zhang, Y., Shi, P., Wu, Z., Qian, J., and
Chambers, J.A. (2019a). Robust kalman filters based on
gaussian scale mixture distributions with application to
target tracking. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 49(10), 2082–2096.

Huang, Y., Zhang, Y., Xu, B., Wu, Z., and Chambers,
J.A. (2017b). A new outlier-robust studnet’s t based
gaussian approxiamte filter for cooperative localization.
IEEE/ASME Trans. on Mech., 22(5), 2380–2386.

Huang, Y., Zhang, Y., Zhao, Y., and Chambers, J.A.
(2019b). A novel robust gaussianstudent’s t mixture
distribution based kalman filter. IEEE Transactions on
Signal Processing, 67(13), 3606–3620.

Izanloo, R., Fakoorian, S.A., Yazdi, H.S., and Simon,
D. (2016). Kalman filtering based on the maximum
correntropy criterion in the presence of non-gaussian
noise. 2016 Annual Conference on Information Science
and Systems (CISS), 500–505.

Karlgaard, C.D. and Schaub, H. (2007). Huber-based di-
vided difference filtering. Journal of Guidance, Control,
and Dynamics, 30(3), 885–891.

Roth, M., zkan, E., and Gustafsson, F. (2013). A stu-
dent’s t filter for heavy tailed process and measurement
noise. 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 5770–5774.

Tzikas, D.G., Likas, A.C., and Galatsanos, N.P. (2008).
The variational approximation for bayesian inference.
IEEE Signal Processing Magazine, 25(6), 131–146.

Zhu, H., Leung, H., and He, Z. (2013). A variational
bayesian approach to robust sensor fusion based on
student’s t distribution. Inf. Sci., 221, 201–214.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

387


