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Abstract: Maintaining a setpoint to maximize energy harvest of wave energy converters
(WECs) with the uncertainties induced by the ocean waves irregular excitation can be ensured
by using sliding mode control. In practice, the infinite switching frequency in the sliding mode
is limited by the actuators bandwidth. This work compares multiple second-order sliding mode
controllers (SMC) designed for an array of floating oscillating water column (OWC) WECs with
varying order of discontinuity. All algorithms enable bounding the control input to respect the
physical constraints, e.g. maximal torque introduced by the generators attached to the bi-radial
turbines that are driven by the oscillating motion of the air trapped inside the OWC chamber.
Practical implementation of the algorithms is facilitated by a smooth approximation of the
signum function and a smooth switching between different cases or hysteresis and compared to
the ideal switching. The performance of the presented control laws is evaluated while maintaining
a constant turbine rotational speed inside the floating OWC WEC array, and the generated
power is compared to an ideal control law for different irregular sea states.

Keywords: Sliding-mode control, Renewable energy systems, Ocean wave energy, Oscillating
water column

1. INTRODUCTION

Research in ocean wave energy has increased over the
last decades (Falcão, 2010) and has a high potential to
contribute to the energy mix of the future (Aderinto and
Li, 2018). To this date, significant cost associated with the
development and maintenance hamper the realization of
commercially viable projects that can compete with other
renewable energy sources (Andrews and Jelley, 2017).
Advances can be achieved by array deployment in farms
of numerous WECs (Chowdhury et al., 2015), reducing
power fluctuations for grid connection and reducing cost
for mooring and maintenance. The irregular nature of
ocean waves makes the power optimization for a wave
energy converter (WEC) an appealing task for the control
design. Various WEC concepts lead to various control
approaches, e.g. optimal control for linear power take-
off (PTO) dynamics (Bacelli and Ringwood, 2015) and
model predictive control (Richter et al., 2013). Sliding
mode control (SMC), a well established approach in other
fields, has been used previously due to its robustness and
suitability for nonlinear uncertain dynamics in (Magaña
et al., 2019) to maintain the rotational speed of the
attached synchronous AC generator constant.

? This research was sponsored by the National Science Foundation
(Award Number: 1711859).

In this work we present higher order SMC controllers
to obtain a continuous control signal while taking phys-
ical constraints, namely, maximal generator torque into
account. The derivation generalizes the generator to be
applicable for any kind of electric machine. Due to the
faster electromagnetic dynamics, compared to the wave-
body dynamics, we assume that the motor drive’s torque
command is ensured by the generator. The derived control
laws are applied to the dynamic model of an array of
devices with actual ocean deployment and testing, known
as Marmok-A-5 (see (Etxaniz, 2017) for details on the buoy
geometry). The Marmok-A-5 is a floating oscillating water
column type (OWC).This semi-submerged hollow offshore
device is open at the bottom and filled with water. Above
the calm sea surface air is trapped by the power take
off (PTO) turbine.OWCs have only some moving parts
and since the PTO does not have water contact OWCs
are considered as one of the simplest OWCs (Falcão and
Henriques, 2016). As the name OWC indicates, the water
inside the hollow spar oscillates up and down, inducing
an alternating air flow. Therefore, self-rectifying turbines
are used to capture the mechanical energy. In terms of
performance the bi-radial turbine, with a peak efficiency
of 79 % is a good choice compared to the well know Wells
turbine (Falcão and Henriques, 2016). In this paper we use
the equations of motion and the experimentally derived
characteristics of the bi-radial turbine from (Henriques
et al., 2017) for the implementation of the OWC array. We
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present the dynamic equations for an array of N floating
OWCs, which is not limited to the Marmok-A-5, but linear
hydrodynamic coefficients need to be available.

The assessment of the main frequency dependent hydro-
dynamic coefficients is commonly conducted using the
boundary element method (BEM) nowadays. With the
BEM the velocity potential of the flow is solved and the
results in the frequency domain are transformed into the
time domain, which is required to considered nonlinearities
in the dynamic model. We represent the OWC with the full
column in (Gaebele et al., 2019) for the BEM simulation,
instead of using a thin plate, to reduce the numerical
instabilities in the results of the used BEM solver ANSYS
Aqwa. The OWC is therefore represented by an rigid
imaginary piston of the same dimensions.

A brief description of these analytical relationships is
presented in Sec. 2. In Sec. 3 we address the control design
for an array of Marmok-A-5 WECs, with the necessary
concepts to implement multiple higher order sliding mode
algorithms, that follow a reference speed, respect generator
constraints and achieve a smooth control signal. In Sec.
4 we discuss and compare the behavior of the different
control schemes based on the quality of the sliding mode
and the control signal and conclude the work with a brief
discussion on power improvement capabilities of the SMC.

2. DYNAMIC MODEL

The equations of motion of the array of N floating OWC
WECs are described in more detail in our previous work
(Gaebele et al., 2019). In this work we focus on the
necessary aspects for the control design and restate the
state space representation together with the assumptions
the hydrodynamic model is based on.

We use linear water wave theory assuming the amplitude of
the ocean waves and the body motions is small compared
to the ocean wave length λ. The internal free water surface
is represented by an imaginary rigid piston, since the
diameter inside the buoy is dp � λ. This enables us to
apply oscillating body theory for the floating OWC WEC.
Also known as a two-body heaving system as it is called
in (Falnes, 2002). Throughout this work we will use piston
and OWC interchangeably. For power generation, mainly
the heave axis has relevance for floating OWC WECs.
Therefore, we focus on the system dynamics of the heave
displacement z(t), which is defined to be zero at the calm
sea surface and positive for an upwards displacement. The
necessary steps to include more degrees of freedom in
the model and the arising cross coupling is discussed in
Gaebele et al. (2019) in the appendix. For an array of N
WECs, thus 2N bodies, let us define the state vector as

x =
[
xTz xTv xTp∗ x

T
Ω

]T
. (1)

Here xz and xv denote the respective vectors for heave
positions and velocities of the bodies i . . . 2N , thus xz,i =
zi = xi, xv,i = żi = x2N+i. Furthermore, xp∗ represents
the vector for the air chamber relative pressure differences
of WEC i . . . N and finally the rotational speeds of the
turbine-generator sets of system i . . . N are contained in
the vector xΩ , respectively, therefore xp∗,i = p∗i = x4N+i

and xΩ,i = Ωi = x5N+i.

2.1 Hydrodynamic model

After the fundamental work of (Cummins, 1962) the
oscillation of body floating in the ocean can be described
by,

miẍz,i(t) = FH
i (t) + FM

i (t) + FEx
i (t) + FR

i (t) + FPTO
i (t).

(2)
Here mi represents the physical mass of the ith body. The
forces considered in (2) are,

FH: The hydrostatic restoring force, adding heave posi-
tion depending spring like effect, zero at equilibrium
xz,i(t) = 0.

FM: The mooring force due to mooring connection with
the sea floor. No mooring is connected to the imaginary
piston.

FEx: The wave induced excitation force, which accounts
for all incident waves on the body. Results from solv-
ing the diffraction problem of the incident wave field
inside the array. FEx is obtained by superposing 100
wave components that are randomly phase shifted, using
a Pieson-Moskowitz wave energy spectrum. Different
array configurations are taken into account with the
hydrodynamic excitation force coefficient and the cor-
responding phase coefficient for the respective WECs
and geometries.

FR: The radiation force, including interactions with the
motion of other bodies in the array. It results from
solving the radiation problem and is composed out of:

FR,∞
i explicitly depending on the acceleration ẍz,j mul-
tiplied with the constant linear hydrodynamic coef-
ficient A∞ij , known as the added mass evaluated at
ω −→∞.

FR’
i explicitly depending on the velocity ẋz,j of the
jth body and the inverse Fourier transformation of
the frequency dependent radiation damping coeffi-
cient Bij(ω). This force takes the bodies past motion
into account and instead of a time convolution we
approximate FR’

i with a linear state space system with
the same step response.

FPTO: The force due to the pressure change in the
chamber induced by the turbine-generator dynamics. It
is acting in opposite direction for buoy and OWC.

Nonlinear viscous and other friction effects are neglected
in this work, because of the ring torus shaped of the buoys
bottom reducing viscous losses. Nevertheless, time-domain
formulation necessary for the nonlinear PTO dynamics
keeps the option to include those practical correction terms
(Falnes, 2002).

The buoy and piston move relative to each other changing
the volume at pressure pci(t) of the air chamber. The
difference to the constant atmospheric pressure pci(t)−pat

results in a force when multiplied with the piston surface
Sp, namely,

FPTO
i (t) =

{(
pci(t)− pat

)
Sp, for a buoy

−
(
pci(t)− pat

)
Sp, for a piston

, (3)

acting in opposite direction for the two bodies in the heav-
ing system. Apart from the heave motion, the turbine air
flow and consequently the PTO dynamics with influence
the rate of change of the chamber pressure.
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Fig. 1. Dimensionless turbine characteristics as functions
of the dimensionless pressure head Ψ. Namely, effi-
ciency η, flow rate Φ and power coefficient Π from
(Henriques et al., 2017)

2.2 Power Take-Off model

In (Henriques et al., 2017) detailed nonlinear modeling and
experiments of the air chamber in OWCs together with
the biradial turbine is available. A suitable generator for
this type of turbine is investigated in (Henriques et al.,
2019). We recapitulate the main equations necessary to
derive a relation for the pressure rate of change inside
the chamber and consequently the turbine torque. First
we define the state variable, the dimensionless relative
chamber pressure,

xp∗,i(t) = p∗i (t) =
pci(t)

pat
− 1, (4)

with the atmospheric pressure pat and the corresponding
density is denoted ρat. The derivation is based on a mass
balance of the chamber with the air density ρci and the
instantaneous chamber volume Vci(t) is determined by the
relative position of piston and buoy. Assuming that air acts
as a perfect gas for expansion yields

ρci(t) = ρat(xp∗,i(t) + 1)
1
γ , (5)

with the specific heat ratio γ ≈ 1.4. We take the logarith-
mic derivative L(f) := ḟ/f of (5) and substitute into the
mass balance which results in

ẋp∗,i(t) = −γ
ṁti

(t)

ρatVci (t)

(
xp∗,i(t) + 1

) γ−1
γ
− γ

V̇ci (t)

Vci (t)

(
xp∗,i(t) + 1

)
.

(6)

Here the mass flow through the turbine ṁti(t) is deter-
mined with the turbine dynamics. In this work we model
the time rate change of the angular turbine/generator
velocity with

ẋΩ,i(t) = Ω̇i =
1

Jt

(
Tturbi − Tgeni −BtxΩ,i

)
, (7)

where Jt is the composite moment of inertia (MOI) of
the ith turbine / generator set. The instantaneous torques
Tturbi and Tgeni are determined by the ith turbine and
the generator, respectively. Vicious friction of the tur-
bine/generator is modeled linear using the constant Bt.
The generator torque is defined to be the control input

ugen,i = Tgen,i, (8)

to our system. The turbine torque is identified with the
pressure dependent dimensionless performance character-
istics illustrated in Fig. 1. To normalize those values,
the rotational speed xΩ,i, the turbine diameter dt and
the reference air density ρin,i are used. Depending on an
inhalation, or exhalation ρini = max

(
ρat, ρci(t)

)
.

The dimensionless pressure head can now be computed as

Ψi(xp∗,i, xΩ,i) =
patxp∗,i
ρinix

2
Ω,id

2
t

. (9)

Now ṁti can be obtained as a function of Φi(Ψi) with
the experimental results from Fig. 1. The turbine torque
is computed out of the introduced characteristics and
variables, namely

Tti = ρinix
2
Ω,id

5
t Πi(Ψi). (10)

2.3 State Space Representation

The state space representation of the physical dynamical
equations of the WEC system is given by

ẋ =

 ẋz
ẋv
ẋp∗
ẋΩ

 =

 xv
(M)

−1 ·F(x)
fp(x)

fk(xp∗ ,xΩ,ugen)

 (11)

with

M =


A∞11 . . . A

∞
1N . . . A∞1 2N

...
. . .

...
. . .

...
A∞N1 . . . A

∞
NN . . . A∞N 2N

...
. . .

...
. . .

...
A∞2N1. . .A

∞
2NN . . .A

∞
2N 2N

+ diag




m1

...
mN

...
m2N



 .

(12)

Here (M )
−1

represents the interaction between all bodies
due to the multiplication with the composite force F(x).
It originates while isolating the highest derivatives on
the left hand sight of the equations of motion from the

radiation force component FR,∞
i . The matrix M consist

of the constant added mass components A∞ii and the sum
with the bodies physical masses mi on its diagonal. The
composite force sums up all forces that would act on a
single body, namely,

F(x)=

F
H
1 (x1)+FM

1 (x1)+FPTO
1 (p∗1)+FR’

1 (xv)+FEx
1

...
FH

2N (·)+FM
2N (·)+FPTO

2N (·)+FR’
2N (·)+FEx

2N

.
(13)

3. CONTROL DESIGN

Our control algorithm aims to have the WEC turbine
follow a reference angular velocity Ωref while respecting
the physical constraints of the generator by applying a
smooth control signal to avoid stress on the actuators.
To achieve these goals we apply different sliding mode
controllers (SMCs) that force the WEC system to reach
and stay in a subset of the state space known as the sliding
surface, i.e. σ(t, x) = 0. We define the sliding variable as
the error between Ωref and the instantaneous rotational
speed, namely,

σ(t, x) = Ωref − xΩ = 0. (14)

The control algorithms are applied to each of the three
devices taking into account the WEC array hydrodynamic
interaction using the numerical values of the physical
bounds, which are computed in the ensuing section. In
what follows, we omit the subscript i when deriving the
control algorithms.

The control effort is based on the position of the state
relative to σ(t, x) = 0 and generally speaking the SMC
steers the state trajectory towards it and brings it back to
it if it leaves it. Theoretically, this would happen at infinite
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Fig. 2. Approximation of the signum function (left) and
the smooth approximation of the switch (right)

frequency resulting in a discontinuous control signal it.
In practice, imperfections like delays prevent the infinite
frequency switching and consequently the ideal sliding.
The result is an oscillation of the states around the sliding
surface which yields a chattering in the control signal. This
can be damaging for the actuators, thus our second goal is
to achieve a trade off between staying in a neighborhood
of σ(t, x) = 0 and achieving a smooth control signal.

We use an ideal feedback control law developed in (Hen-
riques et al., 2017, 2019) to help us estimate the expected
range of state values and to compare the SMC to, namely,

ugen = min
(
agenx

bgen−1
Ω , P rated

gen /xΩ, T
max
gen

)
. (15)

The authors developed this control law for a practical
implementation, based on the maximization of the aerody-
namic efficiency of a fixed OWC, equipped with the same
biradial turbine. In this work we set the coefficients to
agen = 0.0001 and bgen = 3.6 following (Henriques et al.,
2017) for the same order of magnitude and we cannot guar-
antee optimal values for the simulated sea state. However,
they are suitable for initial evaluation system behaviour
for a WEC array.

In subsection 3.1 we address how we can practically imple-
ment higher order SMC algorithms by using two smooth
approximations of discontinuous functions. In subsection
3.2 we state the system requirements that are necessary
to apply the integral SMC following the methodology
presented in (Levant, 1993) and we obtain the positive
constants bounding various derivatives of σ(t, x) either
analytically, or numerically with the help of the derived
simulation model and (15). In subsection 3.3 we present
four different SMC algorithms from (Levant, 1993) that
can be applied to the OWC WEC array followed by brief
conceptual description of convergence guarantee.

3.1 Practical implementation

Most SMC algorithms use the sgn (signum) function to
evaluate on which side of the sliding surface the state tra-
jectory is. To influence this discontinuous hard transition
either between -1 and 1 or between the cases used in the
SMC algorithms we adapt the function

h(y, c) =
y (1 + c|y|)

1 + |y| (1 + c|y|)
, c ∈ R+, (16)

used in (Magaña et al., 2019) where y is the variable
determining the switch and c controls the sharpness of the
switch. All sgn functions in the following control schemes
are approximated with

sgn (σ(t)) ∼= h(σ(t), c1) (17)

as illustrated in Fig. 2 to decrease the chattering when the
state trajectory crosses σ. The algorithms in Sec. 3.3 all

switch the time rate of change u̇ as soon as the control
signal exceeds the predefined limit csw, thus counteracting
the control effort. We normalise |u| ∈ (0, 1), such that
for |u| = 1 the generator applies the maximal torque.
With csw < 1 we can further influence to what percentage
the physical constraint should be exploited and we use
csw = 0.95 in what follows. In other words,

ẏ =

{
f1, if |y| > csw
f2, if |y| ≤ csw

(18)

∼=
1

2

(
f1

(
h(ysw, c2) + 1

)
+ f2

(
− h(ysw, c2) + 1

))
, (19)

with ysw = y−csw. The transition is illustrated in the right
plot in Fig. 2. A second idea to diminish the chattering
when the torque limit is reached is to introduce a hysteresis
to smooth out the back and forth between functions f1

and f2. We implement the behavior with the Simulink
relay block with a switch on at |u| = 1 and switch off at
|u| = 0.95. However, this still introduces a hard transition
as illustrated in the next section.

3.2 System requirements

In this subsection we show that the model of the WEC
array meets the system requirements to apply the SMC
methodologies from the work of (Levant, 1993) and how
we can obtain numerical values for the positive constants
Km, KM and C0. Equation (11) can be rewritten as

ẋ = f(x(t), ugen), (20)

where f satisfies class C1. Again, here ugen = Tgen is
physically constrained to a maximal constant value Tmax

gen ,
thus we introduce the dimensionless control input u =

1
Tmax

gen
ugen with |u| ≤ csw. The sliding variable σ(t, x) is of

class C2. The differential operator considering u constant

Lu =
∂

∂t
(·) +

∂

∂x
(·)f(x, ugen) (21)

represents the total derivative with respect to (20). Define

σ̇(t, x, u) = Luσ(t, x). (22)

Now assume there exists a set C = {(t, x, u)} : |σ(t, x)| <
σ0, where σ0 is called the linearity region, such that

0 < Km <

∣∣∣∣∂σ̇∂u
∣∣∣∣ < KM. (23)

With the positive constants Km,KM. Moreover, we require
the boundedness of the second derivative of the sliding
surface, namely,

|LuLuσ(t, x)| < C0. (24)

Let us obtain the bounds in (23)

σ̇(t, x, ugen) = Luσ(t, x) (25)

=0 + [0 · · · −1]f(x, ugen) (26)

=− fk(xp∗ , xΩ, ugen) (27)

=− J−1
t

(
Tturb(xp∗ , xΩ)− ugen −BtxΩ

)
, (28)

with ugen = Tmax
gen u it directly follows

∂σ̇

∂u
=
Tmax

gen

Jt
. (29)

We choose

Km =
3

4

|Tmax
gen |
Jt

KM =
5

4

|Tmax
gen |
Jt

. (30)
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Fig. 3. The second derivative of the sliding surface with
the minimal (left) and maximal (right) value for the
generator torque.

Now, consider a fixed pressure and rotational speed
xp∗ , xΩ = constant, thus Ψ = constant and therefore
Φ, η = constant, consequently Tturb = constant with
respect to time. Now,

σ̈ =LuLuσ(t, x) (31)

=Jt
−1
(
BtẋΩ − 2Tturb(xp∗ , xΩ)/xΩ + Tmax

gen u̇
)

(32)
= Jt

−2 (Bt − 2/xΩ)
(
Tturb − Tmax

gen u+BtxΩ

)︸ ︷︷ ︸
C(xp∗ ,xΩ,u)

+Tmax
gen /Jt︸ ︷︷ ︸
K

u̇.

(33)
We can now obtain an upper bound C0 by numerically
computing |C(xp∗ , xΩ, u)| for the minimal and maximal
values of the control and varying xΩ and xp∗ , illustrated in
Fig. 3 with the linearity region σ0 being inside the dashed
lines on the surface.

3.3 Algorithms

All four control algorithms achieve the main goals of
following Ωref and respecting the generator torque limit,
though the control signals are not equally smooth. The
algorithms are given in their original form with the discon-
tinuous sgn functions and cases as in (Levant, 1993), but
are simulated with the approximations described earlier.
First, we introduce the Aµ - algorithm

u̇ =

{
−u, if |u| > csw
−α1 sgnσ, if |u| ≤ csw,

(34)

which is a first order real sliding algorithm, with α1 > 0.
Second we have the twisting algorithm (TW)

u̇ =


−u, if |u| > csw
−αm sgnσ, if σσ̇ ≤ 0, |u| ≤ csw
−αM sgnσ, if σσ̇ > 0, |u| ≤ csw

(35)

where αM > αm > 0 and chosen such that

αm > max

(
4KM

σ0
,
C0

Km

)
(36)

αM >
KM

Km
αm + C0

(
1 +

1

Km

)
. (37)

The next algorithm drives σ and σ̇ towards 0 and is
therefore named super-twisting algorithm (STW).

u̇ =

{
−u, if |u| > csw
−α2 sgn(σ̇ − g(σ)), if |u| ≤ csw

(38)

with
g(σ) = −λ2 sgnσ|σ|γ , (39)

and λ2 > 0 and 0.5 ≤ γ < 1. An algorithm similar to the
twisting algorithm but independent of σ̇ (TW-σ̇), namely,

u = u1 + u2 (40)

u̇1 =

{
−u, if |u| > csw
−α3 sgnσ, if |u| ≤ csw

(41)

u2 =

{
−λ3|σ0|ρ sgnσ, if |σ| > σ0

−λ3|σ|ρ sgnσ, if |σ| ≤ σ0
(42)

Here the design parameters have to satisfy the inequalities

α3 > max

(
4KM

σ0
,
C0

Km

)
(43)

ρ (λ3Km)
1
ρ > (KMα3 + C0) (2KM)

1
ρ−2, (44)

where ρ ∈ (0, 1) and λ3 > 0.

3.4 Convergence

The proof of stability for the algorithms herein used is
presented in (Levant, 1993). The control laws all steer the
rotational speed trajectory into the linear region |σ(x)| <
σ0. With the respective bounds it is guaranteed that
control laws are capable of keeping the system dynamics
in a neighborhood of the sliding surface as seen in the left
column of Fig. 7. The algorithms produce switching surface
trajectories which converge to a neighborhood of the origin
of the σ-σ̇ plane depending on their functions when |u| ≤
csw. In case the control limit is reached, the dynamics may
leave the sliding surface, however, the oscillating nature of
ocean waves always enables the algorithms to re-reach the
sliding surface.

4. NUMERICAL SIMULATIONS AND DISCUSSION

We present the simulation results of six different control
cases, namely, Aµ- algorithm, twisting (TW) and super
twisting (STW) algorithm and a twisting algorithm inde-
pendent of σ̇ (TW-σ̇). Furthermore, we take a look at two
additional cases of the STW, namely, a non-approximated
hard and ”ideal” switch (STW-i) and a switch realized
with a hysteresis (STW-h). The numerical simulations are
conducted with MATLAB-Simulink using stiff, variable
time step solvers, except for (STW-i) when a fixed time
step solver is necessary, due to infinite chattering frequency
and the solver trying to decrease the step size more and
more, not allowing fast simulation. Simulating the com-
puter model faster than the actual time was our require-
ment when choosing the solvers for the other algorithms.
Therefore, Aµ, TW and TW-σ̇ algorithms require ode15s
instead of the slower ode23s used for the STW algorithms,
which showed less chattering, thus less computational ef-
fort. In table 1 we show an overview of the solvers, together
with the figures showing the simulation results of the
respective algorithm. To test the algorithms we use an

Algorithm Aµ TW STW-i STW STW-h TW-σ̇

ode solver 15s 15s 4 23s 23s 15s

∆t var. var. 1e-4 var. var. var.

Fig. 7 row 1 2 3 4 5 6
xΩ, T Fig. 6 6 5 5 6 6

Table 1. Algorithm overview.

interacting array of N = 3 Marmok-A-5 devices, but the
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Fig. 4. Heave positions of WEC 1 bodies with the wave
elevation and dimensionless relative pressure xp∗ .

presented results are from WEC 1 to avoid overcrowding
the plots. All numerical simulation parameters are listed
in table 2. We use the parameters of a SIEMENS IEC
low-voltage electrical generator, model 1LE1603-2AB53-
4GB4-Z, as it was connected to the bi-radial turbine in
(Henriques et al., 2019) and set the reference rotational
speed to the generator nominal speed Ωref = Ωnom

gen . For
a synchronous generator we would set Ωref to the syn-
chronous speed. The time evolution of the position of buoy,

Quantity sym/var value

diameter turbine dt 0.5 m
MOI turbine+generator Jt 5.24 kg m2

friction turbine+generator Bt 0.03 N m s

reference / nominal gen. speed Ωref,Ω
nom
gen 1470 rpm

maximal generator torque Tmax
gen 216.5 N m

rated generator power P rated
gen 30 kW

max. generator rot. speed Ωmax
gen 3000 rpm

sea states characteristics θ, Ts, Hs 15◦, 11 s, 2.5 m

Lower / Upper bound ∂σ̇
∂u

Km, KM 30.9, 51.7

Upper bound σ̈ C0 150
linearity region σ0 1 rad s−1

switching smoothness c1; c2 50 ; 100e3
switch limit csw 0.95

Aµ - algorithm constant α1 10

Twisting algorithm (TW) αm, αM 206.6, 500

Super twisting alg. (STW) α2, λ2, γ 4.8, 9.7, 0.5

Twisting indep. of σ̇ (TW-σ̇) α3, ρ, λ3 4.8, 0.1, 0.33

Table 2. Numerical simulation parameters.

piston and wave elevation, characterized by a significant
wave height of Hs = 2.5 m, an energy period Ts = 11 s
and an incident wave angle θ = 15◦, together with the
resulting dimensionless pressure difference is illustrated
in Fig. 4. A close up of the time interval from 184s to
210s is illustrated, because we observe the highest xp∗ ,
since the oscillation of buoy and piston are out of phase.
In this time interval the limit for the control torque will
be reached two times and is suitable to illustrate the
trajectory of the control signal on the sliding surfaces in
Fig. 7. The maximum value of xp∗ = 0.0165 is smaller
than 0.02, which is assumed for the bound C0. In Fig. 5
we present the full time evolution of the control torque
Tgen and the resulting rotational speed xΩ for the two
algorithms with the smoothest control signal, namely the
STW controls laws with the ideal hard switching (dashed,
STW-i) and the smooth implementation (solid, STW) of
the same control law plus a comparison with the aero-
dynamically ideal feedback control law (15). When the
control torque limit is reached at t = 198 s the rotational
speed leaves the linear region σ0. The extreme close up
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Fig. 5. Rotational speed and control torque of the STW
algorithms with the hard switch and smopth switch.
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Fig. 6. Rotational speed and control torque for the differ-
ent algorithms. Top left: Aµ, top right: TW, bottom
left: STW-h, bottom right TW-σ̇.

shows that STW-i does indeed chatters at the control limit.
In Fig. 6 we illustrate Ω and Tgen in the close up time
interval for the remaining algorithms. The Aµ algorithm
shows a strong chattering after the limit is reached, also
observable in Fig. 7 when the control effort u oscillates
in the u-σ plane. If a non-stiff solver is used the control
signal will always chatter. The twisting algorithm shows
the same overshoot after the limit is reached, however,
the chattering is damped in milliseconds. Nevertheless,
the behavior going from maximal torque to motor mode is
not desirable. The super twisting algorithm with hysteresis
(STW-h) does not overshoot, but chatters while running
at torque limit. In Fig. 7 the behaviour can be observed
while the trajectory loops in the σ̇-σ plane for u ∈ [0.95; 1].
The algorithm independent of σ̇ (TW-σ̇) seems to have a
small overshoot before the operation at the torque limit is
reached. Nevertheless, the (TW-σ̇) does switch into motor
mode after leaving the limit operation, since u undershoots
without the knowledge of the change rate σ̇. The two time
intervals when control limit is reached in Fig. 5 and 6
yield the two loops of different radius in the right plot
in Fig. 7 when the linear region is left. Illustrating those
torque limits made us choose this sea state. Generally with
the SMC compared to (15) the decrease in the variations of
the rotational speed results in an increase in the variations
of the generated power. Averaging the generated power
over 500 s simulation time, (excluding the first 20 s to
reach steady state behavior) does not yield an increase
in mechanical energy production for this specific sea state
with the STW controller. However, when the generator
efficiency is considered an improvement of electrical energy
of 7% is achieved since the constant rotation enables the
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Fig. 7. Trajectory of the control signal u versus σ̇ and ver-
sus σ for the different SMC algorithms. Left column
in the linear region σ0, right column when the control
limit is reached.

generator to operate in a highly efficient area. The power
quotient matrix in Fig. 8 illustrates that in less energetic
sea states, but Hs ≥ 1 the SMC yields on average 6-
13% more mechanical energy and 35-49% more electrical
energy.
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Fig. 8. Quotient between the generated power of the super
twisting algorithm and the ideal control law. Left:
electrical power. Right: electromechnical power.

REFERENCES

Aderinto, T. and Li, H. (2018). Ocean wave energy
converters: Status and challenges. Energies, 11, 1250.
doi:10.3390/en11051250.

Andrews, J. and Jelley, N. (2017). Energy Science -
Principles, Technologies, and Impacts, 3rd ed. Oxford
University Press.

Bacelli, G. and Ringwood, J.V. (2015). Numerical opti-
mal control of wave energy converters. IEEE Trans-
actions on Sustainable Energy, 6(2), 294–302. doi:
10.1109/TSTE.2014.2371536.

Chowdhury, S., Nader, J.R., Madrigal Sanchez, A., Flem-
ing, A., Winship, B., Illesinghe, S., Toffoli, A., Babanin,

A., Penesis, I., and Manasseh, R. (2015). A review of
hydrodynamic investigations into arrays of ocean wave
energy converters. arXiv preprint.

Cummins, W. (1962). The impulse response function and
ship motions. Symposium on Ship Theory at the Institut
für Schiffbau der Universität Hamburg.

Etxaniz, P. (2017). Wave energy: An industry with a bright
future. In Bilbao Marine Energy Week.

Falcão, A.F. de O. (2010). Wave energy utilization:
A review of the technologies. Renewable and Sus-
tainable Energy Reviews, 14(3), 899 – 918. doi:
10.1016/j.rser.2009.11.003.

Falcão, A.F. de O. and Henriques, J.C.C. (2016).
Oscillating-water-column wave energy converters
and air turbines: A review. Renewable Energy, 85, 1391
– 1424. doi:10.1016/j.renene.2015.07.086.

Falnes, J. (2002). Ocean Waves and Oscillating Systems.
Cambridge University Press.

Gaebele, D.T., Magaña, M.E., Brekken, T.K.A., and
Sawodny, O. (2019). State space model of an array of
oscillating water column wave energy converters with
inter-body hydrodynamic coupling. Ocean Engineering.
doi:10.1016/j.oceaneng.2019.106668.

Henriques, J.C.C., Portillo, J.C.C., Sheng, W., Gato,
L.M.C., and Falcão, A.F. de O. (2019). Dynamics and
control of air turbines in oscillating-water-column wave
energy converters : Analyses and case study. Renewable
and Sustainable Energy Reviews, 112(June), 571–589.
doi:10.1016/j.rser.2019.05.010.

Henriques, J.C.C., Sheng, W., Falcão, A.F. de O., and
Gato, L.M.C. (2017). A comparison of biradial and
Wells air turbines on the Mutriku breakwater OWC
wave power plant. In ASME 2017 36th International
Conference on Ocean, Offshore and Arctic Engineering.
doi:10.1115/OMAE2017-62651.

Levant, A. (1993). Sliding order and sliding accuracy in
sliding mode control. International Journal of Control,
58(6), 1247–1263. doi:10.1080/00207179308923053.

Magaña, M.E., Brown, D.R., Gaebele, D.T., Henriques,
J.C.C., and Brekken, T.K.A. (2019). Sliding Mode
Control of an Array of Three Oscillating Water Column
Wave Energy Converters to Optimize Electrical Power
Generation. In European Wave and Tidal Energy Con-
ference Series, 1–10.

Richter, M., Magaña, M.E., Sawodny, O., and Brekken,
T.K.A. (2013). Nonlinear Model Predictive Control
of a Point Absorber Wave Energy Converter. IEEE
Transactions on Sustainable Energy, 4(1), 118–126. doi:
10.1109/TSTE.2012.2202929.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12512


