
     

Performance Analysis of Long Horizon Predictive Control with Modified Sphere 

Decoding Algorithm 
 

Mohamed Tamim Touati1’2. Shaoyuan Li1 

Jing Wu1 
 

1 Department of Automation, SEIEE, Shanghai Jiao Tong University, Shanghai 200240 

China (e-mail: syli @sjtu.edu.cn). 
2 Algerian Space agency, Omar Aissaoui, El Hammadia, Bouzareah, Algiers, Algeria. 

Abstract: The complexity of the optimization problem arises in multistep model predictive control for 

power electronics as they are discrete by nature and have predefined control actions given as integer 

control variables. Generally, Sphere Decoding Algorithm (SDA) is used to solve the optimization 

problem. In this paper, we present an SDA with an Evolutionary Optimization attitude (EO) to simplify 

the complex exhaustive search that is brought by the long prediction horizon. The presented technique 

reconstructs a smaller search area from a large search area which decreases the number of candidate 
solutions. The performance of the optimization algorithm is evaluated through statistical analysis and 

computation burden. 
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1. INTRODUCTION 

Model Predictive Control (MPC) has gained a lot of interest 

in field of power electronics because of the existence of clear 

mathematical models to predict the behaviour of variables. In 

power electronics MPC is applied using two main methods, 

Finite Control Set (FS-MPC) and direct control set MPC, 

Rodriguez et al. (2013). 

FS-MPC takes advantage of the finite number of possible 

control actions the converter can perform to calculate a 

limited number of predictions and optimize a limited number 

of cost functions, Kouro et al. (2015). To this end, with single 

step prediction horizon FS-MPC’s are easily incorporated 

into multiple power electronics applications to improve their 
reliability and efficiency while keeping computation 

complexity low, see Perez et al. (2008), Wilson et al. (2010) 

and Zhang et al. (2016). Regardless of the single step FS-

MPC advantages, its performance is subject to high switching 

frequency and fast response time. This in certain applications 

is inconvenient as it increases the switching efforts and 

accelerates the degradation of the switching components. A 

high switching effort decrease quickly the life cycle of the 

switching components.  

Low switching frequencies increase the harmonics distortion 

in the outputs of power electronics systems as there is more 

time between the switching actions. To address this issue 

researchers have worked on improving the accuracy MPC 

optimization in a single switching period, see Hu et al. 

(2015), Tomlinson et al. (2016), Vargas et al. (2007) and Ma 

et al. (2018). Long horizon MPC has been proved to perform 
better than single-step MPC in many applications. Yet, in 

power electronics it is hard to be applied as the increase in 

prediction horizon increase the number of possible control 

input and enlarges the optimization problem, Tiagounov et al. 

(2003). Transforming the optimization problem into Integer 

Least Squares (ILS) problem allow the integration of more 

intelligent optimization techniques such as the branch and 

bound and Sphere Decoding Algorithms (SDA) as did Geyer 

et al. (2014), Geyer et al. (2015). Same technique has been 

presented by Baidya et al. (2018), Karamanakos et al. 

(2016a), Karamanakos et al. (2016b), Karamanakos et al. 
(2017), Hassibi et al. (2005) and Vicalo et al. (2005), but 

despite the achieved performance the optimization accuracy 

is improved by introducing modifications to the ILS problem. 

It focuses on matrix decomposition to rearrange the searching 

space and to simplify optimization. 

In this paper, a sphere decoding algorithm is modified to 

adopt Evolutionary Optimization (EO) behaviour. The EO 

algorithms have been widely used in multi-objective 

optimization problems, Deb et al. (2011), Zhou et al. (2011), 

Z. H. Zhang et al. (2017) and L. Zhang et al. (2017). Unlike 

other techniques, the proposed algorithm uses a global search 

region in the first iteration of the searching process then 

identifies an elite solution vector which is used to reconstruct 

a local downsized optimization region. The optimal solution 

is searched inside the smaller search region using a modified 
sphere decoding algorithm. The main idea is the Combination 

of EO and SD algorithm to reduce the number of input entries 

to be processed after the first iteration of the optimization 

algorithm. Moreover, this reformulation and recombination 

of the optimization algorithm allow a faster optimization. The 

proposed approach is evaluated on a seven-level converter in 

which a long horizon MPC can reduce the current THD 

associated with low switching frequencies. 

2. INTEGER QUADRATIC PROGRAMMING PROBLEM 

A three-phase converter (  , ,i a b c ) optimization problem 

with a long prediction horizon is formulated as an Integer 

Least Squares (ILS) problem as follows: 
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where, Uopt is the optimal control sequence, H is lower 

triangular matrix, iu U  is the control input which denotes 

the converter seven voltage levels  3, 2, 1,0,1,2,3− − − , Uunc(k) 

is the global unconstrained solution or control vector for the 
converter each phase, N is the prediction horizon and   is 

the N-time Cartesian product of the set U. 

3. SDA OPTIMIZATION 

Contrary to exhaustive search where the whole optimization 

problem is solved as one entity by trying multiple solutions in 

an exhaustive manner, the idea of SDA focus on 

decomposing the search problem into small optimization 

problems. Then the problem is solved through multiple steps 

and each step or iteration is used to find a single optimal 

element of the solution vector. SD algorithm defines a sphere 

of a radius ( )k  that is centred at ( )uncU k  the unconstrained 

solution. This sphere contains all the optimal and sub-optimal 

solutions. Each element of the system finite control set will 

be tested one by one in order to distinguish the ones that 

belong inside the sphere. The radius of the sphere is reduced 

after each iteration to eliminate the sub-optimal solutions and 

to conserve only the optimal solutions from the searching 

process. Hence, the radius value is critical in this method, as 

it should allow the existence of one optimal solution at least 
inside the sphere at each sample k. the value of ( )k  is 

initialized as follows 

2

2
( ) ( ) ( )ini unck HU k U k = −                          (4) 

The value of Uini is the previous step optimal solution vector. 

( ) ( 1)ini optU k U k= −  U                           (5) 

The sphere decoding algorithm searches for optimal elements 

of the control vector U(k) in sequential computation, where 

the constraint (2b),(2c) and the following condition should be 

fulfilled  
2

2
( ) ( ) ( )uncHU k U k k−                          (6) 

Since H is a lower triangular matrix, then (6) is rewritten in a 

recursive manner  

2 2 2
1 (1.1) 1 2 (2.1) 1 (2.2) 2( ) ( ) ( ) ....k U H U U H U H U  − + − − +  

(7) 

where iU  is the ith of the control sequence U(k), ( . )i jH is the 

(i.j)th element of matrix H, and iU  denotes the ith element of 

( )uncU k . 

In conventional SDAs, an over-all initial squared distance 
2( )k  is calculated for all 3N elements of Uini at once which 

gives a large real number. Therefore, the condition in (7) can 

be satisfied by suboptimal solutions at the first elements and 

iteration. This results in a need of more iteration to shrink the 
sphere. This increases computations and brings uncertainty 

issues. 

3.1 Proposed Sphere Decoding Algorithm 

The proposed modifications aim to improve the SDA 

searching process, meanwhile, enhance or keep the same 

performance of the conventional SD algorithms. Researchers 

have been suggesting algebraic reformulations of the ILS 
problem to reconstruct a more computationally efficient 

optimization. However, these techniques focus only of the 

formulation but ignore the number of input entities to be 

 
Fig. 1. Proposed Algorithm flow diagram. 
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searched. The increasing number of inputs complicates the 

searching and the optimization which makes it exhaustive 

and time consuming. 

In this paper, the number of control entries is optimized and 

reduced using an Evolutionary Optimization Algorithm 

(EOA), Deb et al. (2011). The efficient combination of SD 

algorithm and EOA involves both Optimization and level 

entries reduction at the same time. It uses a population-based 

approach in which all the possible solutions (Control inputs) 

are evaluated and tested at the first iteration, and then it uses 

a new smaller population set (new set of inputs) in the next 

iterations. In other words, the algorithm preserves only the 

elite control actions that satisfy the condition in (7) and 

defines a local search region of probable solutions from it. 

The new local search region or the control input set is 

considered as a global search region in the next iteration. This 

operation is repeated until only one optimal solution vector 

satisfies the squared distance condition. 

The initialization equation of the sphere radius is 

reformulated to allow the use of the squared distance of each 

element as a quality factor to select the elite solutions. This 

enables the classification of the voltage levels from the best 

solution to the worst solution. The new formulation 

calculates a single element squared distance at each step of 

the regression operation by taking advantage of the recursive 

computation of equation (7) and set it as dp,i(k) in a vector 

dp(k). The new initial vector of squared distances replaces the 

old total squared distance 2( )k . The whole Vector dp(k) is 

initialized as follows: 

,1 ,2 ,3

T
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The overall algorithm proceeds through a path of three steps 

as illustrated in Fig.01. The algorithm is presented as 

pseudocode in the following steps: 

➢ Step One: The algorithm starts the search from the 

overall possible solutions U (global population) in the 

first iteration by applying a decomposed version of 

equation (7) as: 

2 2
1 (1,1) 1 1

2 2 2
1 (1,1) 1 2 (2,1) 1 (2,2) 2 2

2 2 2
1 (1,1) 1 3 (3 ,1) 1 (3 ,3 ) 3 3

( )

( ) ( )

( ) ( )

p

p

N N N N N p N

U H U d

U H U U H U H U d

U H U U H U H U d

− 

− + − − 

− + + − − − 

(9) 

This compares the distance calculated at each element to 

the initial values in (8a). Then each element is linked to 

a squared distance value that is considered its quality 

factor. It allows the determination and the grouping of 

the feasible elements according to their quality. The best 

quality elements are selected and preserved in an elite 

solution vector. The vector is defined as follows: 

1 3N
PU 

   U  s.t (2b), (2c) and (9). 

 

 
(a) SD-MPC method with N=1. 

 
(b) SD-MPC method with N=5. 

 
(c) SD-MPC method with N=8. 

Fig.2. Sampling Frequency impact on switching frequency 

and THD.  
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Hence, the algorithm used the same deterministic 

transition technique as SD algorithm rather than a 

probabilistic transition of conventional evolutionary 

algorithms. 

➢ Step Two: Elite solution vector makes it easier to 

reconstruct an elite neighbourhood, in which the 

elements of UP’ are extended element by element to 

form a local searching region. Thus, each elite element 

is then transformed into a vector of three elements as 

follows: 

 ( )
,

, ,

,

( ) 1

( 1) ( ) 0 1,...,3

( ) 1

P i

p i P i

P i

U k

U k U k i N

U k


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

 +
 

+ = +   
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U,   

                         (10) 

subject to contain (2c) which states that only one level 

change is considered in all directions. This preserves a 

small and manageable local search region for any 

number of input entries. The optimal solution vector is 

located inside the local solutions region. 

➢ Step Three: The search for the optimal voltage vector 

U(k) is conducted by repeating step1 on the vector 

UP”(k+1) (the local solution region) to determine a new 

elite solution vector UP’(k+1), from which a new local 

search region UP”(k+2) is also defined by repeating step 

2. Therefore, step 3 will be repeated until only one 

possible voltage vector satisfies the membership criteria 

in (9) and the constraints (2b) and (2c). That remaining 

solution that satisfies all conditions after all iterations is 

considered as the only optimal solution Uopt(k).  

4. ANALYSIS 

In this section, the proposed technique is investigated on a 

case study seven-level inverter. Simulation analyses are 

conducted to understand the controller performance. 

4.1 Simulations 

A Monte Carlo simulation is processed by using a randomly 

generated sampling frequencies that vary from [2kHz to 

10kHz] and random weighting factor values of   from 

[ 510 10−  to 5600 10− ], statistical simulation are obtained 

using the SD-MPC with N=1 and N=8. Results are illustrated 

first in term of switching frequency versus total harmonic 

distortion (THD) on the output currents as shown in Fig.2, 

where fit curves (in red) were added in the scattered plots. 

For N=1 in Fig.2(a), the THD values tend to be all below the 

10% only after reaching the switching frequency fsw of 

750Hz, while for N=5 the same THD level is achieved by a 

 

 
(a) SD-MPC method with N=1. 

 

 
(b) SD-MPC method with N=8. 

Fig.3. Weighting Factor impact on Current THD and 

Switching frequency  

 
Fig. 4. Computation efforts presented in term of flops. 
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switching frequency of 600 Hz as seen in Fig.2(b). For N=8 

these THD values are reached at a switching frequency of 

510Hz in Fig.2(c), this is a decrease of around 32% in the 

switching efforts. It is also noticed that for N=8 most of the 

THD results tend to be less than 40% for switching 

frequencies while they reach levels of up to 60% for N=1.  

Table 1.  The number of voltage level entries in the 

worst-case scenario.  

Predictio

n 

Horizon 

N 

Convention

-al MPC 

Sphere 

Decoding 

Proposed, 

SDA   

Algorithm 

1 7 21 9 

2 49 42 18 

5 16,807 105 45 

8 5,764,801 168 72 

 

Furthermore, a 3-D scatter plots with a lowess fit (linear 

regression smooth) are presented in Fig.3 to show the impact 

of the weighting factor on the output quality. The weighting 

factor   values are very important and they can allow very 

good output current even with short prediction horizon and 

large sampling interval. It has been noticed that the weighting 

factor does not have a remarkable impact on one step SD-

MPC, because it has an impact only on single step control 

inputs. However, in the case of N >1, the weighting factor has 

an impact on the constrained solution which affects the 

definition of the optimal solutions. Increasing   values have 

improved the response time resulting in high switching 

frequency and low THD especially for large prediction 

horizons, this trade-off relation is clearly seen in Fig.3(b) for 

N=8. 

4.2 Computation efforts 

Floating point operations (Flops) measurements are 

performed on the proposed SDA as well as the conventional 

one, in order to analyse the impact of the modifications on 

computations complexity. In computation programming, 

most of the execution time is spent on 10% of the code, see 

Aho et al. (1994). The computation analysis has shown that 

the most effort is put in calculating the squared distance, 

which is dependable on the number of possible control entries 

to be tested at each element. In the worst-case scenario, the 

proposed algorithm has 45 possible entries in case of N=5, 

while conventional SDA has 105 entries. According to 

theoretical data in Table.1, the number of voltage level 

entries required is decreased by 57% in the worst-case 

scenario. Flops measurements have validated the theoretical 

hypothesis as illustrated in Fig.4. In which, the number of 

flops increases exponentially for both SD-algorithms, even 

though, the proposed technique has reduced the number of 

flops with an average of 67% for all tested prediction 

horizons. 

5. CONCLUSION 

This paper presented a long prediction horizon Finite Set 

Model Predictive Control (FS-MPC) with an SDA algorithm 

modified to behave as an Evolutionary Optimization (EO) 

algorithm. The proposed technique reduces the computation 

burden associated with increased possible control states in 

long horizon FS-MPC. This approach permitted the MPC to 

define the precise control action in a reasonable amount of 
time, which allowed a better performance with low switching 

frequencies and low sampling frequencies. This improvement 

results in the decrease of harmonic distortion on the output 

currents of multilevel converters even with low switching 

frequencies. The weighting factor has illustrated a significant 

effect on the controller precision ability. Therefore, its 

selection needs to be adaptive and automated in order to limit 

any negative impact of the optimization feasibility. 
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