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Abstract: We present a solution for the estimation of the material flow rate for a hot rolling
mill for steel bars. In this mill, a high number of uncertainties influences the rolling process. The
partly unmeasured flow rate is a critical state for the plant stability. A meaningful estimation
increases the operator efficiency. For this, a developed and adapted model of a six-stand finishing
mill is used for optimization purpose. The flow rate is estimated with an moving horizon
estimator (MHE) with the help of the CasADi framework. The main contribution is the adaption
of a simulation model with the usage for online state estimation. The proposed solution is linked
with real plant measurements.
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1. INTRODUCTION

1.1 Process description

A modern hot rolling mill for steel bars consists out of
various stages, beginning with a furnace, roughing stands,
intermediate stands and finishing mill (Fig. 1). During
these stages, the input material is rolled and reduced in
diameter. The material enters in bars of a specific length
and is reduced in diameter in a continuous way. The last
part – the finishing mill – reduces the diameter to the
required output dimension. This finishing mill is a block
consisting of numerous roll stands (here n = 6). The roll
stands are located closely behind each other, which makes
the implementation of sensors in between very difficult,
because of the reduced space and the harsh environment.
In the hot rolling process, there are various process lim-
itations, which impede the application of measurement
devices. Material temperatures in the range of 1000 ◦C,
cooling liquid and rough process conditions are leading to
high efforts for sensors and their protection. Due to this,
only a limited number of measurement signals inside the
finishing block are available.

Furnace Roughing Stands Intermediate Stands I
Intermediate

Stands II
Finishing Mill Cooling Bed

Fig. 1. Overview of components of Hot Rolling Mill with
Finishing Mill (blue) as primarily considered object

The six stands create a material coupling between adjoined
stands. The action and material deformation of one stand
influences the next and the previous. This leads to a cou-
pled process and prevents from investigating the behavior
of a single stand.

1.2 Model structure

The finishing mill can be hierarchically structured into
several similar stands, with respective own parametriza-
tion each Schäfer et al. (2019). A single roll stand is here
subdivided into multiple units with its respective basic
functionality:

(1) Motor/Drive: Simplified motor model, speed con-
troller and drive chain until the work rolls

(2) Roll Dynamics: Dynamics of material and work rolls,
mechanical friction

(3) Roll Model: Static model to calculate roll force,
torque, lead of material, material geometry

(4) Interstand behavior: Coupling between stands

All submodels contain continuous dynamic systems, only
(3) is a nonlinear, time independent static formulation,
based on the roll model equations of Lippmann and
Mahrenholtz (1967).

1.3 Measurement data

The available measurement data of the process consists of
following values:

• Motor torque (each stand)
• Motor speed (actual, reference), (each stand)
• Material velocity (first/last stand)
• Material area (first/last stand)
• Material temperature in/out (first/last stand)
• Roll cylinder position (each stand)

Additionally, there are some process parameters which are
time independent, such as roll diameter, roll caliber shape,
distances between stands and used materials. The process
itself is highly influenced by the kind of material and
its chemical composition. This leads to major adaption
during process runtime, only because of the resulting
strong nonlinear behavior.
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These above mentioned signals show, that direct process
states of each stand, like input/output material area and
velocity are not available as measurements.

1.4 Objectives

The requirements of the process can be divided into two
categories. One is the process stability and the other one is
the quality of the material output dimension. The output
dimension is a result basically of the material reduction of
each stand and its roll gap setting. The process stability
requires that the material flow rate through the mill
is almost constant and without high local deviations.
Therefore, a knowledge about the flow rate is crucial. It’s a
non-measurable value inside of the finishing mill block. But
a mismatch can lead to drastic plant failures. There are
measurement devices for area and velocity available, but
they are very expensive and usually installed only after the
last stand of the finishing mill for quality control purpose.

Therefore a robust flow rate estimation is developed to
provide these sensitive states for other control stages. An-
other advantage is, that plant operators can set up faster
a scenario with different materials and output dimension,
based on the provided internal states. Safety mechanism
for unwanted plant behavior, such as cobbles, can be more
easily detected and a counteraction introduced.

1.5 State of the art

State estimation is a long elaborated research field, start-
ing from observers over estimation algorithms to online
optimization methods. The main idea is a more detailed
process insight based on some measurements and an inter-
nal dynamic model. Additionally, there can be noise char-
acteristics included to obtain a more reliable estimation
value.

A comprehensive introduction about existing methods is
given by Corriou (2018). There is a general overview
about methods, small examples and some remarks about
their history. Discussed methods are: Luenberger observer,
Kalman Filter (KF), Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF), Ensemble Kalman Filter
(EnKF), Particle Filter (PF), High Gain observer and
Moving Horizon State Estimation (MHE).

Examples in various applications are found in Dochain
(2003), Ritschel and Jorgensen (2018), and Zhang et al.
(2014). Also in earlier time multiple research topics were
available (Didriksen et al. (1995), Bastin (1990), Soroush
(1998)). There are comparisons to handle nonlinear plants
with EKF and MHE in Haseltine and Rawlings (2005).

In the steel rolling industry there are also some applied
approaches for estimating unmeasurable states. In Rigler
et al. (1996) the local temperature and height deviation
was obtained from a Kalman filter. McFarlane and Stone
(1990) described an EKF for estimating the interstand
tension in a finishing mill. Kim et al. (2005) used therefore
an Support Vector Regression (SVR) approach. Straub
(2013) focused on neural observers in different rolling mill
configurations as well as Johansson (2001) did. One major
difference between finishing mills setup is the usage of
loopers. Loopers are between rolling stands and provide

a fast control of the flow rate by introducing a material
buffer over the looper arm. With that, changes in the flow
rate can be compensated by an underlying control loop.
The process described here is without loopers, so there is
1) no material buffer for compensation and 2) no direct
knowledge about flow rate changes in between the stands.

The topic of flow rate estimation of different processes is
covered in Binder et al. (2015) with an MHE approach,
Chhantyal et al. (2018) with an Dynamic Artificial Neural
Net and EKF, and Noda and Terashima (2009) with an
EKF.

2. PROBLEM FORMULATION

The main task in this work is a robust estimation of the
material flow rate throughout all stands in the finishing
mill. The flow rate between two stands can be described
like in Fig. 2. In general terms it is separated in two
regions. First, the control room of the Deformation zone
under the assumption there is no change of the material
flow (1). This zone is assumed as infinitesimal length,
leading to a concentrated form by describing it only with
input/output behavior:

A0(t) · v0(t)−A1(t) · v1(t) = 0 = const. (1)

Where A0, and A1 are the material cross-sectional area (in-
put/output), v0, v1 the material velocity (input/output).
It is valid under the assumption that the material density
ρ is constant.

Second, the control room of Interstand between two ad-
joining stands i and i+ 1 with its tensile stress influence.
The general volume flow uses the incoming, outgoing and
the rate of change according to (2). By inserting the results
from (1) of the deformation zone, the effects of the roll
model described later are considered.

dVi(t)

dt
= A1,i(t) · v1,i(t)−A0,i+1(t) · v0,i+1(t)

= A1,i(t) · v1,i(t)

−A0,i+1(t) · A1,i+1(t) · v1,i+1(t)

A0,i+1(t)

A1,i(t)
dLi(t)

dt
= A1,i(t) · v1,i(t)−A1,i+1(t) · v1,i+1(t) (2)

Stand i Stand i+1

A0,i,v0,i A1,i,v1,i A0,i+1,v0,i+1 A1,i+1,v1,i+1

Interstand

Deformation

L0

Fig. 2. Interstand control room (blue) between to adjoined
rolling stands and Deformation zone control room
(red) at one stand

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12220



The elongation between the stands can be expressed with
the help of tensile stress σ. The tensile stress or also tension
has a major impact on the forming process and yields
valuable insights in the process safety and quality of the
final product.

σ0,i+1(t) = E · ε(t) = E · Li(t)− L0

L0

⇒ dσ0,i+1(t)

dt
= E

dε(t)

dt
=

E

L0

dLi(t)

dt

⇒ dLi(t)

dt
=
L0

E

dσ0,i+1(t)

dt
(3)

Where σ0,i+1 is the arriving tensile stress of stand i +
1, ε the elongation in material flow direction, E elastic
modulus, L0 the nominal distance between two stands,
and L the elongated length. Inserting (3) in (2) yields:

A1,i(t)
L0

E

dσ0,i+1(t)

dt
= A1,i(t) · v1,i(t)

−A1,i+1(t) · v1,i+1(t) (4)

The velocities as well as the cross-sectional areas and
tensions are not available as measurements of the inter-
mediate stands. Roll models which describe the static
behavior of the forming process are used to calculate the
respective nominal values. The geometry change for a three
roll equivalent is performed by the proposed method of
Overhagen (2018):

ΓOut = f
geom

(ΓIn, q) (5)

With geometric relevant parameters summarized in q and

the material state Γ = [A,w, h, v, ϕ]
T

contains: area A,
width w, height h, material velocity v, and the reduction
ratio ϕ. The roll model uses the formula by Lippmann and
Mahrenholtz (1967):

[FR, TR, κ] = f
LM

(h0, h1, b0, b1, A0, A1,

Ad, ld, σ0, σ1, rR, kfm)
(6)

Where the subscript 0 indicates input and 1 respectively
the output of its variable. The used inputs are a subset of
the results obtained by (5) together with the roll radius
rR, pressed area/length Ad, ld and the mean forming
resistance kfm. Additionally, σ0, σ1 are the backward /
forward material tension. The output FR is the roll force,
TR the roll torque, and κ the velocity increase to the linear
roll velocity vR with the relation in (7):

v1 = vR(1 + κ) (7)

The output area A1 is calculated with help of the nominal
reduction ratio ϕ in (8):

A1nom =
A0

exp(ϕ)
(8)

Equations (5) and (6) reflect the approximated forming
process and yield the required values for the flow rate
(A0,A1,v0,v1). But these equations have some mismatch
to the real values and can mostly not be verified with
geometric measurements. Therefore, roll force and motor
torque are also used as secondary measurements, which
are also available as process measurements of each stand.

The above derived formulas are related to a single stand.
The finishing block now contains n = 6 stands that are
coupled. Therefore, a combined representation for i =
1 . . . n is necessary. The state xi is defined as:

xi = [v1,i, TR,i, FR,i, A1,i]
T

(9)

The geometric behavior is highly nonlinear. Due to the
fact that these parameters are only slowly changing and
the equations are for a static process derived, an artificial
smoothing with a first-order term with time constant Ta
is introduced (10):

E(s) =
1

Tas+ 1
⇒ ė(t) = A(Ta)e(t) +B(Ta)u(t) (10)

With ATa
= A(Ta) · I4 and BTa

= B(Ta) · I4, (with I4:
identity matrix dimension 4) this leads to the expression
in (11):

f
i
(xi, ui) = ẋi =


v̇1,i
ṪR,i
ḞR,i
Ȧ1,i


= ATa

· xi +BTa
·

vR,i · (1 + κi)
TR,i
FR,i

A1nom,i

 (11)

The inputs of each stand are defined in (12) as:

ui =
[
v0,i, A0,i, kfm,i, ϕi, σ0,i, σ1,i, pi

]T
(12)

The coupling between the stands results in a shift of the
variables for i ∈ 1 . . . 5 (13):

A0,i+1 = A1,i

v0,i+1 = v1,i (13)

σ0,i+1 = σ1,i

The entire problem is combined into a summarized state
space representation (14) denoted with hat ( .̂ ) with the
previously introduced relationships:

f̂(x̂, û) =

f1(x1, u1)
...

f
6
(x6, u6)


x̂ = [x1 . . . x6]

T
(14)

û = [u1 . . . u6]
T

3. METHOD DESCRIPTION

As described in the previous section, we have to consider
various parts in our problem formulation:

(1) Nonlinear coupled state space system
(2) Constraints, due to mass conservation and coupling

Therefore, we propose a Moving Horizon Estimator
(MHE) for solving this task. Especially the conservation
laws and state restrictions led to this decision. In general
it is described by a Optimal Control Problem (OCP)
formulation in the following form:

argmin
x̂,û,w

J(x̂, û, w, p) (15)

s.t. x̂(j + 1) = f̂(x̂(j), û(j)) + w(j),

x̂(k −N) = x̂0,

û(j) ∈ U,∀j ∈ [k −N, k − 1]

x̂(j) ∈ X,∀j ∈ [k −N, k]
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with: J(x̂, û) = ||x̂0 − x̂(k −N)||2S (16)

+

k∑
j=k−N

||ỹ(j)− h(x̂(j))||2Q

+

k−1∑
j=k−N

||ũ(j)− û(j)||2R

+

k−1∑
j=k−N

||w(j)||2D

With: ũ the past inputs, h the output equations, ỹ the
past measurements, and w the unknown, additive process
noise. The weighting matrices S, Q, R, and D are chosen
as diagonal matrices with only positive values to ensure
their positive definite property. The system representation
is converted from a continuous representation ( ˙̂x(t)) to a
discrete one (x̂(k + 1)) by using trapezoidal integration.

This OCP is solved with CasADi toolbox (Joel A E
Andersson et al. (2019)) by using a Multiple Shooting
(MS) algorithm to transform it into a Nonlinear Program
(NLP).

argmin
ω

J(ω, p) (17)

s.t. ωlb ≤ ω ≤ ωub
g
lb
≤ g(ω, p) ≤ g

ub

Where g
lb,ub

are the (in)equality constraints and ωlb,ub the

state constraints. The decision variable ω combines the
states, inputs and disturbances (18):

ω = [x̂, ū, w]
T

(18)

The inputs ū extract only the inputs from û which are not
derived by the shifted solution in (13).

ū = [A0, v0, kfm,1 . . . kfm,6, ϕ1 . . . ϕ6,

σ0,1 . . . σ0,6, σ1,6] (19)

The output function h returns a subset of the states x̂:

ỹ = h(x̂) = [FR,1 . . . FR,6, TR,1 . . . TR,6, A1,6, v1,6] (20)

The block diagram of the used MHE structure is shown in
Fig. 3. The entire MHE algorithm can be enabled after the

Stand #1 Stand #2 . . . Stand #6

MHE

u6_

x5_x2_x1_x0_

u1_ u2_

x6_

zMHE
*_

y~_

u1...6_

Fig. 3. Overview of MHE structure combined with model
outputs xi, measurement values ỹ, and its estimated
output z∗MHE

bar entered all stands. After that, a measurement value for
the output speed and area are available for correction.

In the problem formulation are following constraints con-
sidered:

1) x̂(j + 1)− f̂(x̂, û) = 0

2) v0,i − vR,i ≤ 0

3) vR,i − v1,i ≤ 0

4) v1,iA1,i − v1,i+1A1,i+1 −A1,i
L0

E

dσ0,i+1

dt
= 0 (21)

The constraint 1) is for the Multiple Shooting to ensure
smoothness of states at the sample time steps. The con-
straints 2) and 3) are for ensuring the material speed
increases through the stands. Constraint 4) implements
the volume flow balance (implicit version of (4)).

The decision variable ω is scaled so that all values are in
the range of approx. 0.1 . . . 10. This provides better numer-
ical accuracy especially with very small/large numbers due
to physical units.

4. PARAMETRIZATION

The general plant parameters are set accordingly to a real
plant under investigation in this project. Parameters like
roll properties, geometric bounds, and material properties
are extracted from the plant configuration logs.

4.1 Scenario preparation

The plant data acquisition system provides an insight in
many plant-wide states such as e.g. motor torque, speed,
roll force. Additionally, there is a high precision online
measurement for the speed and shape located after the
last stand. In front of the first stand is a rough area
measurement located. The different data sources are time-
aligned to get a common dataset. After that, a simulation
(Schäfer et al. (2019)) of the roll process is executed to
get an approximated overview of the expected outputs
of each stand. In particular the geometric behavior is
important during that stage. This result is fed into a static
optimization of the tensions in between the stands. The
dataset is augmented by these values and provides the
initial set for the used scenarios. During these steps it is
known that various uncertainties and errors are included
into the dataset.

4.2 MHE Parameters

The simulation is calculated with a sample rate of Ts =
0.001 s. The MHE has a slower sample time of TMHE =
0.1 s. This value was increased to lower the computa-
tional load and addresses the reduced update rate of some
measurement values. The estimation horizon was set to
NMHE = 30 steps. The weighting matrices for the cost
function (16) are scaled identity matrices (Note: the ex-
pression (0.1)n,TR

indicates n times the weight of state
TR).

The measurements are weighted with:

Q = diag([(0.01)n,TR
, (0.1)n,FR

, 2v0,1 , 5A0,1
]) (22)

The input weighting:

R = diag([1v0,1 , 2A0,1
, (1)n,kfm

, (0.1)n,ϕ, (1)n,σ0
, 0.1σ1,6

])
(23)
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The arrival cost is implemented as a fixed weighting:

S = diag([(1)n,v1 , (0.01)n,TR
, (0.1)n,FR

, (10)n,A1
]) (24)

The process noise uses following values for all stands:

D = diag([(1)n,v1 , (0.0025)n,TR
, (0.04)n,FR

, (1)n,A1 ])
(25)

In fact of the scaling in the NLP formulation, the weights
can be adjusted as relative values independent of the mag-
nitude of the actual variable. This leads to an increased
comparability between the values and their influence in
the overall cost function.

In summary, the measured area and velocity get a higher
significance, because they yield direct insight into the
flow rate. Whereas the torque is more uncertain because
of some measurement noise as well as unknown friction
coefficients.

For all decision variables ω a state constraint could be set.
Here, the states and inputs are limited to process relevant
ranges, whereas the noise parameters kept unconstrained
(Table 1).

Table 1. Decision variable constraints

Value Unit lower limit upper limit

v1,i [m/s] 1 15
TR,i [Nm] −50000 50000
FR,i [kN ] 0 400

A1,i

[
mm2

]
1 2000

v0,1 [m/s] 1 10

A0,1

[
mm2

]
1 2000

kfm,i [N/mm2] 1 300
ϕi [1] eps 1
σ0,i [N/mm2] −200 200
σ1,6 [N/mm2] −200 200

w [1] -inf inf

5. SIMULATION RESULTS

For the simulation the MATLAB/Simulink implementa-
tion of the six stand roll model described in Schäfer et al.
(2019) is used. It uses also the inputs from the plant data
acquisition. The simulation stability is achieved by using
a tension PI-controller. Under the condition that model
errors are inevitable, the controller adapts κ (indirect out-
put speed v1,i) to bring stability with the given boundaries
and minimizes the tension.

In Fig. 4 the input/output areas are shown. The output
estimation follows the measurement very precisely. The
assumed input area has some deviations, that the input un-
certainty of the MHE accounts for. The nominal simulated
output area diverges from the measurement by approx.
8 %.

The related material velocities are shown in Fig. 5. Here
is also a close match between the measurements and
the output estimation. The simulation leads also to a
mismatch of approx. 8 %. This coincides with the results
of the area above. The simulation itself is stable, so
that a mismatch to a constant flow rate is automatically
compensated for, but to different absolute values. The
initial delay between estimation result and measurements
at t ≈ 20 s is the time the MHE buffer has to fill, before a
calculation is performed.

0 20 40 60 80 100 120 140

700

800

900

1000

1100

1200

300

400

500

600

700

800

Fig. 4. Estimated and measured input area (blue) together
with measured, simulated, and estimated output area
(red, cyan)
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Fig. 5. Estimated and measured input velocity (blue)
together with measured, simulated, and estimated
output velocity (red, cyan)

Not only the flow rate, but also roll forces and torques
are relevant in the entire MHE optimization. The Tables
2 and 3 show the average roll torque and force between
estimation and measured values for each stand. The MHE
model includes also a noise component for each state,
which indicates how accurate the model description with
the given parameters is.

Table 2. Roll Torque deviation (Average)

Stand #1 #2 #3 #4 #5 #6

TR,meas [Nm] 1579 6547 7010 7848 1642 385

TR,est [Nm] 1708 6577 7256 8043 1605 301

TR,noise [Nm] -805 -401 -1192 -608 351 507

ErrorEst [%] 8.22 0.45 3.51 2.49 -2.22 -21.88

Table 3. Roll Force deviation (Average)

Stand #1 #2 #3 #4 #5 #6

FR,meas [kN] 119 145 64 111 86 54

FR,est [kN] 124 143 64 106 77 51

FR,noise [kN] -15 1 -1 12 20 7

Error [%] 4.27 -1.37 -0.57 -4.61 -9.68 -5.01

The deviation of force and torque indicates that some
modeling errors exist. Especially the first and last stand
have bigger differences between estimation and measured
values in the roll torque. The noise influence is also
higher in the roll torque, which indicates some unmodeled
behavior in these stands.
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6. CONCLUSION

In this work we presented an application of a Moving
Horizon Estimator (MHE) for solving the flow rate esti-
mation in a hot rolling finishing mill. We obtained the
results by using plant measurements and applied the algo-
rithm offline in our simulation. The results showed a error
minimization of the model states to the measurements of
material area and velocity as well their influence in roll
torque and force. The MHE refines the simulation model
output and decreases the model mismatch with online
data. Based on these boundary conditions it provides also
insight into the non-measurable interstand values such as
area and velocity.

A next step is to find a maximum acceptable computation
time to enable the algorithms on a real-time device.
With that, an online estimation during the real process
is possible and delivers valuable insights. The future work
contains also the verification on additional materials and
plant setups.
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