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Minimax Adaptive Control for State Matrix with Unknown Sign
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Abstract: For linear time-invariant systems having a state matrix with uncertain sign, we
formulate and solve a minimax adaptive control problem as a zero sum dynamic game. Explicit
expressions for the optimal value function and the optimal control law are given in terms of
a Riccati equation. The optimal control law is adaptive in the sense that past data is used to
estimate the uncertain sign for prediction of future dynamics. Once the sign has been estimated,
the controller behaves like standard H., optimal state feedback.
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1. INTRODUCTION

The history of adaptive control dates back at least to
aircraft autopilot development in the 1950s. Following the
landmark paper Astrom and Wittenmark [1973], a surge
of research activity during the 1970s derived conditions for
convergence, stability, robustness and performance under
various assumptions. For example, Ljung [1977] analysed
adaptive algorithms using averaging, Goodwin et al. [1981]
derived an algorithm that gives mean square stability with
probability one, while Guo [1995] analyzed the optimal
asymptotic rate of convergence. On the other hand, condi-
tions that may cause instability were studied in Egardt
[1979], Toannou and Kokotovic [1984] and Rohrs et al.
[1985]. Altogether, the subject has a rich history docu-
mented in numerous textbooks, such as Astréom and Wit-
tenmark [2013], Goodwin and Sin [2014], Sastry and Bod-
son [2011] and Astolfi et al. [2007]. In this paper, the focus
is on worst-case models for disturbances and uncertain
parameters, as discussed in Cusumano and Poolla [1988],
Sun and Ioannou [1987], Megretski and Rantzer [2003].
The “minimax adaptive” paradigm was introduced for
linear systems in Didinsky and Basar [1994] and nonlinear
systems in Pan and Basar [1998].

The outline of the paper is as follows: Sections 2 introduces
notation. Section 3 states the problem and reformulates
it as a zero sum dynamic game on standard form. The
main results are presented in section 4 together with
an example. Proofs are given in section 5, followed by
concluding remarks in section 6.

* The author is a member of the excellence center ELLIIT. Finan-
cial support was obtained from the Swedish Research Council and
the European Research Council (ERC) Advanced Grant No.834142
(ScalableControl). The work was also partially supported by the Wal-
lenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

Copyright lies with the authors

2. NOTATION

The set of n x m matrices with real coefficients is denoted
R™ ™ The transpose of a matrix A is denoted A'. For a
symmetric matrix A € R" ™ we write A > 0 to say that
A is positive definite, while A > 0 means positive semi-
definite. For A, B € R™*™ the expression (A, B) denotes
the trace of ATB. Given z € R” and A € R™ ", the
notation |z|%4 means " Az. Similarly, given B € R™*"
and A € R"™*" the trace of BT AB is denoted || B||%. For
y € R, define sat(y) tobe 1 if y > 1, =1 if y < —1 and
otherwise equal to .

3. MINIMAX ADAPTIVE CONTROL

This paper is devoted to the following problem:

Let @ € R™ "™ and R € R™*™ be positive definite matrices
and let B € R™*™, Given A € R"*", and a number v > 0,
find, if possible, a control law u that for every initial state
o attains the infimum
N

inf sup > (|24ld + [uelf — 7 wil?) (1)

How,i, N —0
where ¢ € {—1,1}, wy € R", N > 0 and the sequences z
and u are generated according to

t>0 (2)
..,ut_l). (3)

The problem can be viewed as a dynamic game, where the
p-player tries to minimize the cost, while the (w,7)-player
tries to maximize it. If it wasn’t for the parameter ¢, this
would be the standard game formulation of H., optimal
control Basar and Bernhard [1995]. In our formulation,
the maximizing player can choose not only w, but also the
parameter i. This parameter is unknown, but constant,
so an optimal feedback law tends to “learn” the value
of i in the beginning, in order to exploit this knowledge
later. Such nonlinear adaptive controllers can stabilize and
optimize the behavior also when no linear controller can
simultaneously stabilize (2) for both i =1 and i = —1.

Ti41 = ZA.’Et + But + wy

Uy = ,LLt(.fQ, .oy Ty UQ, -



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

To accommodate the uncertainty in ¢ when deciding wu,
it is sufficient for the controller to consider historical data
collected in the matrix

7, — - BUT — Tr41 BUT — Tr+1 '

t — Z Ty Ty )
7=0

since this gives || [ iA]" HQZt = S0 w, 2.

(4)

In fact, our problem can be reformulated as follows:

Given @ > 0,R > 0, v > 0 and a system

Tt41 = UVt

Zvor = 7+ { ©)

But—vt But—vtT 70 =0
x4 Zy ) 0o=Y

find, if possible, a control law
Uy = ﬂ(xt, Zt)
that attains the infimum

N
infil,ljg [Z (\xt% + |uelz) —° miin | 11 iA]T ||2N+11
(7)

t=0
when z,u, Z are generated from v and z( using (5)-(6).

(6)

In this formulation, the unknown sign 7 does not appear
in the dynamics, only in the penalty of the final state. As
a consequence, no past states are needed in the control
law (6), only the state (x4, Z;). In fact, the problem is a
standard zero-sum dynamic game Basar and Olsder [1999],
which can be addressed by dynamic programming. Hence
we define the Bellman operator V +— FV by

FV(x,Z):=

-
. 9 9 Bu—v| |Bu—wv
rrgnmgx{x|Q+|uR+V<v,Z+{ . ][ . ])}

and conclude this section by stating the following:

Theorem 1. Given A, B,Q, R, define the operator F as
above and Vj, V7, V5 ... according to the iteration

Vo, 2) = =" min || [I i4]" |I3 (8)

V]H_l(I,Z) :ka(:c, Z) (9)
The expressions (1) and (7) have finite values if and only
if the sequence {Vj(x,0)}32, is upper bounded, in which
case the limit Vi := limy_,oo Vi exists and Vi(zo,0) is
equal to the values of (1) and (7). Defining n(x, Z) as the
minimizing value of u in the expression for FV,(x, Z) gives
an optimal n for (7), while the control law p defined by

Mt(x()? sy Lty UQy - - - 7ut71)
t—1 T
_ E BU-,— —Tr41 Bu‘r — Tr41
=0 (xta — |: T :| |: T, (10)

is optimal for (1).

Theorem 2. With notation as in Theorem 1, suppose that
(1) has a finite value and let V, := limg_, V. Then the
Riccati equation

o/ = minmax {[2[3) + [ulf, — %] Az + Bu— ol + o1} (1)
has a solution 0 < P < ~2I and the sequence defined by
Volw, 2) = [alp — 7% min || [T 4] [, (12)
Vie1 (2, Z) = FVi(z, Z). (13)
satisfies Vo < Vi < -+ <limp_yoo Vi = V.

63

4. AN EXPLICIT OPTIMAL CONTROL LAW

The following result, Theorem 3, specifies a minimax
optimal adaptive controller on explicit form for a range
of y-values. It is followed by Theorem 4, which gives a
lower bound on the values of « for which a solution exists.

Theorem 3. Given A € R™ "™ B € R™™ and some
positive definite @ € R"*™ R € R™*™ assume that (11)
has a solution 0 < P < ~2I, with minimizing argument
u = —Kz. Define T := Q + AT(P™! —472I)"'A. and
suppose that T < 21, while

Q+K" [R+B(T"'—~472I) 'B] K

<2T — P +~2AT A (14)
Then (1) has a finite value and the optimal control law

2 t—1 B - TA
up = sat 7" 2zl uT2 Tri1) Ay Kz. (15)
|93t|T—P

Moreover, define the sequence {V;}22, by (12)-(13) and
let Y :=~2[I 0] Z[0 I]". Then
Vi(z,Z2) =Vo(2,2) = -+ =

. 1T .
@lp =9 min | [TiA] |7 HRAY) > [alfp
|7 — *| diag{[, A}THQZ + (A, Y)?|z|;2 p otherwise.
(16)

Theorem 4. With A, B, P,Q, R, T as in Theorem 3, (1) has
no finite value unless 0 < P < %I and T =< ~*I.

Remark 1. The intuition behind the optimal control law in
Theorem 3 is simple: The cases u; = Kx; and uy = —Kxy
describe the situation when historical data collected in the
expression Z:;lo(BuT—xTH)TAa:T is rich enough to make
a reliable estimate about the uncertain parameter i. This
estimate is then used as truth and the corresponding H,
state feedback control law is applied. In the intermediate
case, the historical data does not give a conclusive answer,
so the controller gain is down-scaled accordingly.

Example 1. Consider now the case n = m = @Q = R =
A = B = 1. First of all, Theorem 4 shows that the game
has no finite value unless v > 2.01. On the other hand,
Theorem 3 gives an optimal strategy for the dynamic game
(1) whenever v > 2.1851. Specifically, consider the case
v = 2.1851. Solving the Riccati equation gives P = 1.7308,
which is clearly in the interval [0,~%]. It follows that
T = 3.7150 and condition (14) marginally holds. For larger
v, the margin would be bigger.

An exact expression for the value function V, is now given
by the formula Theorem 3, which shows that

211 %12
Vil x,
212 222

1.732% — 4.77(211 + 299 — 2‘2’12‘)
11.4923,
2

if |219] > 0.422°
3.720% — 4.77(211 + 220) + otherwise

and the optimal control law is

<2'41 Ef—_:%(u‘r - a?-,—+1)x7-> 0.73z;

uy = sat

2
T3
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Fig. 1. Optimal value function plot for Example 1. The
variable z represents information about A. The cost
is maximal for z = 0 (no information). For |z| > 0.42,
the cost is the same as if the value of A was known.

5. THE MAIN PROOFS.

Proof of Theorem 1. First note that V; > 1}, so the
sequence Vy, V1, Vo, ... is monotonically non-decreasing.

For any fixed N > 0, the value of (1) is bounded below by
the expression
N
igfsupz (|xt|%2 + |ue%
Wyt y—0
where ¢ € {—1,1}, w; € R™ and the sequences = and u are
generated according to (2)-(3). The value of (17) grows
monotonically with N and (1) is obtained in the limit. A
change of variables with v; := x;y; and Z; given by (4)
shows that (17) is equal to

N
TS (i + mﬁ;)]
t=0

(18)
where x,Z,u are generated by (5) combined with (3).
Standard dynamic programming shows that the value of
(18) is Vn11(wo,0), where Vi is defined by (8)-(9). This
proves that (1) has a finite value if and only if the sequence
{Vi(z,0)}72, is upper bounded, in which case the limit
Vi := limg_, oo Vi exists and Vi (zo,0) is equal to the value

of (1).

If (7) is finite, then (18) is bounded above by (7), so
also V, := limy_, V} is finite. Conversely, if V, is finite,
we may define n(z,Z) as a minimizing value of w in
the expression for FV,(z,Z). Then define the sequence
Wo, W1, Wy, ... recursively by Wy =V and

Wi (v, 2) = max{ b + b, )P

w <v’ 7o {Bn(x, Z) - v] [Bn(% Z) - u} T) }

T €T

=7 |wel?) (17)

inf sup | —% min H [l A
R ?

By dynamic programming,
WN (.Z‘, 0)

)

N
= Slllp l_vz rniin H [I iA]T HQZN+1+Z (|-Tt|?Q + |Ut‘%g)
v t=0

where x,Z,u are generated by (5) combined with (6).
Hence (7) is bounded above by limy_ oo Wi(zg,0). The
definitions of Vj;, and W), give by induction V, > Wy >V},
for all k, so limg_,oo Wy = V. This proves that the value
of (7) equals Vi (x0,0) and 7 is a minimizing argument.

m;ixmuin Z 0; {|x|?Q + |u|% + |iAz + Bul% —

Proof of Theorem 2. Suppose that (1) has a finite
value. By Theorem 1, this implies that the sequence
{Vi(z,0)}72, defined by (8)-(9) is upper bounded. Define

Vi@, 2) = |eld, — 2| A7
Vi (2, 2) = |zl5, 2L -4,

where Py = 0 and Py is given by the Riccati recursion
|x|§3k+1 = minmax {|ac|% + |u|% — v?|Az 4+ Bu —v|* + |vﬁ;k} .
Then Vi(z, Z) > max{V,"(z, 2),V, (v, 2Z)} for all k. This
is trivial for £ = 0 and follows by induction for £ > 0,
since .7-'Vk++1 = V,:r and FV, ., = V;~. In the limit, it
follows that the limit P = limy_, o P exists and
V.(z, 2) > Volz. 2).
Repeated application of F gives V, = limy_,o Vj.

(19)

Before proving Theorem 3 and Theorem 4, consider first
a more limited problem:
min r{naX {|x|Q + |ulf + [iAz 4+ Bulg — 2(iA,Y)}
u e

where Y is an arbitrary matrix parameter. In other words:
The problem is to find a control signal v to minimize a
worst case quadratic cost for +£A, with Y representing
prior knowledge. The solution is given by the following
lemma:

Lemma 5. Given A, B, P,Q, R, S, suppose that

|2|p = min {|z[5 + [ulk + [Az + Bul$},  (20)
where the minimizing v is given by u = — Kz with
=(R+B'SB)"'BTSA. (21)

Put T:= Q + ATSA. Then
min max {|x|Q + |ulp + [iAz 4+ Bulg — 2(iA,Y)}

u e{

_ =% +2|<A,Y>| if (A, Y)] > |zfF_p
|23 + (A, Y)2|z|:% p  otherwise

= max {|217 = 0?[2|7_p +20(A,Y)}

and the minimizing value of u is

i = sat < <A2’Y> ) Kz

lz|7_p

Proof. The definition of K gives
B'SA=(R+ B'SB)K
Multiplication by K T from the left, and application of the
identity
P=Q+K"RK +(A— BK)"S(A - BK)
gives
K'B'SA=ATSBK=K"(R+B'SB)K =T — P.

The minimax theorem for convex-concave functions gives

min max {|£U|2? + |ul% + [iAz + Bul§ — 2(iA,Y)}

u ie{-1,1}

2(iA,Y)}
ie{-1,1}

where § € [-1,1], 6_; = (1+6)/2 and 6; = (1 —0)/2.

If (A,Y) > |z|3_p, the maximum over § is attained by

6 =1 and the value is |z|% + 2(A4,Y). On the other hand,
if (A,Y) < —|z|2_p, the maximum is given by § = —1 and
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the value is |z|% — 2(A,Y). Finally, if [(4,Y)| < |z|%_p, We will now show that the maximum over ©,60,v is
the optimal value of @ is in the interior of the interval —bounded above by Vi(z,Z). Let X := (It — y72I)7!

(—=1,1) and determined by and consider first the case © = 0:
. N T
Az = Bul} +2(4,Y) = |Av + Bul} —2(4,) max{mgwo,o (7 [YOT g} e [P [P )}
(A,Y)=x2"ATSBu h A IR
:0$TATSBKIL' :mfx{‘ﬁ|R+|”|T7'Y ‘Bﬁ*'[}‘ - |A$‘ }
= 0|z|z_p. =lal} +|Balk — Azl
This gives u = |z[;> p(A,Y) K and the value =2’ |-°ATA+ KT (R+ BT XB)K sat ( 17;“ )}
2 2 2
Zei{|x|Q+|“|R+\Aim+3“|s_2<‘4ivy>} <zl |—42ATA+ QT - P—Q++2AT A) sat( )]
= |2[g + lulf, + [zl + | Bul$ < Jafb_q +2(A,Y)]
= ol + 1 Ax + 0Kl 7 < (02 [ ]) -
= |27 + 0?27 p
= |z% + (A, Y)?)2|:2 5. Next consider © = 1:
~ N T
Equipped with Lemma 5, we are now ready to prove the max {Iﬂﬁ + Wi <v772 YOT }0/ + [Bu; U] [Bua: v] )}
main results: wlel<

= max max {|11\?3 + [v|% — ~%|0A + Bi — v|* — 2(0A, Y}}
Proof of Theorem 3. Putting S := (P71 —~72I)~! and v

eliminating v from the definition of P gives (20) and (21). = max {lal% + 104+ Bafg —2(04,Y) }
We will first prove the expression (16) for V;. With . 0y
2o Y :V1< Sl >—m|g
Z = |:/72YT Zxx :| s

Notice that Weg ¢ is linear in ©. Maximization over v and 6
we have gives an expression that is convex in ©. Hence, any bound
- 2 9 Ty .2 that holds for © = 0 and ©® = 1 must_be valid for all
Vi(z, Z) + v trace(Zyy) + 7 trace(AZ,, A ') — |z[5 . © € [0, 1]. Subtracting 'yQH diag{I,A}THQZ from all terms

— inf sup {u|2R W (v, 42 [YOT 3(: n [Bu - v] {Bu - v] ) } gives the desired inequality

T x

N N T
. Bu — Bu —
= minmax {|u} + [ofp — 1%]idz + Bu—vf’ ~ 2(i4,Y)} ma {mg + 142+ Wo.o <v,Z+ e P > }
= minmax {|ul} + [iAz + Bulg — 2(iA,Y)} . <Vi(z, 2) (23)
Hence Lemma 5 gives and the proof that F Vi = Vi is complete. It follows
trivially that Vi = V4 for k£ > 1 and 4 defines the optimal
Vi(z, 2) control law.

2 2 . 1T 2 . 2
z[p = n H [1iA] |, i [(A,Y)| > |zl7_p Proof of Theorem 4. Inserting the bound (19) into the
]2 — 2” dlag{l AT HZ F(A,Y)? |I|T » otherwise, right hand side of the Bellman equation gives

which is the desired expression for V. Vi(z, Z) — |:zc|z2
_ - > Fl(x, Z) — |z|?
The next step will be to prove that FV; < V; (which ~ 0@ 2) ~ lelg -
implies FV; = V7). Define = min max {\uﬁ{ + [v|% — ~2JiAz + Bu — v|? — 72” [I iA] HZ}
Wos(s.2) = g {4 5= 1 34] T}
. 2
= [z} — O3 _p + 20(A,Y) —?| diag{I, A}T|[},. = lali_q —?[|dias{r, 4}
and notice that Lemma 5 also gives where the second inequality follows from Lemma 5. Insert-
. . 2
Vi(z,7) = max WO o(2, 7). ing the new bound Vi(z, Z) > |z|3 — 42| diag{I, A} ||,

02<O< into the Bellman equation in the same way gives

Let @ be defined by (22) and note that FVi(z,Z) is Vi(x,0)

bounded above by > min max {|$|Zg + \uﬁ,—i + |U‘2T . 72|Bu . U‘Q . 72|Ax|2}
u v,1

-
Bu Bu —
max {|x|Q + i)+ We e (v Z + [ . ] [ ux U} )} The last inequality shows that T < 21, so the proof is
complete.
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6. CONCLUDING REMARKS

In this paper, we have formulated a control problem for
uncertain linear systems as a zero-sum dynamic game. The
solution is remarkable for two reasons:

(1) The dynamic programming formulation has an ex-
plicit solution in terms of a Riccati equation.

(2) The resulting optimal controller is adaptive: It re-
duces the aggressiveness of the controller until until
enough data has been collected to get a parameter
estimate that can be confidently trusted.

The results are likely to be extendable to many other
uncertainty structures. The case of uncertain input matrix
B will be particularly important, since the controller then
needs to make active exploration in order to collect enough
data for the exploitation phase.
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