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Abstract: As recognized in psychological research, there is often a difference between an
agent’s expressed opinion and private opinion (or belief). This occurs for different reasons,
such as political correctness or peer pressure. The opinion expressed by an agent is the result of
pressure to follow the (average) opinions expressed by the group to which the agent belongs, or
to follow group norms. The agent’s private opinion is unknown to others, but evolved under the
influence of other agents’ expressed opinions. This paper proposes an opinion formation model
based on the theory of bounded confidence, and studies the dynamic process of expressed and
private opinions in time-varying networks. At the same time, the self-persuasion effect of agents
in the dissonance between expressed and private opinions is considered. Here, group pressure
establishes the motive force from private opinion to expressed opinion, while self-persuasion
establishes the reverse connection. We find that group pressure can effectively reduce the gap
of opinions between the group, but does not always promote consensus. Furthermore, the self-
persuasion effect of agents can ensure the realization of group consensus.

Keywords: opinion dynamics, Hegselmann-Krause model, social network, self-persuasion,
multi-agent systems.

1. INTRODUCTION

In recent years, the study of opinion formation and
its dynamic evolution in a network has become a typi-
cal problem in social network analysis (Anderson et al.
(2019); Noorazar et al. (2019); Etesami et al. (2015)). As
a classic consensus problem in a multi-agent system, indi-
viduals can only communicate based on the limited infor-
mation obtained from neighbors depicted by the network.
Although the description of collective behavior involving
psychosocial and individual emotions is a well-known chal-
lenge, a variety of agent-based opinion dynamics models
have been studied.

According to the opinion value held by agents, opinion
dynamic models can be divided into discrete and con-
tinuous models. For discrete models, we tend to express
the pros and cons by using binary values. Famous ex-
amples include the voter model (Holley et al. (1975)),
Sznajd model (Sznajd et al. (2000)), and majority-rule
model (Galam (2002)). In more cases, opinions are de-
scribed by continuous values to indicate attitudes within
a range. In the case of continuous value, the early DeGroot
model (DeGroot (1974)) and Friedkin model (Friedkin
et al. (1990)) based on fixed network topologies are typ-
ical. In particular, time-varying network topology models
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based on the bounded confidence mechanism proposed by
Hegselmann-Krause(HK) (Hegselmann et al. (2002)) and
Deffuant-Weisbuch (Deffuant et al. (2000)) respectively
have aroused considerable research interest. In the HK
model, each agent communicates only with neighbors who
share similar opinions within a given threshold to capture
trends of sociological homogeneity.

In most existing opinion dynamics (including the above),
the main assumption is that each agent has a single opinion
on a given issue. However, in many cases, such as when
a candidate is trying to attract the attention of voters,
the expressed opinion of an agent may differ from its
inner belief. As is recognized in the study of psychology,
a discrepancy often exists between the expressed and pri-
vate opinion (or belief) of an individual. This occurs for
different reasons, such as political correctness or group
pressure. For example, psychologist Asch’s famous confor-
mity experiment (Asch et al. (1951)), which inspired many
researchers including Ye et al (Ye et al. (2019); Huang et al.
(2014); Francisco et al. (2019); Shang (2019)). The agent’s
expressed opinion is the result of pressure to follow the
average opinions expressed by the group to which the agent
belongs, or to follow group norms. The private opinion of
an agent is unknown to others, but evolved as a function
under the influence of other agents’ expressed opinions.

Although researchers have developed many models to
describe the dissonance between expressed and private
opinions caused by group pressure, current research lacks
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follow-up attention to this dissonance behavior. Models
often assume that agents completely ignore the influence
of this dissonant factor when updating private opinions.
Therefore, these models based on group pressure cannot
guarantee group consensus, which in many cases does not
match consensus phenomena in real society. As a response
mechanism to dissonance behavior, self-persuasion theory
has a long history in social psychology, but its mathemat-
ical study in opinion dynamics is novel. Self-persuasion is
an intermediate process in which an individual’s external
behavior causes an internal state change (Zimbardo et al.
(1991)), often occurring when people reflect on a topic and
change their attitudes (Petty et al. (2003)). In traditional
media messages, self-persuasion has shown to be more
effective than direct persuasion to change health-related
cognition and behavior (Loman et al. (2018); Krischler
et al. (2015); Damen et al. (2015)). In this form, self-
persuasion effects also have been found in social media
(Pingree (2007); Valkenburg et al. (2016); Greenberg et al.
(2018)).

In this paper, we explore a new line of thought in opinion
dynamics and consider the influence of group pressure
and self-persuasion on opinion formation. Therefore, we
propose a modified HK model, in which each agent in
the network have both expressed and private opinions
on a given topic. Under social influences, the agent’s
private opinion evolves from those opinions expressed by
its neighbors, and agent’s expressed opinion is affected
by group pressure, showing the tendency to adopt public
opinion. At the same time, the response mechanism to
the dissonance between expressed and private opinions is
considered by self-persuasion theory. Different from the
fixed network topology adopted by Ye et al., we study
the opinion evolution in a time-varying network topology
based on the bounded confidence theory. We find that
group pressure does not always promote group consensus,
while self-persuasion theory is the perfect patch to ensure
consensus.

The paper is organized as follows: in sections 2, some
preliminaries are presented and we formulate our problem.
In section 3, main results and proofs are presented. Section
4 includes numerical simulations to further verify our
conclusion. Finally, in the section of concluding remarks,
we give a summary of results of this paper and possible
directions of future work.

2. PRELIMINARIES AND PROBLEM FORMATION

2.1 Graph Theory

Some basic concepts and notations of graph theory will be
introduced. (1).Graph is a mathematical model of network,
here we mainly discuss directed graphs. For a direct graph
G = (V, E) with nodes set V = {1, 2, · · · , n} and edge set
E which is defined that (i, j) ∈ E is an edge from node
i to node j. (2).Root, in a direct graph G, if there exist
a path from i to j for any node j ∈ V, we say i is a
root of G. Furthermore, if the length of the path from i
to j is 1 for every node j, we say G is strongly rooted at
node i, thus node i is a neighbor of every other node in G.
(3).Composition, consider G1 and G2 are directed graphs
with the same node set, define formula G1 ◦ G2 as the

composition of G1 and G2 with the following property: the
directed edge (i, j) exists if and only if we can find another
node k to make sure that edge (i, k) and (k, j) respectively
belong to G1 and G2.

2.2 Review of Hegselmann-Krause (HK) model

Consider a group of n agents as N = {1, 2, · · · , n},
and for each agent i ∈ N , his/her opinion at time t
is represented by yi(t) ∈ [0, 1]. Denote agents’ bounded
confidence set as ε = {ε1, ε2, · · · , εn} , each agent i only
interacts with near neighbors whose opinions differ from
his own not more than the certain confidence interval εi.
The basic assumption of the discrete time HK model is
that, all agents’ opinions simultaneously update at each
time. Hence model can be described by Eq. (1)

yi(t+ 1) = |I(i, y(t))|−1
∑
j∈I

yj(t) (1)

where I(i, y) = {1 ≤ j ≤ n | |yi − yj | ≤ εi} is agent i’s
neighbor set and |I(i, y)| is the cardinality of I(i, y).
Eq. (1) indicates that each agent in the group updates
it’s opinion by considering all the neighboring agents’
opinions with weight factor |I(i, y)|−1, and always be a
self-neighbor.

2.3 Group Pressure and Self-Persuasion

In the classical HK model, each agent only has a single
opinion in the group. However, group pressure leads to
conformity behavior, which has been investigated in social
psychology, resulting in the dissonance between agent’s ex-
pressed and private opinions. As shown in Fig. 1, expressed
opinion is evolved from private opinion, and a dissonance
often exists between them. Here, we try to consider, does
an agent’s expressed opinion have a negative impact on
its private opinion? Self-persuasion theory provides us
with a new perspective. Self-persuasion differs from other
forms of persuasion because the means of influence are
self-generated instead of externally provided (Brinol et al.
(2012)). Research has shown that information that is gen-
erated by oneself is perceived as more accurate and trust-
worthy and therefore more persuasive than information
generated by an external source (Hoch et al. (1989); Levin
et al. (1988)). Expressing a position publicly can change
subsequent behavior through the principle of commitment
and consistency (Cialdini (2009)). Specifically, when an
individual expresses a position publicly, he/she will change
subsequent behaviors and attitudes to be in accordance
with the expression.

Fig. 1. Effect of group pressure and self-persuasion.

As summarized in Fig. 1, group pressure establishes the
relevance from private opinion to expressed opinion, while
self-persuasion establishes the backward connection.
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2.4 Our Modified Hegselmann-Krause (M-HK) model

For a population of n agents, defining V = {1, 2, · · · , n},
let yi(t) and ŷi(t), i ∈ V , represent agent i′s private and
expressed opinions at time t = 0, 1, · · · ,∞. The opinions
are scaled to be yi(t), ŷi(t) ∈ [0, 1]. Here, we regard yi as
agent’s inner true opinion, and ŷi as opinion open to the
public under group pressure. Because of the information
asymmetry, for each agent i ∈ V , only the expressed
opinions of others ŷj(t), j ∈ V, j 6= i can be observed.
In general, yi(t) and ŷi(t) are not equal, and we assume
that yi(0) = ŷi(0), i ∈ V at the initial moment.

Now, we will present the dynamics process of our mod-
ified model which describes the evolution of an agent’s
expressed and private opinions under group pressure and
self-persuasion.

• At each step, agent i first expresses an opinion ŷi(t),
then observes others’ expressed opinions, ŷj(t), j 6= i.
• Agent i updates his/her private opinion yi(t+1) based

on the bounded confidence and self-persuasion.
• Agent i updates his/her expressed opinion ŷi(t + 1)

under conformity pressure.

Therefore, our M-HK model is described by Eq. (2) and
Eq. (3).

yi(t+1) =
1− αi

1 + |Ni(t)|

yi(t) +
∑

j∈Ni(t)

ŷj(t)

+αiŷi(t) (2)

and determines his/her expressed opinion according to

ŷi(t+ 1) = (1− pi)yi(t+ 1) + piŷavg(t) (3)

where Ni(t) = {1 ≤ j ≤ n, j 6= i| |yi(t)− ŷj(t)| ≤ εi} rep-
resents the set of i′s communicating neighbors at time t,
the constant εi ∈ (0, 1] is the confidence interval of agent
i, and |Ni(t)| is the cardinality counting of Ni(t). The
value ŷavg(t) = 1

n

∑n
j=1 ŷj(t) represents the group public

opinion. Here we have constant αi ∈ (0, 1] and pi ∈ (0, 1]
to describe the level of self-persuasion and group pressure,
respectively. Noteworthy, if αi = 0 and pi = 0, the model
will revert directly to the classic HK model.

Fig. 2. Evolution of private and expressed opinions.

In the classic HK model, the convergence of opinions will
be strongly affected by agents’ confidence intervals, and

relatively small confidence intervals can produce separate
clusters. Here, in our M-HK model (2), both private and
expressed opinions can reach a consensus regardless of vari-
ation in confidence interval. The formation of an agent’s
final private and expressed opinions will be influenced by
group pressure and self-persuasion.

3. PROOF OF CONSENSUS ON M-HK MODEL

Theorem 1. In M-HK Model, suppose αi ∈ (0, 1) and pi ∈
(0, 1), for all i ∈ N , then the consensus of private opinion
y(t) and expressed opinion ŷ(t) both can be reached in
finite time T ∗1 , and we have y(t) = ŷ(t), for t > T ∗1 .

We will start with several related definitions and proposi-
tions.

Definition 1. Coefficient of Ergodicity (Sneta (2006)): For
a stochastic matrix M = {mij}, define its coefficient of
ergodicity as ρ(M) = 1−mini,j

∑
min {mik,mjk}.

Proposition 1. (see Sneta (2006)) For any stochastic ma-
tricesM1 andM2, it follows that ρ(M1M2) ≤ ρ(M1)ρ(M2).

Definition 2. Scrambling matrix (Shen (2000)): For any
non-negative n order matrix M , if there exists k ∈
{1, 2, · · · , n} such that for arbitrary i and j with i, j ∈
{1, 2, · · · , n}, i 6= j, mik and mjk are both positive, then
we call M a scrambling matrix.

Furthermore, the scrambling matrix has the following
property.

Lemma 1. Let M = {Mi} , i = 1, 2, · · · be a compact set
of scrambling stochastic. Then for each infinite sequence
Mi1 ,Mi1 , · · · there exist a row vector c such that

lim
j→∞

MijMij−1
· · ·Mi1 = 1c (4)

Proof . First we indicate that for any stochastic matrix
A and a row vector c, we have A(1c) = 1c because
of the fact that A1 = 1. For any M ∈ M, we have
minij

∑n
k=1min {mik,mjk} > 0 because matrix M is

scrambling. So 0 ≤ ρ(M) < 1 for any scrambling matrix
M . With the property in Proposition 1, for any stochastic
matrices M1 and M2, we have ρ(M1M2) ≤ ρ(M1)ρ(M2),
hence

ρ(MijMij−1 · · ·Mi1) ≤ ρ(Mij )ρ(Mij−1) · · · ρ(Mi1)

Thus, as j → ∞, we have ρ(MijMij−1 · · ·Mi1) → 0
because of 0 ≤ ρ(M) < 1, which implies that the element-
wise difference between any pair of rows in the product
MijMij−1

· · ·Mi1 approaches 0. Then Eq. (4) holds.

To study the dynamic behavior of M-HK model, we can
rebuild the communication relationships associated with
our Model by using a directed graph G = (V, E). The

system state can be described as y = [y1, y2, · · · , yn]
>

,

ŷ = [ŷ1, ŷ2, · · · , ŷn]
>

. In order to describe the model
formula in spatial form, we define W as the influence
matrix, wij is the ij-element of the nonnegative influence
matrix W , connoting the influence weight agent i assigns
the opinion value of agent j. So the opinion formation
process described by Eq. (2) and Eq.(3), is captured, for
t = 0, 1, · · · ,∞, by the discrete-time system (5).[

y(t+ 1)
ŷ(t+ 1)

]
=

[
W t

11 W
t
12

W t
21 W

t
22

] [
y(t)
ŷ(t)

]
(5)
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Here, we build an new interactive network G[W t] that con-
tains 2n nodes V∗ = {1, 2, · · · 2n}. Nodes V∗p = {1, 2, · · ·n}
represent all agents’ private opinions y(t), and V∗e =
{n+ 1, · · · 2n} represent expressed opinions ŷ(t). Set βi =
(1−αi)/(1 + |Ni(t)|), the submatrix W t

11 = diag {βi} and
W t

21 = diag {(1− pi)βi} are both diagonal matrices. W t
22

contains the link from ŷavg(t) to ŷ(t+ 1), having a specific
structure, holding all elements to be positive. The off-
diagonal elements of submatrix W t

12 represent the agents’
communication neighbor sets which is changing over time,
in particular, all the diagonal elements of W t

12 are positive
as αi > 0

W t =



+ +
.. .
0

. . .
0 + +
+ + · · · +

.. .
0 ... +

...
0 + + · · · +


Lemma 2. Suppose that αi(t) > 0 and pi > 0 for all i ∈ N ,
in graph G[W t], for ∀i ∈ V ∗p , node i is a root of node j,
j ∈ V ∗.

Proof . (1). If j ∈ V ∗e , we can always find a path from
i to j in the directed graph G[W t], as i → i + n → j,
for wii, wi+n,i, wj,i+n > 0; (2). If j ∈ V ∗p , we have W t

12
with positive diagonal elements, then we can find a path
from j + n to j, as i → i + n → j + n → j, for
wii, wi+n,i, wj+n,i+n, wj,j+n > 0.

Thus, for ∀i ∈ V ∗p , node i is a root of all the other 2n− 1
nodes.

Theorem 2. In graph G[W t], there exists a positive integer
k, for any time-intervals [tjk , tjk+1

), such that any node i
from set V ∗p is a strong root of every other 2n−1 nodes at
time tjk+1

in the composition of graphs encountered along
[tjk , tjk+1

).

To prove Theorem 2, we need the following definition and
results.

Lemma 3. (Proposition 3 in ( Cao et al. (2008))) suppose
n > 1 and let Gp1,Gp2, · · · ,Gpk be a finite sequence of
rooted graphs in G. If Gp1,Gp2, · · · ,Gpk are all rooted at
v and k ≥ n − 1, then Gpk ◦ Gpk−1 ◦ · · · ◦ Gp1 is strongly
rooted at v.

Proof . From lemma 3, we know that with k ≥ n − 1, the
composition of graphs associated with Gt ◦Gt+1 ◦ · · · ◦Gt+k
is strongly rooted at any node i, for all i ∈ V ∗p , because i is
a root of each Gt, that means there exists a directed edge
from node i to every other node in the composition of the
corresponding graphs. Such that node i is a neighbor of
every other 2n− 1 nodes at time tjk+1

in the composition
of graphs encountered along [tjk , tjk+1

).

Now we can present the consensus result of Theorem 1.

Proof of Theorem 1.

From Theorem 2, there exists a positive integer k ≥ n− 1,
for any time-intervals [tjk , tjk+1

), such that any node i ∈
V ∗p is a neighbor of every other node in the composition of
graphs encountered along [tjk , tjk+1

). So the multiplication

of matrix Ŵ τj = W tjkW tjk+1 · · ·W tjk+1−1 has at least one
positive column, that means Ŵ τj is a scrambling matrix.

Set Y = [y1, · · · , yn, ŷ1, · · · , ŷn]
>

,

Y (tjk) = W tjk−1 · · ·W t0Y (0)

= (W tjk−1 · · ·W tjk−1 ) · · · (W tj1−1 · · ·W t0)Y (0)

= Ŵ τj−1 · · · Ŵ τ0Y (0)
(6)

By the Lemma 1, There is always going to be a row vector
c such that

lim
j→∞

Ŵ τjŴ τj−1 · · · Ŵ τ0 = 1c

Set Yss = cY (0), then we get limj→∞ Y (tjk) = Yss1 .

Since a consensus will be reached for opinion set Y (t) =

[y1, · · · , yn, ŷ1, · · · , ŷn]
>

that contains both private opin-
ions y(t) and expressed opinions ŷ(t). There exists a small-
est T ∗0 such that

|Ymax(T ∗0 )− Ymin(T ∗0 )| ≤ ε
so from Eq. (2) and Eq. (3), the consensus of private
opinion y(t) and expressed opinion ŷ(t) are both reached
after T ∗1 = T ∗0 + 1, and we have y(t) = ŷ(t), for t > T ∗1 .

Here, we can establish a new relationship between the
scrambling matrices and rooted graphs, by consider the
situation where each agent of V ∗p is strong rooted across
some finite-length intervals. Hence, in M-HK model, opin-
ion consensus can be reached in finite time.

4. SIMULATIONS

In this section, we make further investigation about the
role of group pressure p and self-persuasion α through
model simulation, consider a simple network of n=50
agents whose initial private and expressed opinions are
uniform distributed in the space y(0) = ŷ(0) ∈ [0, 1], and
we set εi = ε, αi = α, pi = p, for all i ∈ V , without loss of
generality.

4.1 With Self-Persuasion (α > 0)

As proved in section 3, M-HK model can reach consensus
in finite time if αi ∈ (0, 1) and pi ∈ (0, 1), for all
i ∈ N . Fig. 3 shows the convergence time of our M-HK
model with different group pressure p. It is counterintuitive
that the convergence time and group pressure are not
negatively correlated, which means group pressure does
not always accelerate the convergence rate of M-HK model.
In addition, we find that the convergence time curve shows
common characteristics at different confidence intervals
ε = 0.05, 0.10, 0.15, that is, the curve decreases with
the increase of group pressure p, and then breaks at the
critical point and rises rapidly. The reason for the inflection
point is that, the converge to consistency of M-HK model
is the result of the joint effect of group pressure p and
self-persuasion α. In other words, group pressure cannot
alone guarantee the realization of group consensus without
considering self-persuasion, which will be discussed in the
next subsection.
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Fig. 3. Convergence time of M-HK model with different
group pressure p. The result refers to n = 50, α=0.1,
and ε=0.05, 0.1, 0.15.
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(e) p = 0.5, α=0.1
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(f) p = 0.6, α=0.1

Fig. 4. Time evolution of n = 50 agents with different group
pressure level p.

4.2 Without Self-Persuasion (α = 0)

The time evolution of the n = 50 group with different
pressure level p is shown in Fig. 4. we set ε=0.15, and
the initial profiles y(0) and ŷ(0) are uniformly distributed
in the space [0, 1]. As pressure level p increases, the fi-
nal opinions step from consensus (conformity) to frag-
mentation (plurality). From Fig. 4 (a), an appropriate
pressure level can guarantee the consensus of the group.

However, when the pressure level gradually grows larger,
the marginal agents will split from the group, and the
number of marginal agents thus increases with the pressure
level, see Fig. 4 (b)-(d). Interestingly, the polarization of
the two central clusters can be observed in Fig. 4 (d)
with p=0.6. On the other side, Fig. 4 (e)-(f) shows the
contribution of self-persuasion to the realization of group
consensus. Finally, we find the gap of expressed opinions is
smaller than private opinions in the group from Fig. 4 (b)-
(d), implicating that, in real life, the actual divergence of
group opinions could be much bigger than the apparent
divergence.

Then, with group population n and initial profile y(0)
fixed, we further investigate the role of confidence interval
ε and comformity pressure p of ensuring group consistency.
Under a certain confidence interval ε, as shown in Fig. 5,
we can always find a maximum pressure level pc to
ensure the convergence of the model, and pc increases
monotonically with ε. It indicates that when an individual
has a large confidence interval, the more pressure he/she
can accept in the group without being isolated.
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Fig. 5. The maximum pc with different ε for consensus.

5. CONCLUSION

In this paper, we use the conformity phenomenon caused
by group pressure in social psychology, to build a dynamic
model including private and expressed opinions on the
basis of Hegselmann-Krause opinion dynamics. The dis-
sonance between agent’s private and expressed opinions is
determined by group pressure in social networks. Then,
the self-persuasion theory is introduced as a complement
to the inverse link between private and expressed opin-
ions. Thus, we propose an new modified HK model to
investigate the evolution characteristics of both private
and expressed opinions under the common effect of group
pressure and self-persuasion in time-varying networks. We
find that group pressure can not always guarantee group
consensus, while self-persuasion theory, as a dissonance
response mechanism, provides a perfect patch for the for-
mation of group consensus. In the future, more methods
reflecting complex human behavior can be proposed based
on this model.
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