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Abstract: In upstream Oil and Gas operations a well is drilled following a planned trajectory.
The trajectory is designed to avoid hard formations and other wells while minimizing drilling
time. The uncertainty of the environment, e.g. unknown rock hardness, effects negatively the
efficiency of operation: drilling time increases due to frequent corrective control actions that
must be taken to counteract disturbances and risk increases since process constraints may
be violated. This paper proposes an event-triggered multi-stage model predictive control that
aims at tackling both challenges. The event-triggering strategy tries to minimize the number
of control actions sent to the actuators, while the multi-stage strategy improves constraints
satisfaction despite uncertainties. The method is tested in simulation where unknown changes in
rock hardness are considered. In comparison to a standard model predictive control approach, we
show that using the combined event-triggered and multi-stage approach we improve constraints
satisfaction and decrease the number of control actions.
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1. INTRODUCTION

Drilling is an important stage in upstream Oil and Gas
operations. Extraction efficiency is optimized by designing
a well plan that avoids collision with other wells while
maximizing the contact area with the reservoir. Often this
results in particularly complex well plans. Once a well plan
is designed, usually the trajectory control of the drilling
bit is left to the experience of a directional driller who
manually adjusts surface and down-hole control parame-
ters that try to minimize the deviation of the drilling bit
from the plan and the drilling time. Often manual control
is not efficient and prone to errors. To improve drilling
performance, we propose an automated strategy that uses
Model Predictive Control (MPC) to compute the optimal
input while satisfying process constraints (Rawlings and
Mayne, 2009; Findeisen and Allgöwer, 2002). MPC has
been successfully used for decades in many applications,
firstly in chemical engineering and more recently in auto-
motive and robotics.
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In the present work, a Rotary Steerable Systems (RSS)
is considered. In RSS, the bit trajectory is controlled by
manipulating the forces on the ribs of the steering unit that
push against the rock formation allowing continous steer-
ing (Fig. 2). Control actions are transmitted from surface
to downhole through mud-pulse telemetry (MPT) (Fig. 3).
The MPT system translates the signal (called downlink)
from digital to analog by varying the mud flow which is
continuously pumped into the drilling string. These flow
variations are read and interpreted by a downhole receiver
and then transmitted to the actuators. The MPT also
transmits downhole measurements, e.g. bit inclination and
azimuth, to the surface (uplink) but instead of flow varia-
tions, pressure waves traveling through the mud are used.
The MPT has the advantage of not requiring any expensive
wiring but downlinks have limited band width (only few
bits of data per minute) and slow transmission times (up
to 10 minutes). Since drilling operation is stopped while
sending a downlink, the drilling time, and consequently
the cost of operation, increases linearly with the num-
ber of downlinks. Furthermore, due to disturbances, e.g.
unknown rock formation changes, frequent adjustments
of the control actions are necessary to keep the bit on
track. Hence, a control method that aims at decreasing
the number of downlinks is necessary.
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Fig. 1. Schematic representation of considered problem. The bit is required to follow a predefined well plan. Uncertainties,
e.g. rock hardness, are taken into account in a scenario tree. Each prediction of the scenario reflects a certain
combination of uncertainty realizations. This increases robustness to constraints violation (e.g. distance to active
wells).

To minimize the number of downlinks, we propose an
event-triggered model predictive controller (MPC). In
event-triggered MPC a new control action is computed
not at periodic time instances but only when a certain
condition is met (Heemels et al., 2012; Lucia et al., 2016).
Furthermore, to ensure safety, the controller must satisfy
process constraints e.g. Dog-Leg severity (DLS) and posi-
tion. The DLS indicates the local degree of curvature of
the string. If the DLS exceeds the maximum allowed DLS,
the string could break, causing a major economic loss. Fur-
thermore, a large DLS causes friction that create problems
while drilling and while running the case inside the hole
prior to extraction. Since the interaction between bit and
rock formation is uncertain a robust control approach is
needed. In the present work, we assume that the uncer-
tainties enter the problem formulation as uncertainties on
the system parameters. To deal with this parametric un-
certainty, we use multi-stage MPC (c.f. Lucia et al. (2013);
Maiworm et al. (2015) and references therein). In multi-
stage MPC a scenario tree representing a finite number
of parameter realizations is spanned along the prediction
horizon (Fig. 5). Each realization of a parameter is sam-
pled from an uncertainty distribution representative of the
underlying parametric uncertainty. Consequently, contrary
to nominal MPC, multistage-MPC considers multiple sys-
tem predictions instead of a single one when optimizing
the inputs to the system. This increases the robustness
against constraints violations.

Not many results using MPC for trajectory drilling are
available. In Bayliss et al. (2015) a linear MPC was used
for attitude control subject to delays. In Zhao et al.
(2019) MPC was used to track the well plan trajectory.
This contribution differs from the others mainly because
it considers simultaneously uncertainties and downlink
minimization.

The paper is structured as follows: in Section 2 some
important mathematical definitions are briefly given. In
Section 3 the general model formulation is introduced.
Section 4 describes firstly the multi-stage approach, then
the triggering condition and finally gives some conditions
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Fig. 2. Cross-section of a Rotary Steerable System. (1)
Rock formation, (2) movable ribs, (3) string body, (4)
hydraulics chambers, (5) bore hole, (6) mud chamber.
The oil pressure in each chamber can be controlled
independently. The asymmetry of the contact forces
with the rock formation pushes the bit to the desired
direction.

for recursive feasibility of the proposed MPC approach.
In Section 5 the simulation results are shown, and finally
Section 6 presents some conclusion and remarks.

For brevity for the remaining of the paper we shorten
multi-stage event-triggered MPC to just multi-stage MPC.

2. NOTATION

N is the set of natural numbers. The notation N[a,b] denotes
the set of natural numbers between a and b, and N≥a
the natural numbers greater or equal than a. xl|k denotes
the prediction of x at time l computed at depth k. The
Minkowski sum is defined as A ⊕ B := {a + b|a ∈ A, b ∈
B}. |a|i denotes the i-norm of a while ‖x‖2A denotes the
product xTAx where xT is the transpose of x.
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Fig. 4. Corridor based trigger: when at least one of the
predicted positions lies outside of the corridor, a new
MPC iteration is triggered.

3. MODELLING

The MPC uses a nonlinear discrete-depth model represent-
ing the steering response of the drilling system:

xk+1 = f(xk, uk, dk), (1)

where x is the vector of the system states. u is the
input vector and d is the system parameters vector. These
parameters are uncertain, since they change depending on
the environment and the geometry of the drilling string
(e.g. change in rock formation, bit type, weight on bit).
Any model in the form of (1) can be used (e.g. the the
models used in Zhao et al. (2019); Panchal et al. (2010)).
Since the main goal of this paper is addressing the control
strategy rather than the modelling approach, the detailed
formulation of the model used for simulations is omitted.

4. MODEL PREDICTIVE CONTROL

4.1 Multi-stage MPC

Multi-stage MPC is one of method to deal with parametric
uncertainties and belongs to the class of robust MPC
approaches. Here, only the main idea of multi-stage MPC
is given, for details refer to Lucia et al. (2013). The main
idea is to represent uncertainty as a scenario tree. The tree
starts from the current system state which is known (be-
cause measured or estimated, see Fig. 5). Since the future
parameters values are unknown, the system branches into
more possible directions in the state-space. Each branch

robust horizon

prediction horizon

Fig. 5. Representation of the scenario tree. Each branch
reflects a different uncertainty realization. After the
robust horizon, the tree stops branching.

represents a different realization of the uncertain parame-
ters. To decrease conservativeness, it is assumed that the
value of the states will be available in the future, conse-
quently for each scenario the control action can be adapted
to counteract the uncertainty evolution. Hence, instead of
a single state prediction, a larger number of predictions
are considered, each of these having a different history of
uncertainty realizations. This approach guarantees robust
constraint satisfaction in case the uncertainty takes exactly
the same values of those considered in the scenario tree.
If uncertainties are not considered in the scenario, e.g.
because they do not have discrete values, the method can
give anyhow a good feedback sequence if the scenario tree
is chosen properly.

To build the scenario tree, (1) is re-written as:

xjk+1 = f(x
p(j)
k , ujk, d

r(j)
k ), (2)

where in xjk the lower index k represent the depth-stamp
while the upper index j enumerates the different values
that the variable can take at that depth-stamp (see Fig. 5).
p(j) represent the index of the parent state. For example
in Fig. 5 the parent state of x12 is x11, this means that
p(j) = 1. Same idea applies to r(j).

Each state xjk+1 depends on the parent state x
p(j)
k on the

control input ujk and on the uncertainty realization d
r(j)
k ∈

[d1k, d
2
k, ..., d

s
k]. Each time the scenario tree branches into

other scenarios, more optimization variable are added to
the problem. To maintain the problem solvable online, Lu-
cia et al. (2013) introduced the concept of robust horizon.
The branching is only allowed within the robust horizon.
After that, no further branching is considered. This idea is
based on the assumption that far away uncertainties will
have little influence on the decisions the controller takes
at the current time.

The scenario based MPC can be formulated as
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min
uj
k
,∀(j,k)∈I

Ns∑
i=1

ωi, Ji (3a)

subject to (3b)

xjk+1 = f(x
p(j)
k , ujk, d

r(j)
k ), ∀(j, k) ∈ I, (3c)

xjk ∈ X, ujk ∈ U ∀(j, k) ∈ I, (3d)

ujk = ulk if x
p(j)
k = x

p(l)
k ∀(j, k), (l, k) ∈ I,

(3e)

where Ji is the cost of each scenario, Ns is the number of
scenarios, I is the set of indices (j, k) and ωi are weights
that can represent, for example, the probability of the
i − th scenario. In our case, we assume that all scenarios
are equally likely, hence ωi = 1/(Ns). Equations (3c),(3d)
and (3e) are optimization constraints. The model equation
must always be respected hence we impose (3c). Further-
more, additional constraints can be added with (3d), e.g.
maximum distance to plan. Finally, (3e) represent the non-
anticipativity constraints, these constraints make sure that
inputs and states at each node are equal for each branch
generated from that node. In other words, it avoids that
control actions anticipate the future.

Objective function The cost of each scenario is defined as

Ji =

Np−1∑
k=0

Lp(xik+1) +

Nc−1∑
k=0

Lc(u
i
k) + Vf(xNp

), (4)

∀xjk+1, u
j
k ∈ Si, (5)

where Si is the i − th scenario, Lp, Lc and Vf are weight
functions, Np is the prediction horizon and Nc is the
control horizon.

Equation (4) is written as

Ji =

Np−1∑
k=0

(
‖α(xk)− α̂k‖2Q + ‖DLSk‖2

)
+ (6)

+

Nc−1∑
k=0

(
‖uk+1 − uk‖2R

)
+ ‖α(xNp)− α̂Np‖2E + ‖ε‖2P .

where α(xk) is a function that maps the current model
states to position, inclination and azimuth of the bit and
α̂k is the vector of reference values of the well plan at
length k. DLS is the dog-leg severity and ε is the slack
variable of the soft constraints (c.f. Section 4.1).

Constraints Three sets of nonlinear inequality constraints
are considered: DLS, maximum input and maximum dis-
tance from plan. The DLS is defined as:

DLS =
2

∆s
asin

(√(
sin(

∆azi

2
)

)2

+

(
sin(

∆inc

2
)

)2

β

)
(7a)

β = sin (inck) sin (inck+1), (7b)

where inc and azi are respectively inclination and azimuth
at the bit, s is the drilled length, while ∆(·) , (·)k+1−(·)k.
The normalized input needs to satisfy:

|u|2 ≤ 1. (8)

Finally, maximum distance from plan is implemented as
soft constraint :

c =
√

(π(x)− π̂)2 ≤ rmax + ε (9a)

0 ≤ ε ≤ εmax (9b)

where π(x) is the vector containing north, east and down
coordinates of the bit (function of the model states) and
similarly π̂ is the vector of reference coordinates, defined
as the closest point from the bit on the wellplan. rmax is
the maximum distance and ε is a slack variable that can
take any value between 0 and εmax. Note from (6) and
(9), that as long as the distance from plan is less than
rmax, ε will be chosen as zero, and no extra cost will be
added to the objective function. Nevertheless, the MPC
could decide to violate rmax by choosing 0 < ε ≤ εmax and
consequently paying an extra cost. The distance from plan
is implemented as soft constraint to avoid running into
infeasibility while solving the multi-stage MPC problem.
Notice that the multi-stage approach produces multiple
predictions, therefore the likelihood that one of these
might violate the corridor constraints increases.

4.2 Triggering condition

The maximum distance to plan rmax defines a virtual
corridor around the wellplan. If at least one of the scenarios
predicts that the bit will lie outside the corridor within
a certain prediction horizon, a new MPC iteration is
triggered and new control parameters are downlinked (Fig.
4). If for all scenarios the bit is predicted to be inside
the corridor, no new MPC iteration is necessary, and the
old control parameters are used. Following the notation of
Brunner et al. (2015) we define the triggering condition as

uk = κ(xki
, k − ki), k ∈ N[ki,ki+1−1] (10)

ki+1 = inf{k ∈ N≥ki+1|xjl|k /∈ E(x̂ki
, k − ki), (11)

any l ∈ N[k+1,Nc]} (12)

where the set E is defined as

E(x̂k−ki|ki
, ) = x̂k−ki|ki

⊕R (13)

where

R = {xk ∈ X| xk − x̂k⊥
dx̂k
ds

, |xk − x̂k|2 ≤ rmax}. (14)

Note that dx̂k/ds represents the tangent to the wellplan.
This means that a new MPC will be triggered when any of
the predictions will be outside the set describing a corridor
of radius rmax around the reference trajectory.

4.3 Recursive feasibility

We prove recursive feasibility of MPC by using a common
terminal control invariant region (Maiworm et al., 2015)
adapted for the regulation problem. We assume that the
following assumptions are true:

Assumption 1. The function f(x, u, d), Lp(x), Lc(u) and
Vf(x) are continuous and f(x(s), u(s), d) = x(s), ∀d ∈ D,
Lp(x(s)) = 0, Lc(u(s)) = 0 and Vf(x(s)) = 0 where x(s) is
a space-varying trajectory.

Assumption 2. The set X is closed, U is compact and
x̂k ∈ X ∀k ∈ [0, .., Nc].

Note that the model (2) can be interpreted as a set
of models that differ from each other due to different
parameter realizations:

xjk+1 = f(x
p(j)
k , uik, d

r(j)
k )→ xk+1 = fj(xk, uk). (15)
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Fig. 6. DLS comparison between nominal and multistage MPC. The DLS limit is imposed as hard constraint in (3d).
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multistage MPC.

Assumption 3. Suppose that each model

xk+1 = fj(xk, uk) (16)

has the same terminal control invariant region Ωf for all
j = [1, ..., s] where s is the number of scenarios and Ωf is
defined as

Ωf = {x ∈ X,∃u ∈ U : fj(x, u) ∈ Ωf ∀j ∈ [1, ..., s]}
(17)

Assumptions 1, 2 and 3 are enough to guarantee recursive
feasibility of the multistage MPC if the a new MPC prob-
lem is solved at each sampling time. To extend the results
to an event-based MPC we need a further assumption.
Firstly, it is convenient to linearize the models around the
current state

xk+1 = Ajx+Bju. (18)

Now, let ΩNc
be the set of all initial conditions for

which a solution of the optimal control problem exists.
Furthermore assume Ω0 := Ωf and let

Ω1 = {x ∈ X,∃u ∈ U : fj(x, u) ∈ Ω0 ∀j ∈ [1, ..., s]}
(19)

Ω1 is the set of all states which can be driven to Ωf with
an admissible control.

Assumption 4. We assume that

AjR ⊆ Ωk+1 ∀k ∈ N≥0,∀j ∈ [1, ..., s]. (20)

This ensures that if no triggering event occurs at a given
point k+ i the system state xk+i is still in set Ωk+1. Since
Ωf is control invariant by Assumption 3, given (19) then
Ω1 is also control invariant. Thanks to Assumption 4 by
recursion also ΩNc is control invariant, even though a new
triggering event does not occur.

Proposition 1. If Assumptions 1-4 are true, then the event-
triggered multi-stage MPC is recursively feasible. The
proof follows from the discussion above.

5. RESULTS

The proposed approach is tested in simulation in a
Simulink/Matlab environment and compared with a nom-
inal event-triggered MPC, i.e. where no parametric un-
certainty is considered. The software CasADi (Andersson
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et al., 2019) was used for the implementation. The sim-
ulation parameters are chosen as follows: the prediction
horizon is Np = 30, with depth-step of 1m resulting on a
prediction length of 30m. Since we want to minimize the
number of downlinks and given the limited bandwidth it is
not possible to send the whole control sequence, the control
horizon Nc is chosen as 1. The measurements are available
at intervals ranging from 30 seconds to 5 minutes. The cor-
ridor radius is chosen as rmax = 3m. For the construction
of the scenario we consider two possible realization of the
parameter vector d: dmin and dmax. To keep computational
time low we use a robust horizon of 1. The well plan used is
shown in Fig. 7. To test the robustness of the controller, we
simulate two changes in formation that cause step changes
in the real system parameters. Until the second formation
change, the real parameters are within the values consid-
ered by the multi-stage MPC i.e. dmin < dreal < dmax. In
the last change, the real parameters are outside the values
considered in the tree. This is to simulate the scenario
when the real uncertainty is larger than the one considered
in the scenarios. In Fig. 6 the predicted and actual DLS
for nominal event-triggered MPC and multi-stage event-
triggered MPC are shown. The vertical line represent the
formation changes, while the red line is the maximum
DLS. The parameter set used in nominal event-triggered
MPC is set as (dmax − dmin)/2. Due to the parametric
uncertainty the nominal MPC does not respect the DLS
constraints, and it reaches almost 100% violation after the
second formation change. The proposed approach is more
robust to parametric uncertainty. In the first and second
formation, the DLS constraints are always respected. In
the last formation change, despite the fact that the error
on the parameters is outside the range considered by the
scenario the constraints are only slightly violated. The
distance to plan for the two MPC approaches is shown
in Fig. 8. For the case considered both methods show
similar performances. The multi-stage MPC was triggered,
on average, every 23.2m while the nominal MPC every
21.7m. The triggering interval increased because the multi-
stage MPC is better at avoiding violation the corridor
constraints and consequently it will trigger less MPC cal-
culations.

6. CONCLUSIONS

Automation of trajectory drilling presents a large num-
ber of challenges e.g. due to the uncertain environment
and low band-width communication. This papers tackled
the problem of downlink minimization and robust con-
straints satisfaction. We used an event-triggered multi-
stage MPC to reduce the number of control actions and
increase robustness to parametric uncertainty. Conditions
for recursive feasibility were given. The method was tested
in simulation and it showed to increase robustness to
constraint violation also for the case where uncertainties
were underestimated. In this work we assumed that all
the states of the system were measurable and noise free.
In future work, a state estimator will be added to consider
the case when measurements are noisy or not available.
Furthermore, to have more insight on the uncertainties
effecting the model, real data from drilling will be used
together with machine learning approaches.
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