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Abstract: Although machine learning techniques are increasingly employed in control tasks,
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exploit system properties to prove that the computed confidence regions are correct with high
probability. In a numerical simulation, we show that the proposed approach accurately predicts
correct confidence regions.
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1. INTRODUCTION

Technological advances have led to increasingly challeng-
ing control tasks, where systems cannot be modeled us-
ing first-principles. In such settings, model uncertainty is
generally high, and conventional control techniques yield
poor performance. A promising technique to address these
issues is online learning-based control, i.e., control laws
that learn with measurements collected online. This type
of control law operates most often by either learning a
model (Umlauft and Hirche, 2019; Chowdhary et al., 2015;
Kamthe and Deisenroth, 2018), or by directly learning a
control policy (Bakker et al., 2006; Berkenkamp et al.,
2017). Even though online learning-based tools fall under
the broader category of adaptive control, they are often
too intricate to be analyzed with classical control tech-
niques. As such, most online learning-based methods yield
no theoretical guarantees (Kamthe and Deisenroth, 2018;
Bakker et al., 2006), with few exceptions (Umlauft and
Hirche, 2019; Berkenkamp et al., 2017). However, most of
the theoretical results obtained so far pertain to stability
of the closed-loop system. This does not give insight into
how the control performance evolves due to learning.

Quantifying how learning affects long-term performance
is closely related to dual control (Bar-Shalom and Tse,
1974). The goal of dual control is to simultaneously address
system identification and a control objective. However,
this often only be accomplished approximately, yielding
no theoretical guarantees (Mesbah, 2018).

In spite of the intricacy of online learning-based con-
trol, it is generally still possible to predict performance
if the underlying model uncertainty is well understood.
Gaussian processes (GP) have been increasingly employed
to quantify model uncertainty, enabling both rigorous
analyses and good practical results (Umlauft and Hirche,
2019; Capone and Hirche, 2019; Chowdhary et al., 2015;
Deisenroth et al., 2015; Beckers et al., 2019). Despite their

widespread use, GPs have seldom been employed to pre-
dict how online learning affects closed-loop performance.

In this paper, we introduce a multi-step ahead prediction
algorithm for learning-based control laws. Our approach
computes confidence regions for the closed-loop system
trajectory, determining how learning influences the con-
trol performance over a long time horizon. We employ
nonrestrictive assumptions and prove useful properties of
Gaussian process models, which in turn are employed to
obtain confidence regions. In a numerical Monte Carlo
simulation of the cart-pole balancing problem, we show
that the computed confidence region holds with high prob-
ability.

The remainder of this paper is structured as follows.
The problem statement is given in Section 2, after which
we introduce Gaussian processes, in Section 3. Section 4
describes how the confidence regions are obtained, and
provides corresponding guarantees. A numerical cart-pole
experiment is given in Section 5, and Section 6 provides a
brief conclusion.

Notation Let N denote the natural numbers, R the real
numbers, and R+ the nonnegative real numbers. We
use P(·) to denote the probability of an event, E[·] to
denote the expected value operator, and V[·] to denote
the variance of an event. For m,n, d ∈ N and a ma-
trix A ∈ Rd×d, [A]m,n denotes the entry in the m-th row
and n-th column of A. The determinant of A is denoted
by det(A). The Euclidean norm of a vector a ∈ Rd is
denoted by ‖a‖2, its maximum norm by ‖a‖∞. For a
continuously differentiable function h : Rm → Rn, Jh
denotes the Jacobian of h(·).

2. PROBLEM STATEMENT

Consider a nonlinear system of the form
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xt+1 =f(xt,ut) + g(xt,ut) +wt :=

f(x̃t) + g(x̃t) +wt,
(1)

where xt ∈ X = Rdx and ut ∈ U ⊆ Rdu respectively
denote the system’s state and control input at time t ∈ N.
The initial condition x0 is fixed and known. The func-
tion f : X×U → Rdx corresponds to the known component
of the system dynamics, whereas g : X × U → Rdx is
unknown. The system is perturbed by independent and
identically distributed (iid) process noise w ∼ N (0,Q),

with Q = diag(σ1, . . . , σdx) ∈ Rdx+ . The augmented state

vector x̃t = (xT
t ,u

T
t )T concatenates the state and input,

and is introduced for simplicity of exposition.

We consider a control law that learns online using measure-
ments of the system dynamics. This is formally expressed
as

ut := ut(x0, . . . ,xt), (2)

where the functions ut : X t+1 → U depend on the
current state xt and the measurement data collected up
to time t. This definition applies to most online learning-
based control laws.

Our goal is to determine a confidence region S ⊆ X T for
a T step closed-loop trajectoryXT := (xT

1 , . . . ,x
T
T )T ∈ X T

of the true system (1), such that

P(XT ∈ S) ≥ 1− δ, (3)

holds for a fixed δ ∈ (0, 1).

In this paper, we restrict ourselves to the case where f(·)
is continuously differentiable and exhibits at most polyno-
mial growth. This is detailed in the following.

Assumption 1. The entries fi(·) of f(·) are continuously
differentiable and are bounded by a known, positive,
isotropic and monotone polynomial function π : R → R,
i.e., fi(x̃) ≤ π(‖x̃‖2) ∀ x̃ ∈ X̃ .

This is not a very restrictive assumption, as it holds for
many physical systems. For example, robotic and electrical
systems are often described by polynomial functions.

In addition, we consider a control laws that satisfy the
following assumption.

Assumption 2. The input space U is bounded, with ‖u‖2 ≤
umax for all u ∈ U and some fixed scalar umax > 0.

This is generally the case in practice, e.g., due to safety or
physical limitations.

3. PROBABILISTIC MODEL

We now introduce Gaussian process (GP) models, and
illustrate how they are employed to model (1). A GP
is a collection of random variables, of which any finite
subset is normally distributed (Rasmussen and Williams,
2006). A GP is fully characterized by a mean func-

tion m : X̃ → R and a symmetric positive definite kernel
function k : X̃ × X̃ → R. In this paper, we set m ≡ 0,
which corresponds to a setting where no prior knowl-
edge about g(·) is available, and is applicable without
loss of generality (Rasmussen and Williams, 2006). The
kernel k(·, ·) encodes information about the unknown func-
tion g(·), such as differentiability and periodicity. In set-
tings where g(·) is continuous, universal kernels are often

employed, as they uniformly approximate any continuous
function in a closed subset of X̃ (Micchelli et al., 2006).

In the following, we only show how to recursively draw
samples from a GP, as opposed to training a GP. How-
ever, the corresponding equations are identical up to
a noise term (Rasmussen and Williams, 2006). We be-
gin by introducing GPs for the one-dimensional case,
i.e., dx = 1. Consider a set of sample augmented
trajectory and GP evaluation pairs T st = {X̃s

t ,y
s
t },

where t ≥ 0, X̃s
t := ((x̃s1)T, . . . , (x̃st )

T)T is a sample trajec-

tory and yst := (gs(x̃s1), . . . , gs(x̃st ))
T

concatenates sample
evaluations from the GP distribution over g(·). With a
slight abuse of notation, we use the superscript s here to
distinguish sampled trajectories from trajectories of the
true system (1). The posterior mean and variance of a GP
sample at time step t+ 1 are computed as

µ(x̃st |T st ) =kT(x̃st )K
−1yst (4)

σ(x̃st |T st ) =k(x̃st , x̃
s
t )− kT(x̃st )K

−1k(x̃st ), (5)

where k(·) = [k(x̃s1, ·), . . . , k(x̃sn, ·)]T and K is the covari-
ance matrix with entries [K]ij = k(x̃si , x̃

s
j).

If dx > 1, we model each entry of g(·) using a separate
GP, i.e.,

gs(x̃st ) ∼ N
(
µ(x̃st |T st ),σ2(x̃st |T st )

)
, (6)

where

µt(x̃
s
t ) :=

(
µ(x̃st |T s1,t) . . . µ(x̃st |T sdx,t)

)
, (7)

σ2
t (x̃st ) := diag

(
σ2(x̃st |T s1,t) . . . σ2(x̃st |T sdx,t)

)
, (8)

and the sample trajectory T si,t = {X̃s
t ,y

s
i,t} used to model

the i-th entry of the unknown function g(·) is given

by X̃s
t = (x̃s1, . . . , x̃

s
t )

T and ysi,t = (gsi (x̃
s
1), . . . , gsi (x̃

s
t ))

T
.

This corresponds to assuming that the entries of g(·) are
conditionally independent.

We assume that the function g(·) is drawn from a GP with
known kernel k(·, ·). Furthermore, we assume that k(·, ·)
exhibits some commonly found kernel properties. This is
specified in the following.

Assumption 3. The entries of the unknown function g(·)
correspond to samples from a GP with mean m ≡ 0
and known, bounded, nondegenerate and continuously
differentiable kernel k(·, ·) ≤ kmax.

The squared-exponential, which is often employed in prac-
tice, is an example that satisfies the requirements of As-
sumption 3 (Wahba, 1990).

Using this assumption, we can compute useful bounds for
the GP mean and variance as follows.

Lemma 4. Let Assumption 3 hold, and choose kmax ac-
cordingly. Moreover, let σmin := mini∈{1,...,dx} σi be the
smallest entry of the process noise covariance matrix Q.
Then, for any i ∈ {1, . . . , dx} and a corresponding sample

trajectory T si,t = {X̃s
t ,y

s
i,t} ,

|µ(x̃st |T si,t)| ≤
kmax

√
t

σmin
‖ysi,t‖2, (9)

σ2(x̃st |T si,t) ≤ kmax. (10)

Proof. We begin by proving (9). Let λ−1
min

(
K + σ2I

)
denote the smallest eigenvalue of

(
K + σ2I

)
. From (4),
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it follows that

|µ(x̃st |T si,t)| = kT(x̃st )
(
K + σ2I

)−1
ysi,t

≤ ‖kT‖2λ−1
min

(
K + σ2I

)
‖ysi,t‖2

≤ kmax

√
tσ−1

min‖y
s
i,t‖2,

(11)

where the last inequality is due to the symmetrict posi-
tive semi-definiteness of K, i.e., K only has nonnegative
eigenvalues. This proves (9). The inequality (10) also fol-
lows straightforwardly from the symmetric positive semi-
definiteness of K, i.e.,

kT(x̃st )
(
K + σ2I

)−1
k(x̃st ) ≥ 0.

�

3.1 Multi-step ahead predictions

Under Assumption 3, the predicted one step dynamics are
given by

xst+1 = f(x̃st ) + µt(x̃
s
t ) + σt(x̃

s
t )ζt +ws

t , (12)

where ζt ∼ N (0, I). The mean µ(·|T si,t) and vari-

ance σ2(·|T si,t) for each entry i at time step t are obtained
by sampling a new point from the GP and updating the
sample vector with the resulting state, i.e.,

ysi,t+1 =

(
ysi,t

µ(x̃st |T si,t) + σ2(x̃st |T si,t)ζi,t

)
. (13)

Hence, the predicted closed-loop trajectory Xs
T is fully

specified by the samples ZT := (ζ0, . . . , ζT−1) ∈ X T
and W s

T := (ws
0, . . . ,w

s
T−1) ∈ X T . In other words, it is a

function of ZT and W s
T .

In order to derive probabilistic bounds for the closed-loop
system, we need to show that the probability distribution
ofXs

T is well-behaved. To this end, we require the following
preliminary results.

Lemma 5. Let x̃st , w
s
t be fixed, and let xst+1 be given as in

(6). Then det(σt+1(x̃st+1)) 6= 0 holds for almost every ζt.

Proof. Due to Assumption 3, the kernel k(·, ·) is non-
degenerate. Hence, the matrix σt+1([(xst+1)TuT

t+1]T) is
invertible for almost every xst+1 (Rasmussen and Williams,
2006). This implies that the mapping from xst+1 to ζt is
bijective up to subsets of measure zero, and is given by

ζt = σ−1
t (x̃st )

(
xst+1 − f(x̃st )− µt(x̃st )−ws

t

)
. (14)

This implies the desired result. �

Corollary 6. Let Assumption 3 hold. For a fixed W s
T ,

define the function ΦW : X T → X T , ΦW (ZT ) = Xs
T ,

where the trajectory Xs
T is computed using (6). Then Φ(·)

is differentiable, and the corresponding Jacobian JΦ(ZT )
is continuously differentiable and nonsingular for almost
every ZT ∈ X T .

Proof. Since the known function f(·) and the kernel k(·, ·)
are continuously differentiable, we can employ the chain-
rule to differentiate the states xst , t = 1, . . . , T with
respect to the samples ζi, i = 0, . . . , T − 1, and the
resulting matrices dxst/dζi are continuous. Hence, Φ(·) is
continuously differentiable. Moreover, the components of
the Jacobian JΦ(·) are given by

dxst
dζτ

=


0, τ ≥ t
σ2
t−1(x̃st−1), τ = t− 1
t−1∑
i=τ+1

dxst
dx̃s

i

dx̃si
dζτ

, τ < t− 1

. (15)

Hence, the Jacobian JΦ(·) is a lower triangular matrix with
determinant

det JΦ(ZT ) =

T∏
t=1

dx∏
i=1

σ2(x̃st |T si,t), (16)

which is nonzero for almost every Zt due to Lemma 5. �

Using this result, we can show that Xs
t is within a

predefined set of measure zero with probability zero.

Corollary 7. Let Assumption 3 hold, and let X̃ T0 ⊂ X̃ T be

a subset of measure zero. Then P(Xs
T ∈ X̃ T0 ) = 0.

Proof. Due to Corollary 6, the change of variables for-
mula applies (Spivak, 2018), and the probability density
function ofXs

T is given by p(Xs
T ) = p(ZT )|det(JΦ−1(ZT ))|

up to a set of measure zero. Since p(ZT ) is continuously
differentiable, the result follows. �

Furthermore, the norm of the sample vectors ysi,t is
bounded, as shown in the following lemma.

Lemma 8. Let Assumption 3 hold, choose i ∈ {1, . . . , dx},
and let ysi,t+1 be given as in (13). Then

‖ysi,t+1‖2 ≤
t∑

j=0

(
1 +

kmax

√
t

σmin

)t−j
kmax|ζi,j | (17)

holds.

Proof. Due to (13), Lemma 4, and the Cauchy-Schwarz
inequality,

‖ysi,t+1‖2 =
√
‖ysi,t‖22 + (µ(x̃st |T si,t) + σ2(x̃st |T si,t)ζi,t)2

≤ ‖ysi,t‖2 + |µ(x̃st |T si,t)|+ |σ2(x̃st |T si,t)ζi,t|

≤
(

1 +
kmax

√
t

σmin

)
‖ysi,t‖2 + kmax|ζi,t|.

(18)

Applying (18) t times yields

‖ysi,t+1‖2 ≤
(

1 +
kmax

√
t

σmin

)(t+1)

‖ysi,0‖2

+

t∑
j=0

(
1 +

kmax

√
t

σmin

)t−j
kmax|ζi,j |

=

t∑
j=0

(
1 +

kmax

√
t

σmin

)t−j
kmax|ζi,j |.

(19)

Here the last equality holds because no data is available
at the beginning of the simulation. �

Hence, the growth of the sample vector depends only on
the random samples ζt, and not on the trajectory itself.
Note that, due to Proposition 4, this directly implies

µ(x̃st |T si,t) ≤
k2

max

√
t

σmin

 t∑
j=0

(
1 +

kmax

√
t

σmin

)t−j
|ζi,j |


for all x̃st ∈ X̃ . We then obtain the following result:
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Lemma 9. Let xst+1,i denote the i-th entry of (12), and let
Assumptions 1-3 hold. Then, for every t∈{1, . . . , T}, there
exists a polynomial function πt : Rdx×t → R, such that

|xst+1,i| ≤ πt (ζ0, . . . , ζt) . (20)

Proof. Choose the polynomial function π(·) as in As-
sumption 1. Then, due to Lemma 8, there exist positive
constants ã0, . . . , ãT , such that for all t ∈ {1, . . . , T} and
all i ∈ {1, . . . , dx},
|xst+1,i| =

∣∣fi(x̃st ) + µ(x̃st |T si,t) + σ(x̃st |T si,t)ζi,t
∣∣

≤
∣∣π(‖x̃st‖2) + µ(x̃st |T si,t) + σ(x̃st |T si,t)ζi,t

∣∣
≤π(‖x̃st‖2) +

t∑
j=0

ãj |ζi,j |

≤π

 dx∑
j=1

|xst,j |+ duumax

+

t∑
j=0

ãj |ζi,j |

(21)

holds, where umax is chosen as in Assumption 2. Applying
(21) recursively yields the desired result. �

4. PREDICTING PERFORMANCE OF ONLINE
LEARNING-BASED CONTROL

Ideally, we would like to use (6)-(8) to compute the
expected trajectory and its variance. These are given by

E[XT ] =

∫
X̃ t

Xs
T

T−1∏
t=0

p(ζt)dζt. (22)

V[XT ] =

∫
X̃T

(Xs
T − E[Xs

T ])(Xs
T − E[Xs

T ])T
T−1∏
t=0

p(ζt)dζt.

(23)

respectively. Using (22) and (23), we would be able to
directly obtain confidence regions using Chebyshev-type
inequalities. However, computing (22) and (23) directly is
generally intractable. Hence, we employ a finite number of
GP samples to approximate (22) and (23). To this end, we
define a sample trajectory as

X
(m)
T :=

((
x

(m)
1

)T

, . . . ,
(
x

(m)
T

)T
)T

, (24)

with

x
(m)
t+1 = f(x̃

(m)
t ) + µ

(m)
t (x̃

(m)
t ) + σ

(m)
t (x̃

(m)
t )ζ

(m)
t . (25)

Here the superscript (m) refers to the m-th sample simula-
tion, and M is the total number of sample simulations. We
then approximate (22) and (23) with the estimated mean
and unbiased sample variance

X̄T,M :=
1

M

M∑
i=1

X(i), (26)

Σ̄T,M :=
1

M − 1

M∑
i=1

(
X(i) − X̄T,M

)(
X(i) − X̄T,M

)T

.

(27)

The corresponding confidence region is then given by

S =
{
X ∈ X T

∣∣∣(X − X̄T,M )Σ̄−1
T,M (X − X̄T,M ) ≤ η2

}
,

(28)

where η ∈ R is a design parameter that scales the
confidence regions’ radius.

4.1 Choosing sample size

We now aim to derive guarantees for the confidence
region (28) based on the sample size M . To achieve this,
we require some preliminary results, described in the
following.

Lemma 10. (Tsagris et al. (2014)). Let ζ ∼ N (0, 1) be a
random variable. Then

E[|ζ|N ] =

∫
R

|ζ|Np(ζ)dζ (29)

is finite-valued for all N ∈ N.

We are now able show (22) and (23) are bounded.

Lemma 11. The expected value E[XT ] and variance V[XT ]
of the system trajectory as given by (22) and (23) are
bounded.

Proof. Due to Lemma 9, the integrands of (22) are
bounded by πt (ζ0, . . . , ζt), where πt(·) is a polynomial
function chosen as in Lemma 9. Moreover, due to Lemma
10 and the independence of ζ0, . . . , ζt, the integral∫

X̃T

πt (ζ0, . . . , ζt)

T−1∏
t=0

p(ζt)dζt (30)

is finite-valued. Hence, E[Xt] is finite-valued. Similarly, the
entries of the integrand of (23) satisfy[

(Xs
T − E[XT ])(Xs

T − E[XT ])T
]
i,j

≤(πt (ζ0, . . . , ζt) + ‖E[xst ]‖∞)2.
(31)

Since this corresponds to a polynomial function, Lemma
10 implies that the entries of V[XT ] are finite-valued. �

Moreover, the variance V[XT ] satisfies the following prop-
erty:

Lemma 12. The trajectory variance V[XT ] as given by
(23) is symmetric positive definite.

Proof. We prove the result by contradiction. Assume the
variance matrix V[XT ] is not symmetric-positive definite.
Due to Lemma 11, V[XT ] is finite valued. It is easy to
see from (23) that V[XT ] must be symmetric positive-
semidefinite. Hence, there exists an α ∈ RdxT , α 6= 0,
such that αTV[XT ]α = 0. Due to (23) and the continuity
of Xs

T with respect to ZT , this implies

αT(Xs
T − E[XT ])(Xs

T − E[XT ])Tα = 0

holds for almost every Xs
T ∈ X T . This in turn holds only

if (Xs
T − E[XT ])Tα = 0, i.e.,

T−1∑
t=0

dx∑
i=1

α(tdx+i)

(
f(x̃st )+µ(x̃st |T si,t)+σ2(x̃st |T si,t)ζi,t

)
= 0,

(32)

holds for almost every sample trajectory Xs
T ∈ X T .

Choose a time step ν ∈ N, ν ≤ T and state dimension ρ ∈
N, ρ ≤ dx, such that νdx + ρ := maxj j, αj 6= 0 is the
highest index corresponding to a nonzero entry of α. We
rewrite (32) as
ν∑
t=0

dx∑
i=1

α(tdx+i)

(
f(x̃st )+µ(x̃st |T si,t)+σ2(x̃st |T si,t)ζi,t

)
= 0.

(33)
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Since varying the value of ζν,ρ does not affect the states
up to time step ν, x̃s1, . . . , x̃

s
ν , (33) implies

σ2(x̃st |T sν,ρ)ζν,ρ = 0, (34)

for almost every Xs
T ∈ X T . This is a contradiction due to

Lemma 5. Hence, V[XT ] is symmetric positive definite. �

We are now able to prove that randomly sample trajecto-
ries are linearly independent, as shown in the sequel.

Lemma 13. Let Assumptions 1-3 hold, letX(1), . . . ,X(M)

be M sample trajectories obtained using (12) and (24),
and let X̄T,M be given as in (26). Furthermore, as-

sume M ≥ Tdx and Tdx > 1. Let X(m1), . . . ,X(mdxT ),
where m1, . . . ,mdxT ∈ {1, . . . ,M}, be dxT arbitrary sam-
ple trajectories. Then X(m1), . . . ,X(mdxT ) are linearly in-
dependent and X(m) − X̄T,M 6= 0 holds for all m ≤ M
with probability 1,.

Proof. Assume the contrary is true and assume, without
loss of generality, m1 = 1, . . . ,mdxT = dxT . Then there
exist scalars α1, . . . , αdxT and an m ∈ {1, . . . , dxT}, such
that

dxT−1∑
m=1

αiX
(m) = αTdxX

(Tdx), (35)

where we assume X(Tdx) 6= 0 and αTdx 6= 0 without loss
of generality. Define

H :=

{
X ∈ X T

∣∣∣∣∣ X =

dxT−1∑
m=1

αmX
(m), αm ∈ R

}
. (36)

Note that H is a hyperplane in RdxT , hence has measure
zero. Due to Corollary 7, P(X(Tdx) ∈ H) = 0 holds.
As X(m) − X̄T,M = 0 holds for some m, due to M > 1,
then this implies

X(m) +
M − 1

M2

M∑
j=1
j 6=i

X(j) =: X(m) + X̄M\m = 0. (37)

This holds with probability

P
(
X(m) − X̄T,M = 0

)
=

∫
X̄M\m

p(X)dX = 0 (38)

because X̄M\m is a vector, hence has measure zero. Ap-
plying the union bound to both events yields

P
(
X(Tdx) ∈ H

⋃
X(m) − X̄T,M = 0

)
≤ P

(
X(Tdx) ∈ H

)
+ P

(
X(m) − X̄T,M = 0

)
= 0,

(39)

which is a contradiction. �

We are now able to prove that the approximate variance
(27) is invertible with probability 1.

Corollary 14. Let Assumptions 1-3 hold and let Σ̄T,M be
given as in (27) with M ≥ dxT . Then Σ̄T,M is invertible
with probability 1.

Proof. Let X(1), . . . ,X(M) be the sample trajectories
used to compute Σ̄T,M and consider the first dxT sam-

ples X(1), . . . ,X(dxT ). Note that if X(1), . . . ,X(dxT ) are
linearly independent and X(i) − X̄T,M 6= 0 for all i, then

the deviations
(
X(n1) − X̄T,M

)
, . . . , (X(ndxT ) − X̄T,M )

are linearly independent. Due to Lemma 13 this holds with
probability 1. Hence, for any α ∈ RdxT ,

αΣ̄T,Mα
T =

1

M − 1

M∑
m=1

((
X(m) − X̄T,M

)T

α

)2

≥ 1

M − 1

dxT∑
m=1

((
X(m) − X̄T,M

)T

α

)2

> 0

(40)

holds with probability 1. Hence, Σ̄T,M is symmetric posi-
tive definite, i.e., it is invertible. �

Using this result, we can obtain probabilistic guarantees
for the confidence region (28). This is our main result, and
is detailed in the following.

Theorem 15. Let Assumptions 1-3 hold. Choose 0 < δ < 1
and η >

√
Tdx/δ. Furthermore, choose M ∈ N, such that

Tdx(M2 − 1 +Mη2)

M2η2
≥ δ

holds, and let Σ̄T,M , X̄T,M , and S be given by (26),
(27), and (28), respectively. Then Σ̄T,M is invertible with
probability 1 and S corresponds to a 1 − δ a confidence
region for a trajectory X of the true system (1).

To prove Theorem 15, we employ the following result.

Lemma 16. (Stellato et al. (2017)). Let M > dx be a pos-
itive scalar. Given M + 1 iid samples X(1), . . . ,X(M),X,
if Σ̄T,M is nonsingular, then for all η > 0, it holds that

P
((
X − X̄T,M

)T
Σ̄−1
T,M

(
X − X̄T,M

)
≥ η2

)
≤min

{
1,
Tdx(M2 − 1 +Mη2)

M2η2

}
.

(41)

Proof of Theorem 15. This follows directly from Corol-
lary 14 and Lemma 16. �

Note that, for large M , the right-hand side of (41) is
approximately equal to Tdxη

−2. This effectively imposes
restrictions on the radius of the confidence regions associ-
ated with high confidence levels. In particular, η ≥

√
Tdx

must be chosen in order to obtain meaningful confidence
regions.

5. NUMERICAL SIMULATION

We evaluate the performance of the proposed approach in
a numerical simulation of a cart-pole system, given by

(mc +mp)ξ̈ +mplθ̈ cos(θ)−mplθ̇
2 sin(θ) = u (42)

mpl
2θ̈ +mpgl sin(θ) = −mplξ̈ cos(θ). (43)

Here ξ is the cart’s position, θ is the pole’s angle, and u
is the horizontal force applied to the cart. The cart and
pole masses are given by mc = 0.5 kg and mp = 0.5 kg,
respectively The parameter l denotes the pole’s length.
The discrete-time dynamical system form (1) is obtained
by sampling the continuous system (42) every 0.05 sec-
onds. The prior model f(·) corresponds to the linearized
dynamics around the origin, with incorrectly assumed
masses mc = mp = 0.4 kg. Additionally, we consider dis-
crete process noise w ∼ N (0,Q), with Q = 0.01I. We em-
ploy the safe learning-based control law from Koller et al.
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Fig. 1. Mean and confidence region of predicted cart
pole trajectory (blue and light blue). Median, lower
and upper deciles of Monte Carlo simulation of true
system (red and light red).

(2018) to move the cart position from x = 0 to x = 0.3
while simultaneously learning the system dynamics.

We predict the performance of the closed-loop system
over T = 100 steps, which corresponds to 5 seconds.
We choose η = 10 and sample M = 100 trajectories to
compute the confidence region S. This yields a confidence
level of 1−δ ≈ 0.955. Moreover, we perform a Monte Carlo
simulation of the true system, consisting of 100 runs. The
results are shown in Figure 1. As can be seen, the median,
lower and upper quartiles corresponding to the true system
lie entirely within the confidence region. Towards the
end of the simulation, the confidence region is larger
than at the beginning. This is due to the propagation of
model uncertainty. However, the confidence region shrinks
slightly at t = 80 time steps. This is because the system
dynamics are learned during the simulation, and the
posterior variance of the Gaussian process decreases in the
proximity of the reference.

6. CONCLUSION

We have presented a technique for computing confidence
regions of online learning-based control systems. The pro-
posed method yields a correct confidence region with high

probability. In a numerical simulation of a cart-pole sys-
tem, the confidence region is shown to contain a trajectory
of the real system entirely.

In future work, we aim to apply the presented approach to
support the design of online learning-based control laws.
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