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Abstract: In this paper we address the problem of implementing a stochastic variable
admittance control. Both the variable part of the admittance control and the noise affecting
the system may concur to the instability of the system. We propose an energy tank approach,
based on the theory of stochastic port–Hamiltonian systems and weak passivity, where the
energy dissipated by the stochastic system, if any, is stored into the tank to implement the
desired actions. As we consider a non–vanishing noise, we need to consider weaker notion of
passivity and convergence. We will show how the notion of weak passivity can be properly
defined so that equipping a stochastic system with a suitable energy tank, variable admittance
control can be efficiently implemented. We prove that the overall system is weakly passive and it
converges toward an invariant measure. Simulation results show the effectiveness of the derived
theoretical framework.

Keywords: Variable admittance control, Stochastic port–Hamiltonian systems, Passivity,
Ultimately stochastic passive

1. INTRODUCTION

Last decades have reported an increasing attention to
Human-Robot Interaction (HRI). It is in fact clear how
robots can improve as well as facilitate several human
tasks. While human can easily adapt to the surrounding
environment, the same cannot be said for robots. Therefore
an efficient way of controlling the interaction and the
response of the robots to interaction forces needs to be
implemented.
One of the most common control scheme in HRI is the
impedance/admittance control, Hogan (1985); Calanca
et al. (2015, 2017), where for instance the dynamical be-
havior of the robot is adapted by modifying the parameters
of stiffness, damping and inertia. Several works have been
published in last years, proposing efficient control schemes,
Buchli et al. (2011); Tsumugiwa et al. (2002). One of the
major issue in developing such strategies, it to consider the
effect that the interaction with an unknown environment
(like humans) has on the stability of the overall system.
Within this framework, the Passivity theory approach has
been proven to be particularly suited to address stability
problem of robotic systems interacting with unknown envi-
ronments, see, e.g., Hatanaka et al. (2015). In fact it is not
possible to describe mathematically the environment in a
general formulation, so that the interaction of the robot
with an unknown environment is quite a delicate point to
address. Typically the passivity assumption holds for the
environment and the so-called passivity-based controller
(PBC) can be derived to ensure the stability of the over-
all system considered as time-invariant dynamical model.
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However, in HRI it is often required to change at run-
time the control law to render different stiffness: such time-
dependent controller can lead to non–passive system, with
consequent instability. Recently, a new approach has been
introduced, see, e.g., Ferraguti et al. (2015, 2013); Franchi
et al. (2012); Franken et al. (2011), to derive less conserva-
tives control strategies for the time-varying scenarios. The
main idea consists in equipping the system with energy
tanks where the energy dissipated by the system is stored.
This stored energy can be used to implement in a passive
way actions that would have led to a destruction of the
passivity of the system, e.g. Ferraguti et al. (2015, 2013).
The mentioned results have been established considering
deterministic systems. Since any system is affected by mea-
surement noise at the sensing system and the uncertainty
on the mathematical model can be often modelled as a
stochastic input, it turns out that the previous results
should be extended to explicitly take into account the ran-
domness. The noise can be also used in the HRI scenario
for modelling the behaviour of the unknown environment.
For stochastic systems with energy tank, the noise adds a
further effect on the energy stored into the tank, so that
the control scheme has to be carefully implemented.
The passivity theory for stochastic systems is quite del-
icate. In particular an assumption to guarantee (asymp-
totic) stability of a stochastic system is that the noise
must vanish at the equilibrium, see Florchinger (1999).
The generalization of such result for additive noise is still
missing.
The aim of this work is to present an energy tank approach
to efficiently implement a variable admittance control in
presence of noise. We will address the case of an additive
noise, which we stress to be more complicated than, for
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instance, a linear multiplicative noise. This is due to the
fact that the noise will not vanish at the equilibrium, so
novel suitable (weaker) notions of convergence and passiv-
ity must be taken into account. To the best of our knowl-
edge the only attempt in literature to model a stochastic
system with additive noise and energy tank is Cordoni
et al. (2019a), where a stochastic energy tank approach
has been used to establish ultimately stochastic passivity
to ensure convergence of a master–salve system towards
the limiting invariant distribution under a delayed PD-like
control scheme. In order to endow the stochastic system
with a proper energy tank, we will exploit the theory of
port–Hamiltonian systems, see, e.g. van der Schaft et al.
(2014), recently extended to the stochastic case in Cordoni
et al. (2019b).
The paper is structured as follows: in Section 2 we intro-
duce the general setting of stochastic differential equations
with additive noise equipped with energy tank. Section 3
is devoted to passivity and stability, in a suitable sense,
of a robotic system with variable admittance control. In
Section 4 we present some numerical results validating
previous theoretical results.

2. ENERGY TANK FOR STOCHASTIC
PORT–HAMILTONIAN WITH ADDITIVE NOISE

From a purely stochastic perspective the additive noise
case is simpler than the multiplicative case, whereas from
a stability point of view the constant diffusion complicates
the analysis. In fact, the noise does not vanish at the
desired equilibrium, causing the process not to converge in
any standard probabilistic sense. This affects also passivity
since passivity is usually used to stabilize and control
nonlinear (stochastic) systems, see Florchinger (1999).
To overcome the problem, in Fang and Gao (2016) a
weaker notion of passivity has been proposed. Broadly
speaking, the passivity of the system is not defined on the
whole space but only outside a ball centred at a specified
state. This definition has several desirable implication
regarding limiting distribution of the system, implying
what is called asymptotic weak stability. One of the main
property of the considered weak notion of passivity is its
close link with the invariant measure of system. It turns
out that this weak notion of passivity is tailor-made to
deal with stochastic equation with additive noise.
We will focus on the stochastic PHS perturbed by a general
additive Brownian noise

dX(t) = ([J(X(t))−R(X(t))] ∂xH(X(t))) dt+

+g(X(t))udt+ νdW (t)

y(t) = gT (X(t))∂xH(X(t)) ,

(1)

where X ∈ Rn, J = −JT and R > 0 are two given
matrices of suitable dimensions; H : Rn → R is the
Hamiltonian function, representing the total energy of the
system; u ∈ U represents the signal for the control input,
while y ∈ Y := U∗ is the output. We have denoted by U∗
the dual space of U whereas ∂x is the gradient operator
with respect to x. The constant n × d matrix ν multi-
plies the d-dimensional Brownian motion W (t) adapted

to a reference filtered probability space
(

Ω,F , (Ft)t≥0 ,P
)

satisfying usual assumptions, namely right–continuity and
saturation by P–null sets.
We address in the present work the case of an additive

noise; to develop a robust setting we have chosen to
consider the notion of weak passivity introduced in Fang
and Gao (2016). This is due to the fact that, this notion
of passivity, is particularly suited to consider asymptotic
behaviour of the system and its limiting stable distribu-
tion, with particular attention to ergodicity and to the
associated invariant measure. We recall that an invariant
measure ρ for the stochastic system (1) is the measure for
which it holds∫

Rn

P (Xx(t) ∈ A) ρ(dx) = ρ(A) , ∀A ∈ B(Rn) ,

for every t ∈ [0,∞), see, Khasminskii (2011). Above,
we have denoted by Xx the solution with initial value
x; we remark that in the present section, as standard
in stochastic analysis, X denotes the stochastic process
whereas x is its initial value. Standard stability notion for
nonlinear stochastic differential equation requires that the
noise vanishes at the desired equilibrium, see Florchinger
(1999). To drop the vanishing noise condition several weak
notions of stability have been considered in literature.
In Satoh and Saeki (2015) a notion of bounded stability
in probability have been used. Another approach is to
directly study the convergence in distribution, looking
directly at the Fokker–Planck equation describing the
evolution of the probability measure, see Khasminskii
(2011); Liberzon and Brockett (2000); Zhu (2006). As
mentioned we have chosen in the present work to consider
the weak passivity notion given in Fang and Gao (2016),
which appears to be strictly related to the recurrence
of the underlying system and in turn to the limiting
invariant measure. As done also in Cordoni et al. (2019a),
we decided to chose a different name rather than weak
passivity just to highlight the connection between the
notion of weak stability and the already known notion of
ultimately bounded stability. We will show how a stochastic
system can be endowed with an energy tank such that
the overall (ultimately) passivity is preserved and so the
ultimately stochastic stability guaranteed.
We next introduce the definition of weak passivity, that
we will call ultimately stochastic passivity, for a stochastic
system, see, e.g. (Fang and Gao, 2016, Def. 4.3).

Definition 1. [Ultimately stochastic passivity] The non–
linear controlled stochastic system of the form{

dX(t) = µ(X(t), u(t))dt+ ν(X(t))dW (t) ,

y(t) = h(X(t)) ,
(2)

is said to be ultimately stochastic passive with respect to
a storage function V (t, x) if for any (t, x) such that, fixed
xC such that ‖x − xC‖ ≥ C, for a given constant C > 0
called passivity radius, it holds

LV (t, x) ≤ hT (x)u ,

where L is the infinitesimal generator

LV (t, x) = ∂tV (t, x)+∂xV (t, x)µ+
1

2
Tr
[
∂2
xxV (t, x)ννT

]
.

If further it exists δC > 0 such that for ‖x − xC‖ ≥ C it
holds

LV (t, x) ≤ hT (x)u− δC‖x− xC‖2 ,
then system (2) is said to be strictly ultimately stochastic
passive.
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For the sake of simplicity, we will consider H to be a
quadratic function of the state, i.e.H(X(t)) = 1

2X
T (t)ΛX(t),

with Λ a positive definite symmetric constant matrix of
suitable dimensions. Then, the following holds

Proposition 2. The stochastic PHS (1) with quadratic
Hamiltonian function is strictly ultimately stochastic pas-
sive.

Proof. The infinitesimal generator of the Itô process
SPHS (1) L is

LH(x) = ∂TxH(x) ([J(x)−R(x)] ∂xH(x) + g(x)u) +

+
1

2
Tr
[
∂2
xH(x)ννT

]
=−∂TxH(x)R(x)∂xH(x) + ∂TxH(x)g(x)u+

+
1

2
Tr
[
∂2
xH(x)ννT

]
.

From the quadratic form of the Hamiltonian function the
first and the third terms can be rewritten as{

∂TxH(x)R(x)∂xH(x) = xTΛR(x)Λx ,
1
2Tr

[
∂2
xH(x)ννT

]
= Tr

[
νν2

2 Λ
]
.

Hence there exist positive constants C > 0 and δC > 0
such that, for ‖x‖ ≥ C it holds

xTΛR(x)Λx− Tr
[
νν2

2
Λ

]
≥ δC‖x‖2 ,

and, for ‖x‖ ≥ C, we have

LH(x) ≤ ∂TxH(x)g(x)u = yT (t)u(t)− δC‖x‖2 ,
which is the definition of strictly ultimately stochastic
passivity (1). �

Remark 3. The notion of ultimately stochastic passivity
can be thought as follows: for X converging to X∗ = 0 we
have that the system is not passive, as the noise keeps
injecting energy into the system preventing the system
from stabilizing at X∗ = 0. Nonetheless, the system
cannot exhibits non stationary behaviours since, as soon
as the process exits a suitable ball of radius C, the system
becomes passive and the energy injected by the noise into
the system is strictly less then the one dissipated, so that
the system recovers stability. It follows that, at large time,
the system will be forced to stay in a fixed domain and
keeps moving around X∗ = 0.

Proposition 2 already highlights one of the main advan-
tages of the new adopted notion of ultimately stochastic
passivity. It is in fact known that, due to the energy
injected by the noise into the system, a stochastic PHS
may not be passive under standard assumptions used in
the deterministic setting, see, Cordoni et al. (2019a); Satoh
and Fujimoto (2012). Using the proposed weaker notion
of passivity on the contrary, the SPHS (1) is ultimately
stochastic passive with no further assumptions on the
diffusion term.
Due to the fact that the SPHS (1) is ultimately stochastic
passive, then we can endow the system with a (virtual)
energy tank. Energy tank, see, Ferraguti et al. (2015,
2013); Franchi et al. (2012); Franken et al. (2011) for the
deterministic case or Cordoni et al. (2019a) for the stochas-
tic case, represents an efficient way to modulate “non–
passive” controls to preserve the passivity constraint. If

the level of the energy within the tank allows to imple-
ment the command, there is no modulation, otherwise the
commands is decreased in order to “use” only the available
energy.
The power dissipated by the stochastic system (1), if
positive, is(

∂TxH(x)R(x)∂xH(x)− 1

2
Tr
[
∂2
xH(x)ννT

])+

=: (D(x) +DS(x))
+

=: D+(x) > 0 ,

(3)

where (f)+ := max{f, 0} is the positive part of the
function f .
The SPHS endowed with the energy tank is given by

dX(t) = ([J(X(t))−R(X(t))] ∂xH(X(t))) dt+

+g(X(t))udt+ νdW (t) ,

dxE(t) = σ
xE(t)D

+(x) dt+

+
(

1
xE(t)

(
σP in(t)− P out(t)

)
+ uE

)
dt ,

y1(t) = (y(t), yE(t))
T
,

(4)

where xE is the state associated with the stored energy
within the tank. The energy level at time t is given by
E(xE(t)) = 1

2x
2
E(t), whereas P in and P out denote the

incoming and outcoming power flows that the tank can
exchange with other tanks. The power port (uE , yE) is
used to exchange power with the extarnal world and it
holds

yE =
dE(xE(t))

dt
= xE(T ) .

We can thus obtain

Ė = xE(t)ẋE(t) = σD+(x)+
(
σP inα (t)− P outα (t)

)
+uEyE .

As explained in Ferraguti et al. (2015), the parameter
σ ∈ {0, 1} is used to enable or disable the dissipated energy
storage in case the energy stored in the tank reaches the
upper bound set for safety reason. Also, the tank has to be
initialized so that E(xE(0)) > Tmin and energy extraction
is prohibited if E(xE(t)) < Tmin. The energy stored into
the tank is used to implement the passive–preserving uE
as close as possible to the desired input u.

3. VARIABLE STOCHASTIC ADMITTANCE
CONTROL WITH ADDITIVE NOISE

Admittance control and impedance control, Villani and
De Schutter (2008), are well–known and highly used
control schemes for implementing desired behaviour in
human-robot interaction scenarios. Given an interaction
model, that is a dynamic relation between the applied force
and the pose error, the corresponding pose of the robot is
tracked so that the tracking error is minimized. A typical
admittance scheme is reported in Figure 1.
We consider the non–linear stochastic equation

Λ(x)ẍ+ µ(x, ẋ)ẋ+ Fg(t)x = Fext + Fτ + νẆ (t) , (5)

where x are the Cartesian coordinates of the end–effector,
Fext is the vector of external forces, Fτ is the wrench due
to the controlled torques and Fg is the wrench due to
gravity. Also Λ = ΛT > 0 and µ are the n−dimensional
matrices representing respectively inertia and centrifugal
and Coriolis forces. At last Ẇ if the formal time derivative
of a d−dimensional Brownian motion and ν is a n × d
constant matrix.
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Let xd(t) be a desired configuration; the goal of the
admittance control is to make the robot behaves as a linear
mass-spring-damping system

Λd ¨̃x+Dd
˙̃x+Kdx̃ = Fext + νẆ (t) , (6)

with x̃(t) := x(t) − xd(t) the pose error. The constant
matrices Λd, Dd and Kd are the n−dimensional symmetric
and positive definite desired inertia, damping and stiffness
matrices, respectively.

3.1 Problem formulation

The main goal of the present work is to generalize equation
(6) to consider variable admittance control allowing higher
flexibility to the interactive robot. More formally, denoting
by Λd(t), Dd(t) and Kd(t) some n−dimensional time–
varying symmetric and positive definite inertia, damping
and stiffness matrices, respectively, the desired interaction
model takes the form

Λd(t)¨̃x+Dd(t) ˙̃x+Kd(t)x̃ = Fext + νẆ (t) . (7)

As mentioned in the introduction, the main drawback
in introducing a variable interaction model is that time-
dependence affects the overall passivity of the system.
It is worth stressing that in the present setting both
time–varying coefficients and noise concur to destroy the
passivity of the system, so that in developing the energy
tank we need to take into account both effects.
According to Ferraguti et al. (2015), we assume that above
matrices separate into constant and variable positive–
definite terms as{

Λd(t) = Λc + Λv(t) ,

Kd(t) = Kc +Kv(t) ,

so that equation (7) can be rewritten as

(
dq(t)

dp(t)

)
=

((
0 I

−I −Dd(t)

)(
∂qHc

∂pHc

)
+

(
0

I

)
Fext

)
dt

−
(

0

I

)
(Kv(t)q + Λv(t)q̈) dt+

(
0

ν

)
dW (t) ,

y = Λ−1
c p ,

(8)
with total energy given by

Hc(q, p) :=
1

2
qTKcq +

1

2
pTΛ−1

c p ,

and p, q denoting momentum and position.
Due to the time-dependence of the inertia and of the stiff-
ness matrices, together with the stochastic noise, energy
is injected into the stochastic port-Hamiltonian dynamics;
these additions may therefore destroy the passivity of the

Fig. 1. Typical admittance scheme with motion controller
and external noise

overall system, which holds true for the time–independent
and deterministic case.
We therefore augment the system with an energy tank
alike equation (4), considering thus the SPHS of the form

(
dq(t)

dp(t)

)
=

((
0 I

−I −Dd(t)

)(
∂qHc

∂pHc

)
+

(
0

I

)
Fext

)
dt+

+

(
0

I

)
wdt+

(
0

ν

)
dW (t) ,

dxE(t) =

(
σ

xE(t)

(
pTΛ−1

c Dd(t)Λ−1
c p− 1

2
Tr
[
Λ−1
c ννT

])+)
dt

− wT

xE(t)
Λ−1
c pdt ,

y = Λ−1
c p ,

(9)

with the energy function of the tank equal to

E(xE(t)) =
1

2
x2
E(t) .

Since we must guarantee at any time a minimum level of
energy stored in the tank, we set

ω :=

{
− (Kv(t)q + Λv(t)q̈) , E(xE(t)) > Tmin ,

0, otherwise .

We remark that in equation (9), differently from the de-
terministic case, we cannot expect the system to dissipate
energy, i.e. we cannot always store energy into the tank.
This fact explains the specific form for the equation of the
energy tank in equation (9). If p is close enough to 0, then
the term

pTΛ−1
c Dd(t)Λ

−1
c p− 1

2
Tr
[
Λ−1
c ννT

]
,

becomes negative, meaning that the system is no longer
dissipating energy and we cannot store energy. Therefore,
as done with the parameter σ, we stop energy storing into
the tank.
The energy stored in the tank is exploited for imple-
menting the command input due to the variability of the
stiffness and inertia parameters. If there is some energy
stored in the tank, the desired interaction model can be im-
plemented, otherwise, the variable parts of the admittance
parameters are not implemented. In this sense priority
is always given to preserve the passivity of the system,
so that in case no variable control can be implemented
exploiting available energy in the tank, then a constant
behaviour is implemented. This computation is done by
endowing the SPHS with the mathematical model of the
energy tank through the power preserving interconnection{

u = w
xE
yE = w

xE
xE = ω ,

uE = −w
T

xE
y .

We refer the interested reader to Franchi et al. (2012);
Franken et al. (2011) for a more detailed treatment of the
topic, and to Cordoni et al. (2019b) for the formal proof
that the system connection is a SPHS as well.

Proposition 4. The SPHS with energy tank (9) is strictly
ultimately stochastic passive with respect to the energetic
port (p, Fext).

Proof. The total energy of the system is

HT (q, p, xE) = Hc(q, p) + E(xE) =

=
1

2
qTKcq +

1

2
pTΛ−1

c p+
1

2
x2
E(t) .

We therefore have
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LHT = −pTΛ−1
c Kv(t)Λc(t)p+

1

2
Tr
[
Λ−1
c ννT

]
+ pΛ−1

c Fext+

+

(
σpTΛ−1

c Kv(t)Λ
−1
c p− 1

2
Tr
[
Λ−1
c ννT

])+

.

(10)

If ‖p‖ ≥ C, for a suitable positive constant C > 0, we have
that it exists ε > 0 such that

σpTΛ−1
c Kv(t)Λ

−1
c p >

1

2
Tr
[
Λ−1
c ννT

]
> ε > 0 ,

so that we obtain from equation (10)

LHT = −pTΛ−1
c Kv(t)Λc(t)p+

1

2
Tr
[
Λ−1
c ννT

]
+ pTΛ−1

c Fext+

+ σpTΛ−1
c Kv(t)Λ

−1
c p− 1

2
Tr
[
Λ−1
c ννT

]
=

= −pTΛ−1
c (Kv(t)− σKv(t)) Λc(t)p+ pTΛ−1

c Fext .
(11)

Since Kv(t) > 0 and (Kv(t)− σKv(t)) ≥ 0 we get that,
for ‖p‖ ≥ C, the following inequality holds

LHT ≤ pTΛ−1
c Fext − δC‖p‖2 ,

which prove the system (9) is strictly ultimately stochastic
passive at the port (p, Fext). �

In the deterministic context, passivity of a given system
ensures the stability in free motion, i.e. when Fext = 0.
As mentioned we cannot expect in the present situation
stability around a given state as the noise keeps moving
the system away from the stable point. Nonetheless, above
introduced weak notion of passivity ensures that the
system converges, as t→∞ to a system whose probability
law is given by the invariant measure of the original
system.

Proposition 5. There exists a unique invariant measure
(ρq, ρp, ρE) for the SPHS with energy tank (9) in free-
motion. In particular it holds that, for any Borel set A

lim
t→∞

P ( (q(t), p(t), xE(t)) ∈ A| F0) = (ρq, ρp, ρE)(A) .

(12)
It also holds that (q(t), p(t), xE(t)) converges weakly to
(ρq, ρp, ρE), i.e. for any ϕ ∈ Cb, it holds

lim
t→∞

E(q̄,p̄,x̄E) [ϕ (q(t), p(t), xE(t))] =

=

∫
ϕ((q̄, p̄, x̄E))(ρq, ρp, ρE) (dq̄, dp̄, dx̄E) .

(13)

Proof. Proposition 4 implies that in case of free–motion,
Fext = 0, there exists ε > 0 such that LHT < −ε, for
any ‖p‖ ≥ C. Thus, using (Fang and Gao, 2016, Lemma
1 - Lemma 2), for any initial state (q̄, p̄, x̄E) such that
‖(q̄, p̄, x̄E)‖ ≥ C it holds

E [τ | (q̄, p̄, x̄E)] ≤ H((q̄, p̄, x̄E))

ε
,

being τ the first exit time to ‖(q̄, p̄, Ē)‖ ≥ C.
Note further that the SPHS with energy tank (9) satisfies
the dissipativity assumption (Cosso et al., 2016, Assump-
tion (H1) (ii)), so that by (Cosso et al., 2016, Proposition
2.1) a unique invariant measure (ρq, ρp, ρE) exists and
(q(t), p(t), xE(t)) converges weakly to (ρq, ρp, ρE). �

From a control theoretic point of view, the convergence
to the invariant measure and the ergodicity of the process

Fig. 2. Variable Stiffness matrix along x−axis

characterize a stable behaviour of the stochastic system.
Therefore, as the invariant measure is shaped around a
certain state, the system will evolve, as time goes to
infinity, around such a state. Thus, the requirement that
passivity holds outside a given ball implies that, even if
the path sometimes exits a desired region, the passivity
will force the system back into the region immediately.

4. SIMULATION RESULTS

The present section reports simulations for the SPHS with
energy tank (9) for a planar system, i.e. with dimension of
the state equal to two (n = 2, q = (q1, q2)).
Let the inertia and damping matrices be given by

Λd = diag(0.5, 0.9) [kg] ,

Dd = diag(50, 10) [Ns/m] .

The time–varying stiffness matrix is given in Figure 2 as
a function of time, whereas the constant part is equal to
diag(10, 10) [N/m]. Vertical dashed lines report changes in
stiffness over time: this allows to highlight when and how
momentum, position and energy tank vary according to
stiffness changes. The constant diffusion matrix takes the
value ν = diag(0.5, 0.8). Figure 3 reports the evolution the
position q for the stochastic system (9): q1 in the bottom
right panel and q2 in the top left panel. Top right panel
in Figure 3 reports the empirical distribution of (q1, q2). It
is evident how position does not converge to 0 reaching a
stable steady state, so that asymptotic zero tracking error
is not achieved. Nonetheless, long–time behaviour remains

Fig. 3. Tracking errors (q1, q2) and empirical density dis-
tribution
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bounded in a region which depends on the noise intensity
and the asymptotic system is characterized by the associ-
ated invariant measure. Figure 4 shows momentum error
p = (p1, p2) (top panel) and energy stored into the tank E
(bottom panel); again dashed red lines refer to changes in
stiffness.

Fig. 4. Momentum (p1, p2) (top panel) and energy tank
evolution E (bottom panel)

5. CONCLUSION

The present paper introduce a robust framework in which
PHS and energy tank theory can be properly generalize to
consider stochastic perturbations. In particular introduc-
ing suitable weak notion of passivity and convergence, we
have shown how a stochastic system can be equipped with
an energy tank in order to guarantee passivity and stability
in a suitable sense, under mild assumptions. We have thus
shown how the present setting can be used to implement
variable admittance control, so that a time varying control
can be efficiently implemented guaranteeing the conver-
gence of the controlled system towards a desired reference
configuration. Further research will focus on exploiting
stochastic port–Hamiltonian framework to derive formal
results regarding control of mechanical system, such as
how ultimately passivity can be adapted to the classical
deterministic energy shaping of PHS.
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