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Abstract: In a polymer production process, a special reactor is used to adjust the viscosity,
i.e., chain length of the polymer. This reactor has several control variables mainly in manually
control. For future automatic control concepts, such a reactor is modeled from data with a
linear (regularized FIR) and a nonlinear state space model (LMSSN). A model predictive control
approach is presented in simulation.
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1. INTRODUCTION

Nowadays, production plants collect vast amounts of pro-
cess data during production time. Often this data is
recorded, and there is an intention to use it for improve-
ments in product quality. This contribution presents a
system-based approach for the identification and control
of a chemical process. Therefore first, a model is identified
and second, a suitable controller for viscosity is developed
based on the identified model.

The process data used for this study stems from a contin-
uous polymer reactor (PR) equipped with two horizontal
agitators. This finishing reactor is used to increase the
viscosity of the feed to the desired target. The viscosity
corresponds to the mean chain length of the polymer
and is one of the key quality figures. Viscosity is mainly
controlled by pressure and agitator speed besides other pa-
rameters as throughput, catalyst, and temperature. These
control parameters are set manually by the plant opera-
tors, potentially supported by a viscosity controller acting
on the pressure.

The goal of this study is to apply modern techniques from
control and identification to improve this situation. In the
first step, a novel approach for regularized linear system
identification, introduced by Pillonetto et al. (2010), is
used to derive a data-based model. In this approach a
regularized estimate of the parameters for a finite impulse
response model is obtained, see Chen et al. (2012). It has
been shown by Pillonetto et al. (2014) in extensive simula-
tion studies that for the identification of dynamic systems,
this approach performs favorably. The identification of a
linear model allows a thorough system analysis and the
use of powerful control techniques. It can be seen that
the system has a non-minimum phase behavior. Based on
this observation, two control schemes are developed and
compared. On the one hand, a classical PI-control is tuned
with the identified model. On the other hand, a model
predictive control (MPC) scheme, see Camacho and Alba
(2007), is investigated.

In Sect. 2 both the linear and the nonlinear approach for
identification of the plant are described. In Sect. 3 the
behavior of the plant is analyzed and two control schemes,
one PI control scheme, and a model predictive approach
are presented. Section 4 concludes the paper.

2. SYSTEM IDENTIFICATION

The process and the obtained data are described first.
Then, the modeling approaches for the linear and non-
linear cases are introduced.

2.1 Process Inputs and Output

The process output and controlled variable is the viscosity
denoted by η or y in the following text. In Figs. 1, 4 and 5
the scaled inputs and output of the process are shown. The
output is usually kept stationary for a certain production
period and only changed if a different viscosity/quality is
required. Consequently the inputs show not much excita-
tion during these periods too. As usual, there are also some
noise and measurement errors to deal with.

From the available data, eight inputs of the reactor have
been identified as most important to describe the viscosity.
These are reactor pressure u1(k) = p(k), agitator speeds
u2(k) = n1(k) and u3(k) = n2(k), flow into the reactor

u4(k) = V̇ (k), polymer level u5(k) = h(k) in the reactor,
amount of two catalysts u6(k) = c1(k) and u7(k) = c2(k),
and temperature u8(k) = T (k) of the polymer before the
reactor at discrete time steps k. The sampling time is 6
minutes. The control variables are denoted as uc(k) =

[p(k), n1(k), n2(k)]
T

, while the other inputs are chosen in
accordance with the desired properties of the end product
and cannot be changed by the controller. From a control
perspective, these quantities act as measured disturbances
on the process. In Fig. 1 the data for the eight inputs used
for identification and simulation can be seen. The data
was collected during normal operation of the plant and is
consequently not optimized for system identification.
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Table 1. Increase of model error if given input
is not used in the model.

Rank Name Input rel. Error

1 Volume Flow V̇ 175%
2 Catalyst 1 c1 174%
3 Catalyst 2 c2 142%
4 Temperature T 114%
5 Speed 2 n2 113%
6 Pressure p 108%
7 Speed 1 n1 104%
8 Polymer Level h 99%

The importance of the individual inputs for the model was
assessed, using the (linear) finite impulse response (FIR)
model discussed in the next section. The model error with
all inputs is compared to models with one of the inputs
missing. The results are shown in Tab. 1. The largest
influence has the polymer flow V̇ , increasing the error by
75% when left out, followed by the catalysts. Interestingly,
the use of the polymer level h decreases the model quality
slightly (≈ 1%), showing that it should be omitted. In
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Fig. 1. Process inputs for the viscosity model.

some ranges of the data, the input values are atypical,
e.g. inconsistent, out of range or missing. These regions
are excluded from the identification by weighting these
and the 80 samples (corresponding to the dominating time
constant) before by zero.

2.2 Linear Identification

As a first modeling attempt, the impulse responses from
the eight inputs to the viscosity η were estimated using
a least squares approach. An FIR model represents the
convolution by the impulse response explicitly as

ŷ(k) =

m∑

j=1

n∑

i=0

uj(k − i)gj(i) , (1)

where m is the number of inputs (in our case eight) and n
is the length of the impulse response. Its length is chosen to
capture relevant dynamic effects and is in our case chosen
as 80 with a sampling time of 6 minutes. For the l-th input,
the regressor sub-matrix is defined as

Xl =




ul(n+ 1) ul(n) . . . ul(1)
ul(n+ 2) ul(n+ 1) . . . ul(2)

...
...

...
ul(N) ul(N − 1) . . . ul(N − n)


 . (2)

These regressor sub-matrices are used to form the com-
plete regressor matrix for the multiple input - single output
(MISO) case

X = [X1 X2 . . . Xm] . (3)

The well-known solution to the least squares estimation of
the FIR coefficients can be found by

θ̂ =
(
XTX

)−1
XT y (4)

with the vector of the measured output values y. The vec-
tor θ contains the estimated impulse response coefficients
as

θ = [g1(0), . . . , g1(n), g2(0), . . . , gm(n)]
T
. (5)

The step responses identified by this method are shown
in Fig. 2. It can clearly be seen that the results are very
wiggly and do not look like typical step responses. This
problem for FIR models is well known and is caused by the
high variance error for the estimation of the coefficients. To
overcome this limitation, in Pillonetto et al. (2011) a regu-
larized identification scheme has been proposed which uses
the so-called stable spline kernel to regularize the obtained
impulse response. Therefore, it is assumed a priori that the
impulse response coefficients θ are generated by a random
Gaussian distribution with mean zero and covariance 1

λP .
This covariance matrix is chosen using the stable spline
kernel which is an exponentially warped version of the
spline kernel of first order and results in

Pij = αmax(i,j) (6)

with λ and α being hyperparameters for control of reg-
ularization strength and impulse response decay, respec-
tively. For multiple inputs, the regularization matrices are
stacked similarly to the complete regression matrix. This
results in the formulation of the following optimization
problem for the parameters

minimize
θ

(y −X θ)T (y −X θ) + λθTP−1θ. (7)

This problem has the solution

θ̂ =
(
XTX + λP−1

)−1
XT y. (8)

Efficient algorithms for the computation of this solution
can be found in Chen and Ljung (2013). The values
for λ and α are chosen equal for all 8 inputs and are
tuned to obtain smooth step responses by hand. The
improved step responses for suitable λ are shown in Fig. 3.
Important properties of the process can be derived from
these responses, e.g., pressure p and flow V̇ reduce the
viscosity when increased (which was expected from process
knowledge), catalyst c2 has a long delay and level h
has non-minimum phase behavior, which decays to zero
quickly. Simulation results for training and test data are
presented in Fig. 4. The quality of the model is mostly
acceptable, but some areas (between 1000 h and 1250 h
in Fig. 4) have the potential to significantly improved.
Therefore, the nonlinear local model state space network
(LMSSN) is introduced in the following section.

2.3 Nonlinear Identification

For the approximation of the PR, a nonlinear state space
model is used. An advantage of state space approaches
(over external dynamics approaches such as the nonlinear
autoregressive model with exogenous input (NARX)) is the
straight forward extension to MISO or multiple input -
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Fig. 2. Estimated step responses of the viscosity η for eight
process inputs without regularization.
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Fig. 3. Estimated step responses of the viscosity η for eight
process inputs with regularization.
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Fig. 4. Training and simulation of a linear model for the
viscosity η. NRMSE: 0.3

multiple output (MIMO) models. As multiple inputs are
relevant to model the PR’s behavior, a MISO nonlinear
state space model will be employed. This is described by

x̂(k + 1) = h(u(k), x̂(k)) (9)

ŷ(k) = g(u(k), x̂(k)) , (10)

with the state vector x̂(k), the input vector u(k) =

[u1(k), u2(k), . . . , u8(k)]
T

, the output ŷ(k), the state equa-
tions h(·), and the output equation g(·) at the discrete time
step k. The approximation of the nonlinear functions h(·)
and g(·) will be done with local model networks (LMNs).
An LMN, for example for the i-th entry in the state
equation, is described by

x̂i(k + 1) =

nmi∑

j=1

(
ũT(k) · θij

)
︸ ︷︷ ︸
Local Model

Validity Function︷ ︸︸ ︷
Φij

(
ũ(k), cij , σij

)
, (11)

where nmi
is the number of local models for LMN output

xi, ũ
T (k) represents the extended input vector 1 , θij is

the parameter vector of an affine local model, and Φij is
the validity or activation function. The validity function
Φij is chosen as a normalized radial basis function (RBF).
Its arguments are also the extended input vector ũ(k), as
well as the center coordinates cij of the RBFs, and the
standard deviations σij of the RBFs. In this manner, all
state equations and the output equation can be modeled
by LMNs.

This architecture and the corresponding identification pro-
cedure is called local model state space network (LMSSN).
This method has proven to be very successful on system
identification benchmarks, such as shown in Schüssler et al.
(2019) and will be, in this contribution, extended to the
MISO case for the first time.

The identification algorithm of the LMSSN is based on
the local linear model tree (LOLIMOT) algorithm de-
veloped by Nelles and Isermann (1996) and deeply ana-
lyzed in Nelles (2001). LOLIMOT is an incremental tree-
construction algorithm that partitions the input space (all
dimensions spanned by u(k) and x̂(k)) by axis-orthogonal
splits. It constitutes thereby a heuristic way, in which the
centers and standard deviations of the RBFs are placed
within the input space. This means that only the parame-
ters of the affine local models θij need to be optimized. Per
iteration, the input space is split once and one further local
model is added, increasing the capability of the LMSSN
to capture nonlinearities. The initial model is given by the
best linear approximation (BLA), developed by Pintelon
and Schoukens (2012), making sure that all estimated
nonlinear models are at least as good as the best linear
model. For a detailed account on the LMSSN model and
identification procedure refer to Schüssler et al. (2019).

For the identification of an LMSSN model, a data set with
N = 14880 data points was used with a sampling time of
T0 = 6 min. The set consists of 8 inputs (see Sec. 2.1) and
one output (the viscosity). The dataset is split into three
parts: 40 % are used as training data, 20 % as validation
data, and the last 40 % of the dataset are used for testing.
The algorithm terminates if the error on validation data
increases for two consecutive splits.

In total, five LMSSN models with order nx = {1, 3, 5, 7, 9}
were estimated. The results on the whole dataset, contain-
ing the training, validation, and test sequence are shown
for the best LMSSN model with nx = 3 state variables
in Fig. 5. The model consists of eight local models (one
in the first state equation and output equation each, two
in the second state equation, and four in the third state
equation). The model has 96 parameters. It can be seen
that the model represents the process well.

All estimated models, the number of parameters, and the
normalized root mean square error (NRMSE) on the test
sequence are shown in Tab. 2. The NRMSE is calculated
by

1 ũT (k) denotes the input vector for the LMNs, i.e. ũT (k) =
[1, uT (k), x̂T (k)] to distinguish it from the dynamic model and
process input u(k).
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Training Validation Test

Fig. 5. Output data of process y(k) and model output ŷ(k),
as well as the model error e(k) for training, validation,
and test sequence.

Table 2. Comparison of different LMSSN mod-
els, their respective number of parameters and

the NRMSE on the test sequence.

States nx
Number of
local models

Number of
parameters

NRMSE Test

1 8 80 0.38
3 8 96 0.24
5 13 182 0.42
7 11 176 0.54
9 12 216 0.36

eNRMS =
eRMS√
Var(y)

=

√
1
N

∑N
k=1(y(k)− ŷ(k))2

√
1
N

∑N
k=1(y(k)− ȳ)2

(12)

where N is the amount of data samples, y(k) is the process
output, ŷ(k) is the model output and ȳ is the mean value
of the process output.

With increasing model order, the number of parameters
per local model increases. But a higher model order
does not necessarily lead to a higher total number of
parameters, as the necessary number of local models for
a satisfactory model quality is estimated by the LMSSN
algorithm. The model with three state variables is chosen,
as it has the lowest NRMSE on the test sequence and the
number of parameters seems to be reasonable.

3. CONTROL

Based on the identified models from the previous section,
a control scheme is derived.

3.1 Reduced Model

First, the behavior of the linear model is analyzed. The
behavior of the FIR model is transferred to a state space
system with delayed inputs as states. This state space
system is then reduced using a balanced truncation, see
Skogestad and Postlethwaite (2007). The reactor in the
given example has two independently adjustable speeds
n1 and n2. Since plants are commonly operated this way,
these two speeds are set to a fixed (but adjustable) ratio
n2 = bn1, where b is the desired fixed ratio. This results
in one single transfer function from speed to viscosity.

The behavior of a sixth-order reduced system for each,
reactor pressure p and speed n, is now analyzed. The

reduced system is found by a balanced reduction of a state-
space model, which represents the SISO impulse response
of the respective input. The obtained poles and zeros for
the transfer function from p and n to η are shown in Fig.
6.
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Fig. 6. Pole (x) and zero (o) locations of the reduced
order models for transfer functions from p (left) and
n (right) to viscosity η.

Here, it can be seen that both transfer functions have zeros
lying outside the unit circle. Thus, the system has a non-
minimum phase behavior making control more difficult.

3.2 PI-Control

Advanced model-based control laws like internal model
control (IMC) or MPC are often superior in performance
to classical PI-control. However, for practical purposes,
a simple design is often advantageous regarding imple-
mentation and tuning on-site. A PI-controller is simple,
can be implemented in almost all hardware platforms, is
well-understood by the operators of a plant and is usually
intuitive to tune. The structure of the PI-control scheme

reactor

KP

KI

∫

b

p(k)

n1(k)

n2(k)

V̇ (k)

h(k)

c1(k)

c2(k)

T (k)

ηr(k)

η(k)

−

Fig. 7. Divided PI-controller for the polymer reactor.

is shown in Fig. 7.

Here, the P-part of the controller is applied to the pressure
and the I-part is applied to the speed. The control struc-
ture is referred to as PI-control for simplicity, although it
is a P-controller for pressure and an I-controller for speed.
This ensures that when the stationary error is zero, the
pressure remains at a constant reference value and the
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speed is used for adjustment of the set point. First, the
behavior of the step response of the closed-loop system
is analyzed (see Fig. 8). Here, the actuating variables p,
n, the control variable η and the deviation of η from
the reference value eη are shown. The control behavior
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Fig. 8. Reference step response of the proposed PI-control
scheme.

is smooth and has a settling time of 10 h. Also, the distur-
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Fig. 9. Disturbance step response from V̇ to η, for a step
from ∆V̇ of 0.0114 applied at t = 0.

bance behavior of the system is analyzed. Therefore, an
unmeasured stepwise disturbance at the output is applied.
The result is shown in Fig. 9. Here, it can be seen that
it takes 12 h to suppress the applied disturbance. The
control scheme is able to provide an appropriate stationary
behavior, but the dynamic behavior could be improved.

3.3 Model Predictive Control

Model predictive control (see Morari and Lee (1999); Ca-
macho and Alba (2007)) follows a different idea. Therefore
in our problem, the following optimization problem is
formulated

minimize
η,n,p

np∑

i=0

(ηr(k + i)− η(k + i))
2

+ λn

np∑

i=1

(n(k + i)− n(k + i− 1))2

+ λp

np∑

i=1

(p(k + i)− p(k + i− 1))
2

+ λpf (p(k + i)− pr(k + i))
2

subject to η(k + i) =

8∑

j=1

n∑

l=1

uj(k + i− l)gj(l) + d(k),

i = 1, . . . , np .

The vectors η, p and n contain np future values of η, p and
n. The prediction horizon np is chosen equal to the order
of the identified FIR system. The first term within the
optimization problem penalizes the deviation of the vis-
cosity from the set point, while the second and third term
penalize the change of the control variables. The higher λp
and λn are chosen the less will the corresponding control
variable change. The last term penalizes the deviation of
the pressure from a given set point. Since the pressure of
the reactor has a relatively limited control range it is used
only within the transient phase of a set point change and
is penalized to become equal to its reference value by λpf .
The higher λpf is chosen the faster the pressure is adjusted
to its reference value. The disturbance d(k) in the problem
formulation is used to mitigate model errors. It is chosen
as the model error from the previous time step, but can be
extended to more complex noise models. It is well known
that this linear MPC problem is a quadratic program
and thus convex (Boyd and Vandenberghe (2004)). The
problem is solved using the quadprog optimizer in Matlab.
First, a reference step is applied to the control system. The
response is shown in Fig. 10. A commonly encountered
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Fig. 10. Reference step response of the MPC. A reference
change of ηr from 1.0 to 1.2 is applied at t = 10.

mode of operation is the ramp-like change of the volume
flow through the reactor. This can be considered as a
measured disturbance at the input. In Fig. 11 this behavior
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Fig. 11. Ramp-like change of the flow considered as a
measured disturbance in the MPC setting.

is shown. It can be seen that although the volume flow is
changed, the viscosity is kept tightly at the desired value.
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Fig. 12. Stepwise disturbance for the first catalyst. This is
an unmeasured disturbance for the MPC problem.

In Fig. 12 another type of disturbance is analyzed, which
is usually not measurable. The amount of catalyst applied
to the reactor is changed and the reaction of the controller
is analyzed. This part of the change has to be derived by
the model for d(k). It can be seen that the model value
ηm without correction of d(k) is lower than the true value,
while the corrected value η coincides with the reference
value ηr at the end. The speed is adjusted slightly for the
steady-state compensation of the disturbance.

4. CONCLUSION

We demonstrated the effectiveness of statistical data-based
techniques for identification and control of a polymer re-
actor. Therefore, first, a linear system is identified. For its
identification, modern kernel based regularization meth-
ods are used, which provide significantly better impulse
response estimates compared to standard linear models.

Furthermore, a nonlinear state space model based on local
model networks is identified to capture nonlinear effects
within the process. Finally, a model predictive control
scheme based on the identified linear model is derived and
it is demonstrated that this scheme can suppress both
measured and unmeasured disturbances and track the
desired reference trajectory. From this, it can be concluded
that the combination of advanced identification techniques
with model-based control techniques, relying on solutions
to optimization problems, will remain an active area of
research in the future.
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