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Abstract: Disassembly planning and inventory management are important for businesses to
provide customers with used components at competitive prices. To achieve this objective,
one of the planners’ priorities is to reduce the expected level of inventory in an uncertain
environment. This study deals with a single-period disassembly to-order problem with known
and fixed demand for components. The disassembly lead time for each component is an
independent discrete random variable whose probability distributions are known and bounded.
A mathematical model is suggested to determine the disassembly order for the end-of-life
product and to calculate the expected total cost. Newsboy formulae for optimal disassembly
order determination that minimizes the expected total cost is developed.

Keywords: Reverse supply chain, disassembly-to-order, inventory control, stochastic
disassembly lead times, Newsboy model.

1. INTRODUCTION

In the past decades, the remanufacturing field has in-
creased considerably, due to its environmental and eco-
nomical benefits (Benaissa et al., 2018). Uncertainty man-
agement is becoming one of the most important challenges
in optimizing the Reverse Supply Chain (RSC). Indeed,
uncertainty causes several difficulties in disassembly plan-
ning and inventory management. The sources of uncer-
tainty are diverse and can be located to several levels of
the RSC: demand variability, machine failures, transport
delays, recovery rate, quality problems. etc.

In this paper, we study a two-level disassembly system
for the disassembly-to-order (DTO) environment where
the products are disassembled for the retrieval of reusable
items and resold in order to satisfy a certain demand. The
main goal is to determine the time and the quantity of
end-of-life (EoL) products to be disassembled in order to
meet the requests of each part (Ji et al., 2016; Slama et al.,
2019b).

The uncertainties associated with the disassembly DTO
problem have not been treated much in the literature. Au-
thors generally considered the problem with uncertainty
of yield (number of units of parts obtained from disas-
sembling one unit of parent item) and/or demand. They
have applied a stochastic algorithms to determine the op-

timal schedule of complex returned products (two/multi-
level, with/without part commonality and single/multi-
type product).

Inderfurth and Langella (2006) considered the disassembly
system with multi-type product and parts commonality to
solve the single period DTO problem under random disas-
sembly yield. Commonalities of parts means that the EoL
products can share a common components. For solving
this problem, they introduced a heuristic to reduce the
expected disposal, purchasing and disassembly operation
costs. Kongar and Gupta (2006) treated the DTO problem
by incorporating uncertainty in the number of end-of-life
products retrieved and recycled components. They utilized
the fuzzy goal programming, which allows the goals of the
problem to be characterized using intentional vagueness.

Barba-Gutiérrez and Adenso-Dı́az (2009) have incorpo-
rated the uncertainty of demand of parts. They used trape-
zoidal distributions to incorporate the imprecise demand.
For solving this problem, they suggested a fuzzy RMRP
algorithm. Kim and Xirouchakis (2010) have treated the
problem with multi-product type and multi period disas-
sembly system under random demands. They developed
a Lagrangian relaxation heuristics to reduce the sum of
expected setup, inventory holding, and penalty costs for
unmet requests. Inderfurth et al. (2015) proposed math-
ematical model (with two-root and three-leaf items) to
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illustrate the effect of random disassembly yield in stochas-
tically proportional and binomial models. Liu and Zhang
(2018) formulated disassembly scheduling problem with
the uncertainty of demands and yields as a Mixed Inte-
ger Nonlinear Program (MINLP) and proposed an outer
approximation approach to resolve it.

In regarding the literature, the lead time of the EoL
product in disassembly systems is supposed constant or
equal to zero. In the industrial reality, disassembly lead
time is far to be constant because to the high level of
uncertainty of the disassembly process in terms of its
timing. In the present work, the disassembly lead time is
then defined as the total time required to receive the parts
after placing an order of disassembling the EoL product
(Kim et al., 2006).

Kim et al. (2007), investigated the effect of uncertainty
of lead time on the disassembly planning problem. Their
analyses shows that disassembly lead time variability
strongly affect the system performance. Few works are
proposed to help in deciding on disassembly schedule plan
under random lead time. Slama et al. (2019a) are the first
to treat this problem type. The case of the uncertainty
of disassembly lead time of the EoL product is studied. A
model is proposed to deal with a multi-period, single prod-
uct type and two-level disassembly system. The problem is
formulated as a minimization problem and then converted
to a Monte Carlo-mixed integer programming model. The
proposed model is used to determine the optimal quantity
for EoL products in order to minimize the average total
cost over the planning horizon and all scenarios. Recently,
(Slama et al., 2020) proposed a generalization of the dis-
crete Newsboy formulae to find the optimal release date
when the time of disassembling the EoL product is random
variable. This last study assuming that once the disassem-
bly operation started, the EoL product will simultaneously
release all the parts with independent probability discrete
distributions. This research was the first one to regard
the disassembly systems using the Newsboy model. For
a thorough study dealing Newsboy problems, the readers
can be referring to the proposed research’s by (Khouja,
1999; Ben-Ammar et al., 2018).
Owing to complexity of the disassembly process, the time
of disassembling each component might be a random
variable. Once disassembly has started, each part can be
available after a random lead time. To the best of our
knowledge, no one has treated this problem type under un-
certainty disassembly lead time for each part. This paper is
a continuation of our earlier work (Slama et al., 2020). Two
new contributions and innovations are investigated: (1)
The uncertainty of disassembly time of each component is
defined as independent random variables with known and
limited probability distributions. (2) An approach based
on a Newsboy-like analytical formulae is suggested to
determinate an efficient disassembly plan. To close to real
industrial planning approach, an integer decision variable
with a discrete lead times distribution is proposed.

The rest of the paper is organized in six sections. The
studied problem is described in section 2. The mathemat-
ical formulation of the problem is proposed in section 3. A
Newsboy model is given in section 4. Section 5 shows some

results. Finally, the conclusion and some perspectives for
future research are given in section 6.

2. PROBLEM DESCRIPTION

In this present work, the case of two-level disassembly sys-
tem is studied. As shown in Fig. 1, the EoL product (first
level) is disassembled on individual components/parts:
i = 1, . . . , n (second level). The demand on components
is known and fixed. Without loss of generality, we are
assuming only one component for each demand. These
demands Di must be delivered on predefined delivery dates
(Ti).
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Fig. 1. Two-level disassembly system.

This study is supposing:

(1) There aren’t precedence relations among disassembly
tasks yielding the n parts;

(2) Once the EoL product is started for disassembly, each
component is available after a random disassembly
time;

(3) The disassembly lead time, Li of each part i is a
random discrete variable with a known probability
distribution and a bounded over known interval:
[L−i , L

+
i ];

(4) The probability distribution for each part is not iden-
tically distributed, that’s to say, the disassembly lead
time don’t follow the same probability distribution
for each part.

The risk of an uncertainty disassembly lead times entails
costs of backlogging and storage. In fact, if the request for
the parts is not delivered at the desired time, a backlogging
cost is incurred. In the same manner, an inventory cost
appears if some parts arrive before the expected delivery
date. For this reason, the objective of this present work
is to minimize the expected value of the total cost that
is equal to the sum of the expected costs of holding and
backlogging of all components.
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3. PROBLEM FORMULATION

The aim of this research is to develop a mathematical
model for two-level disassembly systems under a fixed
part’s demand and uncertainty of parts disassembly lead
times. Before providing it, the notation can be summarized
below:

Parameters:
i Index of items, i = 1, ..., n,
Ti Delivery date for each part i,
Di External demand for item i,
hi Inventory holding cost of one unit of i,
bi Backlogging cost of one unit of i,
Li Real disassembly lead time for leaf item i,
Mi Real receipt date of i,Mi = X + Li.

Decision variable:
X Starting date of disassembling the EoL product.

Functions:
E(.) Excepted value,
Fi(.) Distribution function of the random variable,
T+
i max(Mi, Ti),

T−i min(Mi, Ti),
(Z)+ Maximum between 0 and z,
(Z)− Minimum between 0 and z.

The total cost is equal to the sum of backlogging and
inventory holding costs for all components.

Proposition 3.1. For the system described in the previous
section, the total cost, noted by TC(X,L), is as follows:

TC(X,L) =

n∑
i=1

(bi + hi)T
+
i −Mihi − biTi (1)

with X ∈ [[min∀i∈[1,n]
{
Ti − L+

i

}
; max∀i∈[1,n]

{
Ti − L−i

}
]]

and L = {L1, . . . , Ln}.

Proof. The total cost is composed of inventory holding
cost (CH(X,L)) backlogging cost (CB(X,L)). As shown
in Fig. 2, if a component i is available before Ti, it is stored
during the periods Ti − T−i :

CH(X,L) =

n∑
i=1

hi(Ti − T−i ) (2)

If a part i is available after Ti, it is backordered during the
periods T+

i − Ti:

CB(X,L) =

n∑
i=1

bi(T
+
i − Ti) (3)

The total cost is equal to the sum of CH(X,L) and
CB(X,L). Knowing that Ti + Mi = T+

i + T−i , then by
using equations (2-3), the value of the total cost can be
easily deduced.

The disassembly lead times Li, ∀i = 1, . . . , n are random
discrete variables. Therefore, this total cost is a random
variable with a finite number of possible values. Thus, we
can calculate its mathematical expectation.

Proposition 3.2. The mathematical expectation of the
total cost, noted by E(C(X,L)), is given by the following
expression:

Ln

Li

L1

T−n

T−i

T+
1

X TnT1 Ti

Backlogging time Holding time

Random lead time

Fig. 2. Composition of the total cost.

E(C(X,L)) =
n∑

i=1

(
(bi + hi)

∑
s≥Ti

(1− Fi(s−X))
)

−
n∑

i=1

hi(X + E(Li)− Ti)

(4)

Proof. By using equation (1), E(C(X,L)) can be formu-
lated as follows:

E(C(X,L)) =

n∑
i=1

(bi + hi)E(T+
i )− hiE(Mi)− biTi (5)

T+
i is a positive discrete random variable with a finite

number of possible values. So ∀i = 1, . . . , n:

E(T+
i ) =

∑
s≥0

1− P(max(Mi, Ti) ≤ s)

On one hand:

P(max(Mi, Ti) ≤ s) = P(Mi ≤ s;Ti ≤ s)

A component i is available at period Mi and this period
does not depend on Ti, so:

P(max(Mi, Ti) ≤ s) = P(Mi ≤ s)× P(Ti ≤ s)

and:

E(T+
i ) =

∑
s≥0

1− P(Mi ≤ s)× P(Ti ≤ s)

On the other hand, the delivery date desired by the cus-
tomer Ti is known and superior to 0:{

P(Ti ≤ s) = 0 ∀s > Ti

P(Ti > s) = 1 ∀s ≤ Ti

So ∀i = 1, . . . , n:
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E(T+
i ) =

∑
s≥0

(1− P(Mi ≤ s)× P(Ti ≤ s))

=
∑

0≤s≤Ti

(1− P(Mi ≤ s)× P(Ti ≤ s))

+
∑
s≤Ti

(1− P(Mi ≤ s)× P(Ti ≤ s))

= Ti +
∑
s≥Ti

(1− P(Mi ≤ s)

(6)

Knowing that ∀i = 1, . . . , n, Mi = X + Li. By using
equation (6), the expression of E(C(X,L)) can be easily
determined.

In this section, we presents the mathematical model which
calculates the expected total cost. The question then be-
comes: When we should start the disassembly operation
for minimizing the excepted cost?

4. NEWSBOY MODEL

In order to determine the optimal starting date of dis-
assembling the EoL product that minimizes E(C(X,L))
expressed in equation (4), we propose a Newsboy formulae.
Proposition 4.1. The optimal solution X∗ that mini-
mizes equation (4) is unique and verifies the following
expression:

n∑
i=1

(bi+hi)Fi(Ti−X∗−1) ≤
n∑

i=1

bi ≤
n∑

i=1

(bi+hi)Fi(Ti−X∗) (7)

where Fi(.) is the cumulative distribution function of the
lead time Li.

Proof. Let G(X) be a function such as:

G(X) = E(C(X + 1,L))− E(C(X,L)

We can easily prove that:

G+(X) =

n∑
i=1

bi −
n∑

i=1

((bi + hi)Fi(Ti −X − 1))

Let X∗ be the optimal solution. Then, It must be shown
that G(X∗) is positive and G(X∗− 1) is negative. If these
are verified, then the necessary and sufficient conditions
for the existing of a value X∗ minimizing E(C(X,L)) are
as follows: {

E(C(X∗,L)) ≤ E(C(X∗ + 1,L))
E(C(X∗,L)) ≤ E(C(X∗ − 1,L))

It amounts to showing that G(X∗) ≥ 0 and G(X∗−1) ≤ 0.
In other words, demonstrating that:

n∑
i=1

bi −
n∑

i=1

((bi + hi)Fi(Ti −X∗ − 1)) ≥ 0

n∑
i=1

bi −
n∑

i=1

((bi + hi)Fi(Ti −X∗)) ≤ 0

Then, equation (7) can be deduced and it represents the

optimality condition for the discrete Newsboy model.

Theoretically, the integer X∗ which gives the optimum
is not unique. To prove the uniqueness of this optimal
solution, we must prove the convexity of the objective
function. To do this, we introduce two functions R(X∗)
and R(X∗ − 1) verifying the following equalities:

R(X∗) = G(X∗ + 1)−G(X∗)

=

n∑
i=1

(bi + hi)(Fi(Ti −X∗ − 1)− Fi(Ti −X∗ − 2))

R(X∗ − 1) = G(X∗)−G(X∗ − 1)

=

n∑
i=1

(bi + hi)(Fi(Ti −X∗)− Fi(Ti −X∗ − 1))

We know that Fi(.) is growing. So, we can easily prove
that R(X∗) is positive and R(X∗ − 1) is negative; deduce
that E(C(X,L)) is convex and verify the uniqueness of the
optimal solution.

5. COMPUTATIONAL EXPERIMENTS

5.1 Design of experiments

The mathematical model and the Newsboy formulae were
implemented in C++ and computational experiments were
performed on an an Intel (R) Core i7-5500 processor at 2.4
GHz clock-speed and with 8 Go of memory.

5.2 Numerical example

A numerical example is given to test the solution approach.
A small instance, with a disassembly system composed
of 10 components, is considered. For each component
i = 1, . . . , n the following parameters are given in table
1: the unit inventory holding cost hi, the unit backlogging
cost bi and the delivery date desired by the customer Ti.
The related probability distributions are listed in table 2.
For example, the real disassembly lead time for component
1 varies between 1 and 5, for component 2 it varies between
2 and 6 and so on.

Table 1. Characteristics of the data set.

(i) 1 2 3 4 5

hi 5 9 5 8 12
bi 100 120 106 125 162
Ti 10 8 7 11 9

(i) 6 7 8 9 10

hi 8 5 11 24 12
bi 269 285 100 107 201
Ti 9 7 8 10 6

In order to obtain the Pareto front, we execute all possible
solutions (see Fig. 3). The optimal solution corresponds to
the couple (1,558.45) which corresponds to the optimal
starting date of disassembling the EoL product (X∗)
minimizing the expected total cost. We note that less than
1 second is needed to obtain the optimal solution.
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Table 2. Disassembly lead time probability
distributions.

ω 1 2 3 4 5 6

P(L1 = ω) 0.2 0.1 0.1 0.4 0.2 -
P(L2 = ω) - 0.2 0.1 0.2 0.3 0.2
P(L3 = ω) 0.8 0.1 0.05 0.03 0.02 -
P(L4 = ω) - 0.01 0.01 0.01 0.01 0.96
P(L5 = ω) 0.85 0.05 0.05 0.07 0.02 -
P(L6 = ω) 0.01 0.1 0.6 0.2 0.09 -
P(L7 = ω) - 0.09 0.01 0.1 0.35 0.45
P(L8 = ω) - 0.9 0.02 0.03 0.03 0.02
P(L9 = ω) 0.11 0.6 0.1 0.09 0.1 -
P(L10 = ω) - 0.08 0.02 0.2 0.25 0.45

0 2 4 6 8
0

2,000

4,000

6,000

X

E
x
p

ec
te

d
to

ta
l

co
st

Fig. 3. Pareto front of all possible solutions.

5.3 Performance tests

In order to analyse the effect of lead times variability on
the robustness and the stability of the proposed Newsboy
model, the effect of variance (VAR) is treated according
to the number of parts (10, 50, 100 and 500). To do so,
we generate 400 different instances. The unit inventory and
backlogging costs and the delivery due dates are randomly
generated as detailed in table 3. In this table, D ∼ U(a, b)
means that the parameter follows the discrete uniform
distribution characterized by the interval [a, b]. For lead

Table 3. Data generation

Parameters Value

hi D ∼ U(5, 100)
bi hi ×D ∼ U(1, 30)
Ti D ∼ U(5, 20)

times, we consider the same distribution probability for
all components. This distribution, noted by VAR (a), is
the reference case and characterized as follows: P(Li =
1) = 0.245, P(Li = 2) = 0.48, P(Li = 3) = 0.255,
P(Li = 4) = 0.01 and P(Li = 5) = 0.01.

Let X∗ be the optimal order release date and E(C(X∗,L))
be the related optimal expected total cost corresponding
to VAR (a). In order to evaluate the robustness of the
optimal solution found by the proposed approach, we vary
the variance of the lead times between −75% and +75%
as detailed in table 4.

Table 4. The changed distributions corre-
sponding to different levels of VAR (a).

VAR ω 1 2 3 4 5

-75% P(Li = ω) 0.01 0.95 0.02 0.01 0.01
-50% P(Li = ω) 0.08 0.79 0.09 0.01 0.01
-25% P(Li = ω) 0.16 0.63 0.17 0.01 0.01
Var(a) P(Li = ω) 0.245 0.48 0.255 0.01 0.01
+25% P(Li = ω) 0.32 0.32 0.33 0.01 0.01
+50% P(Li = ω) 0.40 0.16 0.41 0.01 0.01
+75% P(Li = ω) 0.47 0.01 0.48 0.01 0.01

As Fig. 4 witnesses, the variation of the excepted total
cost (ETC) decreases when the number of components
increases. However, This average variation remains less
than 5% whatever the number of components in the second
level of the disassembly system. In the worst case, the
maximum absolute variance of ETC does not exceed 14%
(see Fig. 5). This proves that our approach remains robust
even if the variance of lead times reaches ± 75%.
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Fig. 4. Effect of lead time variance on the expected total
cost.
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Fig. 5. Effect of lead time variance on the expected total
cost.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10964



Let us now look at the effect of the backlogging cost
variation. To do this, we only study disassembly systems
with 10 components. The unit inventory and backlogging
costs are randomly generated as mentioned in table 3. For
the delivery due dates, 4 cases are considered: Ti ∼ U(5, 5),
Ti ∼ U(5, 10), Ti ∼ U(5, 20) and Ti ∼ U(5, 50). For each
case, 100 instances have been tested. We note that for
each component, the real lead time varies between 1 and
D ∼ U(2, 5), and considered to have a random discrete
distribution.

We consider bi = 2hi as reference case. Then, we vary the
ratio bi/hi between 1 and 9. As can be seen in Fig. 7, the
variation of ETC increases not only when the delivery date
interval decreases, but also when the ratio bi/hi increases.
It proves that the proposed approach seems to be less
robust when the unit backlogging costs are underestimated
and the delivery dates are very close to each other (all due
dates are equals to 5).
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Ti ∼ U(5; 50)

Fig. 6. Effect of backlogging cost on the expected total
cost.

6. CONCLUSION AND PERSPECTIVES

This preliminary research deals with the modeling and op-
timization of two-level disassembly systems under random
components disassembly lead times. We have developed
a mathematical model to study a one-period planning
for the disassembly-to-order environment. An approach
based on a Newsboy formulae is developed to minimize the
mathematical expectation of the total cost and determine
the optimal order release date of the EoL product.

In order to test the robustness of the proposed approach,
a first sensitivity study on the probability distributions of
disassembly lead times is conducted. These findings high-
light that it is important to obtain good statistical data to
get a reliable estimate of the probability distributions of
lead times. The second sensitivity analysis focuses on the
effect of backlogging cost variance on the quality of the
solution. It suggests the importance of taking into account
the ratio bi/hi in the decision making in order to optimise
the disassembly planning.

In our future research, we will analyze in more details
the robustness of our approach in order to know why
for certain variations of lead times, the variation of ETC
reach 14%. Then, we will extend the proposed model
to integrate capacity constraint. Finally, we will try to
integrate the uncertainty of demand and/or yield in the
study of disassembly systems in DTO environments.
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