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Abstract: This paper describes the development and testing of a lab plant that emulates a water supply 

pumping system with the objective of testing optimal pumping strategies based on standard solvers. The 

emulated system consists of two tanks that supply the water to two districts in a town. There are two pumps, 

that can fill the tanks through a reconfigurable hydraulic system with several valves. The automatic 

controller determines the valves and pumps that are active at each instant of time in order to minimize the 

operation cost, taking into account the electric tariff periods. Some aspects on the development of the lab 

plant are first discussed, including hydraulic aspects and real time control implementation issues. Then, a 

mathematical model is proposed to be able to formulate, in matrix form, the cost index and the constraints, 

such that, standard solvers as Mosek or CBC can be used. The full optimization proposal is tested on several 

experiments, and compared to some simulations, to demonstrate the validity of the plant and the 

optimization approach. 
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1. INTRODUCTION 

The main part of the energetic cost in the operation of water 

supply systems is due to the power consumed by the pumping 

stations. The water is served to consumers from tanks that are 

recharged from wells. The energy cost depends on the periods 

of time when the pumps are on, because the electricity prices  

vary along the day, according to known tariffing periods. 

A review of different approaches to the optimization of water 

pumping systems is presented in Ormsbee (1994). The 

approaches cover different configurations of the system and 

different mathematical models. In the case of filling the main 

supply tanks, the mass-balance model is the most common. 

The cost function includes the energy consumed in most of the 

works, but the electricity tariffing periods are not considered. 

Besides, the decision variables are defined as the ratio of 

operation time of each pump in some fixed intervals. 

A more recent work, Bunn (2009), also reviews different 

strategies, with the focus on using real-time dynamic 

optimization and data mining. This work describes a 

commercial optimization software for water distribution 

systems. This software can solve the proposed optimization 

problem and other that are even more complex, but no details 

about the algorithms are given. 

In recent works, as Fang (2010), detailed models of the 

hydraulic systems and complex optimization algorithms are 

used, as genetic algorithms, simulated annealing or particle 

swarm. The computer cost of those strategies is very high, 

especially for large systems. 

A linear programming approach is used in Pasha (2009), but is 

only applicable for the optimization of a single tank system. 

The use of MINLP is proposed in Dai (2015) for the pump 

scheduling, taking into account a constraint in the number of 

pump commutations, but the closed loop is not considered. 

Ormsbee (2009) presents three different explicit formulations 

of the optimal pump scheduling problem. It considers the 

electric tariff periods, but the decision variables are the start 

and stop times of the pumps. Non linear algorithms, genetic 

algorithms, or semi heuristic ad hoc algorithms are needed to 

solve the resulting optimization problem. Moreover, when the 

system has some valves that can reconfigure the network, the 

proposed formulations cannot be applied. In Sanchis (2020) 

the optimization problem is formulated such that standard 

solvers can be used. The decision variables are also explicit, 

but are defined by which of the possible combinations of active 

pumps and valves must be applied at each instant. The 

proposed mathematical formulation allows to solve the 

optimization problem by means of standard parsers (as 

Yalmip) and solvers (as Mosek or CBC). However, the 

proposed approach is only tested through simulations. In this 

paper, the approach proposed in Sanchis (2020) is tested and 

verified in real time in an experimental plant that emulates a 

real system scaled in space and time. In section 2 the general 

problem of optimal pumping operation is introduced. Section 

3 describes the experimental plant. In section 4 the 

mathematical model of the problem is developed. In section 5 

the optimization problem, derived from the mathematical 

problem, is formulated. Section 6 describes the output flow 

prediction strategy. Section 7 shows the application to the lab 

plant and the comparison with simulations, and section 8 

summarizes the main conclusions.  

2. GENERAL PROBLEM 
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In this paper, we develop an experimental setup to test 

strategies for the optimal operation of a water pumping system. 

The system has a predefined structure, with several wells, 

pumps, tanks and valves. The main objective is to minimize 

the overall operational cost, that depends on the individual 

energetic pumping cost of each well (kWh per cubic meter) 

and on the electric tariff periods prices (€/kWh). The controller 

must decide the valves and pumps that are operated at every 

instant throughout the day to minimize the overall cost, while 

at the same time, some constraints are fulfilled. The main 

constraint is, of course, to serve the demanded water flow from 

each tank. Despite this flow is time varying and uncertain, it 

can be predicted due to its approximate daily pattern. Another 

important constraint is the maximum and minimum level of 

the tanks. Some other constraints that may be taken into 

account include limiting the number of daily starts and stops, 

and forcing the tank levels to be as high as possible to maintain 

the service to users in case of failure. 

3. EXPERIMENTAL PLANT DESCRIPTION 

Figure 1 shows the developed experimental plant to test the 

optimization algorithms in real time.  

 

Fig. 1. Experimental plant schematics. 

The plant consists of 2 big tanks that act as the supply wells, 

and 2 smaller tanks that are the storage tanks that serve water 

to users. Two pumps (with a flowmeter in series) extract water 

from the storage tanks to emulate the water consumed by users. 

On the other hand, two pumps move the water from the wells 

to the storage tanks. Two valves allow to reconfigure the 

hydraulic system, such that the pump 2 can pump water to 

either one of the storage tanks. The control actions are the state 

of the well pumps and the state of the valves. Two flowmeters 

are located in series with the well pumps, and two level sensors 

measure the level of the storage tanks. 

All the electric elements are connected to a PLC, that 

communicates via Modbus TCP with a computer running 

Matlab. The optimization algorithm is run periodically in 

Matlab, where standard solvers are used (with Yalmip parser).  

The emulated flow supplied by the storage tanks to consumers 

is computed by the PLC following a Fourier series with a 

random component, and is unknown by the optimization 

algorithm. The Fourier series defines the set point of a PI flow 

control loop that controls the outlet flow of each tank. 

In order to emulate a large scale system with 500 m3 tanks, and 

200 m3/h maximum flows, using a small 5 l tank, that is 

100000 times smaller, the time is scaled by a factor of 46: this 

means that 1.3 seconds in the lab plant corresponds to a 60 

seconds period in a large scale system. This means that 32 

minutes in the lab plant represent one day in a large scale 

system. With this in mind, the maximum flow in the lab plant 

should be around 2 l/min. The pumps and flowmeters have 

been chosen according to these requirements. The pumps are 

24V DC submergible water pumps for caravans, with a 

maximum flow of 10 l/min, and the flowmeters are ultrasonic 

with a range of 0.1 to 8 l/min. The main drawback of this 

flowmeter is the sampling period: it delivers a new 

measurement every 250 ms, that is a long time compared to the 

flow time constants. This sampling period has been taken into 

account in the design of the PI controllers that are used to 

control the flows of each pump. In the case of the filling pumps 

that emulate the wells, the flow is also controlled in closed 

loop through a PI, with a constant set point that determines a 

constant filling flow. Several different experiments can be 

devised with the same plant by configuring the following 

parameters:  

 Filling flows from well pumps (fij in (1) and (2)). 

 Emulated outlet flows for consumers. 

 Electric power of each well pump (Pij in (3)). 

 Electric tariff of each well pump.  

4. MATHEMATICAL MODELLING OF THE PROBLEM 

The system is assumed to have Nt tanks, Np pumps (one in each 

well), and Nv valves. The hydraulic system that connects the 

pumps to the tanks can be reconfigured with the valves. There 

is a maximum number of possible combinations of  2Np+Nv, but 

not all the combinations are assumed to be feasible. Let us 

define the number of valid pumps and valves combinations as 

Nc. We define a binary matrix, Mc, of size 𝑁𝑐 × (𝑁𝑝 + 𝑁𝑣), 

where each row corresponds to one of the valid combinations. 

The elements of each row take the value 1 or 0 depending on 

the state of the valves and the pumps in that combination. For 

the proposed experimental plant, the values are Np = 2 pumps 

(wells), Nv = 2 valves and Nt = 2 tanks. The figure 1 shows a 

schematic of the system. Pump number 1 can only fill tank 1, 

no matter the state of the valves. Pump 2 can fill tank 1 if the 

valve 1 is open and the valve 2 is closed, or tank 2 if the valve 

2 is open and valve 1 closed. We assume that valves 1 and 2 

cannot be opened at the same time, but pumps 1 and 2 can work 

simultaneously. Considering the limitations described above, 

the table 1 shows the matrix that defines de Nc = 6 valid 

combinations of pumps and valves. The X value means that a 

closed valve (0) or open valve (1) results in the same flows.   
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Table 1.  Valid combinations 

Comb V1 V2 P1 P2 

0 X X 0 0 

1 X X 1 0 

2 1 0 0 1 

3 0 1 0 1 

4 0 1 1 1 

5 1 0 1 1 

For every combination, each pump has an outlet flow, and each 

tank has an inlet flow. This can be expressed through a pump 

flow matrix, FP, with as many columns as combinations, and 

one row per pump, and a tank flow matrix, FT, with as many 

columns as combinations, and one row per tank. The size of 

matrices FP and FT are (NpNc) and (NtNc). In the 

experimental plant, the resulting flow matrices are (in l/min): 

𝐹𝑃 = [
0
0
𝑓11
0

0
𝑓21

0
𝑓22

𝑓11
𝑓22

𝑓11
𝑓21
]   (1) 

𝐹𝑇 = [
0
0
𝑓11
0
𝑓21
0

0
𝑓22

𝑓11
𝑓22

𝑓11+𝑓21
0
]  (2) 

Applying the same idea, we can form a matrix P with the 

electric power consumed by each pump in each combination. 

This matrix has as many columns as combinations, and one 

row per pump, thus the size of P is (NpNc). In the plant, the 

power matrix (in kW) is: 

𝑃 =  [0
0
𝑃11
0

0
𝑃21

0
𝑃22

𝑃11
𝑃22

𝑃11
𝑃21
]   (3) 

 The flow and power from pump 2 may be different when 

pumping to tank 1 or tank 2, meaning that the tanks are located 

in a different height. The different pressure gradients (or 

heights) are taken into account in the optimization only 

through the previous flow and power matrices. Flows from one 

tank to another located at different height are not considered. 

The controller must define which one of the Nc combinations 

is applied at each instant of time. The minimization of the 

overall operation cost is the natural objective. A binary vector, 

𝛿, is defined to formulate the objective function and the 

constraints for the optimization problem. This vector defines 

the applied combination as a function of time: 

𝛿(𝑡)𝜖{𝛿1, … , 𝛿𝑁𝑐}   (4) 

Where 

𝛿𝑖 = [0…0 1 0…0]
𝑇         (5) 

 

One of the elements of (t) is 1 and the rest are 0 (i.e. the sum 

of the elements is 1). The vector with the tanks inlet flows can 

be expressed at a given time as the product 

𝑓𝑇(𝑡) = 𝐹𝑇 ∙ 𝛿(𝑡) 

and the vectors of pump flows and electric power are simply 

𝑓𝑃(𝑡) = 𝐹𝑃 ∙ 𝛿(𝑡) 
𝑝(𝑡) = 𝑃 ∙ 𝛿(𝑡) 

The overall cost depends on the electric tariff periods. We can 

define the tariff as a price in €/kWh as a function of time, Ti(t). 

Different tariffs are assumed for each pump, hence, a row 

vector is defined as 

                   𝑇(𝑡) = [𝑇1 𝑇2]    (6) 

The total cost in a time horizon 𝑡𝐻 can be written (in euros ) 

as: 

𝐽 =
1

60
∫ 𝑇(𝑡)
𝑡𝐻
0

∙ 𝑃 ∙ 𝛿(𝑡)𝑑𝑡  (7) 

The physical equation of the tanks can be written as: 

�̇�𝑗 = 𝑓𝑇,𝑗(𝑡) − 𝑓𝑂,𝑗(𝑡) ,   (8) 

Where V𝑗 is the volume, and 𝑓𝑇,𝑗(𝑡) and 𝑓𝑂,𝑗(𝑡) are the inlet 

and outlet flow of tank j. We can write the tank equations in 

matrix form 

�̇� = [
�̇�1
…
�̇�𝑁𝑡

] = [

𝑓𝑇,1(𝑡)
…

𝑓𝑇,2(𝑡)
] − [

𝑓𝑂,1(𝑡)
…

𝑓𝑂,2(𝑡)
] = 𝑓𝑇(𝑡) − 𝑓𝑂(𝑡)       (9) 

The outflow rate of each tank, 𝑓𝑂(𝑡), is not known in advance, 

therefore, we must use a prediction 𝑓𝑂(𝑡) to estimate the future 

volume. On the other hand, the inlet flow is a function of 𝛿(𝑡), 
hence the evolution of tanks volume (in l/s) is defined by 

equation 

�̇� =
1

60
(𝐹𝑇𝛿(𝑡) − 𝑓𝑂(𝑡))   (10) 

The continuous time equations must be discretized to be 

implemented in a computer. If a constant discretizing period h 

is used, the vector functions T(t) and  𝛿(𝑡) must be changed by 

discrete signals vectors 𝑇[𝑘] = 𝑇(𝑡 = 𝑘ℎ) and  𝛿[𝑘] =
𝛿(𝑡 = 𝑘ℎ). We assume that 𝛿(𝑡) maintains a constant value 

during interval h, i.e. 𝛿(𝑡) = 𝛿[𝑘] for k h <= t < (k + 1)h. 

Considering he physical units of the variables, the cost index 

in a time horizon 𝑡𝐻 (in euros) can be written as 

𝐽 =
ℎ

60
∑ 𝑇[𝑘]
𝑡𝐻
ℎ⁄

𝑘=0 ∙ 𝑃 ∙ 𝛿[𝑘]  (11) 

We need to discretize also the continuous time equation of the 

tanks. The resulting equation is 

𝑉[𝑘 + 1] = 𝑉[𝑘] +
ℎ

60
(𝐹𝑇𝛿[𝑘] − 𝑓𝑂[𝑘])  (12) 

with 𝑉[𝑘] =  𝑉(𝑡 = 𝑘ℎ) and 𝑓𝑂[𝑘] =
1

ℎ
∫ 𝑓𝑂(𝑡)𝑑𝑡
(𝑘+1)ℎ

𝑘ℎ
. 

The main constraints, that are the maximum and minimum 

values of the tank volumes, can be expressed in matrix form as 

𝑉𝑚𝑖𝑛 ≤ 𝑉[𝑘] ≤ 𝑉𝑚𝑎𝑥   (14) 

5. OPTIMIZATION PROBLEM 

As described in Sanchis (2020), the idea is to run an 

optimization periodically, with a short period, with a time 

horizon of at least one equivalent day, but applying only the 

computed control actions until the next optimization is run, i.e. 
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a classical predictive control approach. We can define the 

basic optimization problem as the minimization of the energy 

cost, with the only constraints of maintaining the volumes of 

the tanks between their limits. However, as detailed in Sanchis 

(2020), other conditions must be taken into account for the 

algorithm to be useful. Some of them will be constraints, while 

other can be included in the cost function. These are 

 We must impose a constraint to guarantee that the tanks 

finish the day with a volume equal or greater than their initial 

value (otherwise, the tanks will always finish completely 

empty).  

 We must also impose that the volumes are maximum at a 

given instant, more precisely at the end of the cheapest tariff 

period (at 8 a.m.). We can add this objective as a constraint, 

but if the time when the optimization is run is close to that 

instant, the optimization could be unfeasible. In that case, 

instead of a constraint, we can add a term to the cost 

function, to approach the maximum tank levels as much as 

possible. 

 We add the number of commutations of pumps and valves 

to the cost index, with a weighting factor. If this is not 

included, the result may be a huge number of pump starts 

and stops that are not applicable in practice.  

 Another problem that can make the optimization unfeasible 

is the maximum or minimum volumes violation in the 

instant when the optimization is run. This can happen due to 

the uncertainty in the outlet flow, that can result in a final 

volume higher or lower than expected. The unfeasibility is 

due to an initial constraint violation. We must do two things 

to solve this problem. First, the volumes limits must be 

chosen with a safety margin with respect physical tank 

limits. And second, we must widen the volume limits 

constraints at the first instants of the time horizon. 

 Two different discretizing periods must be used to reduce 

the computational complexity: a small one (h) for the first 

instants that define the control actions that will be applied, 

and a higher one (Lh) for the rest of the time horizon. 

Furthermore, the decision variables are initially binary, what 

results in a high computing cost optimization. To reduce the 

complexity, the decision variables of the short periods will 

remain binary, but the ones related to the larger periods (Lh) 

will be real variables.  

Taking all the previous things into account, and defining the 

following vectors and matrices 

𝑇[𝑘] = {
𝑇(𝑡 = 𝑘ℎ) 𝑖𝑓 𝑘 ≤ 𝑘𝑚

𝑇(𝑡 = 𝑘𝑚ℎ + (𝑘 − 𝑘𝑚)𝐿ℎ) 𝑖𝑓 𝑘 > 𝑘𝑚
   (16) 

𝑓𝑂[𝑘] = {

1

ℎ
∫ 𝑓𝑂(𝑡)
(𝑘+1)ℎ

𝑘ℎ
𝑑𝑡 𝑖𝑓 𝑘 ≤ 𝑘𝑚

1

𝐿ℎ
∫ 𝑓𝑂(𝑡)
𝑘𝑚ℎ+(𝑘+1−𝑘𝑚)𝐿ℎ

𝑘𝑚ℎ+(𝑘−𝑘𝑚)𝐿ℎ
𝑑𝑡 𝑖𝑓 𝑘 > 𝑘𝑚

    (17) 

Δ = [
𝛿[1]
⋮

𝛿[𝑘𝑀]
]

𝑘𝑀𝑁𝑐×1

  (18) 

𝑇 = 
ℎ

60
[𝑇[1]  ⋯  𝑇[𝑘𝑚]  𝑇[𝑘𝑚 + 1]𝐿 ⋯  𝑇[𝑘𝑀]𝐿] (19) 

𝑃 = [

𝑃 0 ⋯ 0
0 𝑃 ⋱ ⋮
⋮
0

⋱
⋯

⋱ ⋮
0 𝑃

]

𝑘𝑀𝑁𝑝×𝑘𝑀𝑁𝑐

  (20) 

𝐹𝑘 = [
𝐹𝑇⋯𝐹𝑇⏟    
𝑘𝑚

𝐿𝐹𝑇⋯𝐿𝐹𝑇⏟      
𝑘−𝑘𝑚

0⋯0
]
𝑁𝑡×𝑘𝑀𝑁𝑐

    (21) 

𝐼𝑘 = [
0⋯0⏟  
(𝑘−1)𝑁𝑐

1⋯1⏟  
𝑁𝑐

0⋯0
]
1×𝑘𝑀𝑁𝑐

 (22) 

�̂�𝑂[𝑘] = ∑ 𝑓𝑂[𝑖]
𝑘𝑚
𝑖=1 + 𝐿∑ 𝑓𝑂[𝑖]

𝑘
𝑖=𝑘𝑚+1

 (23) 

𝑉𝑠𝑢𝑝[𝑘] = [
𝑉𝑠𝑢𝑝,1[𝑘]

𝑉𝑠𝑢𝑝,2[𝑘]
]  (24) 

𝑉𝑠𝑢𝑝,𝑗[𝑘] = {

𝑉𝑚𝑎𝑥,𝑗 𝑖𝑓 𝑉𝑗(0) ≤ 𝑉𝑚𝑎𝑥,𝑗 , ∀𝑘

𝑉𝑚𝑎𝑥,𝑗 𝑖𝑓 𝑉𝑗(0) > 𝑉𝑚𝑎𝑥,𝑗 , ∀𝑘 > 𝑘𝑚
𝑉𝑗(0)(𝑘𝑚−𝑘)+𝑉𝑚𝑎𝑥,𝑗𝑘

𝑘𝑚
𝑖𝑓 𝑉𝑗(0) > 𝑉𝑚𝑎𝑥,𝑗 , ∀𝑘 ≤ 𝑘𝑚

(25) 

𝑉𝑖𝑛𝑓[𝑘] = [
𝑉𝑖𝑛𝑓,1[𝑘]

𝑉𝑖𝑛𝑓,2[𝑘]
]  (26) 

𝑉𝑖𝑛𝑓,𝑗[𝑘] = {

𝑉𝑚𝑖𝑛,𝑗 𝑖𝑓 𝑉𝑗(0) ≥ 𝑉𝑚𝑖𝑛,𝑗 , ∀𝑘

𝑉𝑚𝑖𝑛,𝑗 𝑖𝑓 𝑉𝑗(0) < 𝑉𝑚𝑖𝑛,𝑗 , ∀𝑘 > 𝑘𝑚
𝑉𝑗(0)(𝑘𝑚−𝑘)+𝑉𝑚𝑖𝑛,𝑗𝑘

𝑘𝑚
𝑖𝑓 𝑉𝑗(0) < 𝑉𝑚𝑖𝑛,𝑗 , ∀𝑘 ≤ 𝑘𝑚

(27) 

With this, the cost indexes for the optimization are defined as 

𝐽0 = 𝑇𝑃Δ      (28) 

𝐽𝐶 = 𝛼𝑐𝑠𝑢𝑚 (𝑎𝑏𝑠(𝑌𝑁𝑐[𝛿𝑎𝑛𝑡; Δ(1: (𝑘𝑚 − 1)𝑁𝑐)])) (29) 

𝐽𝑣 = 𝛼𝑉 (�̂�𝑂[𝑘𝑉] − 𝐹𝑘𝑉Δ + 60
𝑉𝑜𝑏𝑗−𝑉(0)

ℎ
)      (30) 

While the common constraints are 

𝐹𝑘Δ ≥ 60
𝑉𝑖𝑛𝑓[𝑘]−𝑉(0)

ℎ
+ �̂�𝑂[𝑘], 𝑘 = 1,… , 𝑘𝑀     (31) 

𝐹𝑘Δ ≤ 60
𝑉𝑠𝑢𝑝[𝑘]−𝑉(0)

ℎ
+ �̂�𝑂[𝑘], 𝑘 = 1,… , 𝑘𝑀  (32) 

𝐹𝑘𝑀Δ ≥ �̂�𝑂[𝑘𝑀]    (33) 

𝐼𝑘Δ = 1, 𝑘 = 1,… , 𝑘𝑀   (34) 

Δ𝑖ϵ{0,1}ϵ ℕ, 𝑖 = 1, … , 𝑘𝑚𝑁𝑐  (35) 

Δ𝑖ϵ{0,1}ϵ ℝ, 𝑖 = 𝑘𝑚𝑁𝑐 + 1,… , 𝑘𝑀𝑁𝑐 (36) 

 

With an additional constraint to impose max. volumes at 8 p.m.   

𝐶𝑉: =      𝐹𝑘𝑉Δ ≥ �̂�𝑂[𝑘𝑉] + 60
𝑉𝑜𝑏𝑗−𝑉(0)

ℎ
  (37) 

The possible optimization problems are both Mixed Integer 

Programming 

1) Minimize J0+JC subject to common constraints plus Cv. 

2) Minimize J0+JC+JV subject to common constraints. 

We propose at each sampling time to first use problem 1 to try 

to assure maximum volumes of the tanks at the required time, 

but change to problem 2 in case of unfeasibility. 

6.  OUTPUT FLOW PREDICTION 

For the previous optimization problem a prediction of the 

future output flow is needed. As described in Sanchis (2020), 
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we propose, at each instant, to set the prediction for the instant 

located 24 hours in the future as a weighted average of the 

current measurement and the one taken 6 days before. The 

weights depend on the type of day in the week. The current 

prediction would be simply updated as 

𝑓𝑂[𝑘] = 𝑓𝑂[𝑘]   (38) 

where 𝑓𝑂[𝑘] is the output flow measured at the instant 𝑘 =
𝑡

ℎ
  

(with h the sampling period). Defining the weighting factors 

𝛽𝑑 and 𝛽𝑤, such that 𝛽𝑑 + 𝛽𝑤 = 1, the prediction for the 24 

hours future instant is 

𝑓𝑂 [𝑘 + 1440 ∙
60

ℎ
] = 𝛽𝑑𝑓𝑂[𝑘] + 𝛽𝑤𝑓𝑂 [𝑘 − 6 ∙ 1440 ∙

60

ℎ
] (39) 

The weighting factors depend on the type of day in the week. 

For example, from Monday to Thursday, 𝛽𝑑 should be closed 

to 1, because the next business day should be similar to the 

current one. 

On the other hand, we can improve the prediction of the 

immediate future instants with the last measurement taken. 

The next predictions are updated with an exponential 

weighting (defined by time constant 𝑡𝑓) from the current 

prediction error 

𝑓𝑂[𝑘 + 𝑖|𝑘] = 𝑓𝑂[𝑘 + 𝑖|𝑘 − 1] + 𝑒
−𝑖ℎ
𝑡𝑓 (𝑓𝑂[𝑘] − 𝑓𝑂[𝑘|𝑘 − 1]), 

𝑖 = 0,… ,4𝑡𝑓   (40) 

where 𝑓𝑂[𝑘|𝑘 − 1] is the prediction at instant k before the 

measurement 𝑓𝑂[𝑘] is taken. 

7.  EXPERIMENTAL SETUP 

The output flow to consumers is emulated with a Fourier series 

(41) that is computed by the PLC. 

𝑓𝑂 = (𝑎0 + 𝑎1 cos(𝑤𝑡) + 𝑎2 cos(2𝑤𝑡) +     𝑎3 cos(3𝑤𝑡) +

𝑏1𝑠𝑖𝑛(𝑤𝑡) + 𝑏2𝑠𝑖𝑛(2𝑤𝑡) + 𝑏3𝑠𝑖𝑛(3𝑤𝑡)) ∙ 𝜀 ∙ (1 + 𝑟𝑎𝑛𝑑)

  (41) 

Where 𝑤 = 2𝜋 1440⁄ , 𝑎0 = 97.64, 𝑎1 = −36.18, 𝑎2 =
−4.421, 𝑎3 = 14.34, 𝑏1 = 1.699, 𝑏2 = −17.57, 𝑏3 = 4.85. 

The constant  is selected such that the flow varies from a 

minimum of 0.5 to a maximum of around 2 l/min, as shown in 

figure 2. The rand term has average 0 and amplitude 0.1. 

 

 

 

Fig. 2. Output flow to consumers. 

For the experiments, the lab plant described in section 2 has 

been used. The flows supplied by the filling pumps are fixed 

as 𝑓11 = 2, 𝑓21 = 1.7, 𝑓22 = 1.9. The electric tariffs of the 

pumps are detailed in table 2. 

Table 2.  Electric tariffs 

Periods Pump 1 Pump 2 

0 < t < 480 0.063 0.066 

480 < t < 540 0.079 0.088 

540 < t < 600 0.1 0.088 

600 < t < 900 0.1 0.099 

900 < t < 960 0.079 0.099 

960 < t < 1440 0.079 0.088 

Finally, for the electric power of the pumps, three different 

cases are considered, as detailed in table 3. 

Table 3.  Electric power of pumps 

Case P11 P21 P22 

1 45 60 30 

2 60 45 30 

3 45 45 30 

On the other hand, the parameters used for the optimization 

are: short period h=1.3 s, long period L=30, prediction horizon 

𝑡𝐻 =1872 s (equivalent to 1 day in large scale), number of 

short periods km=30, total number of periods kM=77, weighting 

factors 𝛼𝑐 = 0.05, 𝛼𝑣 = 0.001. 

8. RESULTS 

Three different experiments have been carried out with the 

setup described in the previous section, with the electric power 

of pumps according to cases 1 to 3 in table 3. The duration of 

the experiments is 3744 seconds, that is equivalent to a two 

days in a large scale system. The figures 3, 4 and 5 show the 

behaviour of the tank volumes, the flow of the pumps, the 

outlet flow and the state of valves for the three cases. 

Depending on the power of the pumps, the result of the 

optimization tends to use more frequently the lowest power 

one. This can be seen especially in the number of 

commutations of valves in the case 2, where the pump 2 is used 

whenever is possible to fill up tank 1. 
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Fig. 3. Results of experiment. Case 1. 

 
Fig. 4. Results of experiment. Case 2. 

 
Fig. 5. Results of experiment. Case 3. 

The Figure 6 shows the results of the simulation of case 2. 

Compared to Figure 4, the behaviour is very similar, 

demonstrating that the experimental plant behaves as 

expected. The same can be concluded from table 4.  

On the other hand, two experiments have been carried out to 

test the effect of factor 𝛼𝑐. The total cost with 𝛼𝑐 = 0.2  is only 

a 0.2% higher than with 𝛼𝑐 = 0.05, while the commutations 

are reduced from 36 to 26 per day. 

 
Fig. 6. Results of simulation. Case 2. 

Table 4.  Experiments vs simulations comparison 

Case %ON P1 %ON P2 J (€) 

1 exp. 55.7 66 176.1 

1 sim. 55.9 67.2 178.9 

2 exp. 44.2 79.6 205.3 

2 sim. 45 77.2 204.7 

3 exp. 55.8 67.5 179.4 

3 sim. 56.1 67 178.5 

9. CONCLUSIONS 

A lab pumping plant has been developed to emulate a large 

scale water supply pumping system. It has been scaled both 

physically and in time. The plant is connected to Matlab via 

Modbus TCP, and the purpose is to test optimal pumping 

strategies. The plant has been verified by testing an optimal 

control strategy, that minimizes the pumping energy cost, 

leading to results that are comparable to simulations. 
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