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Abstract: In this paper, an adaptive iterative learning control (AILC) scheme is designed for discrete-time 

nonlinear systems with random initial condition and time-iteration-varying parameter. The time-iteration-

varying parameter is generated by a general iteration-varying high-order internal model (HOIM) with 

iteration-varying order and coefficients, and the parameter updating law is designed based on least square 

method. Compared with the existing works based on iteration-invariant HOIM with fixed order and 

coefficients, our work significantly extends the application scope of HOIM-based ILC. Using the designed 

HOIM based iterative learning controller, the learning convergence in the iteration domain is guaranteed 

through rigorous theoretical analysis under Lyapunov theory. Moreover, an illustrative example is given to 

demonstrate the effectiveness of the proposed method. 
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1. INTRODUCTION 

Iterative learning control (ILC) can use the system information 

in the past iterations to update the control command in the 

current iteration and improve the control performance. It was 

first proposed and designed to track the expected target for the 

repetitive behaviour of industrial robots (Uchiyama, 1978; 

Arimoto, 1984; Craig, 1984). ILC has unique advantages for 

controlled objects with repetitive characteristics. It has been 

applied in various fields, e.g., robot manipulators (Tchoń, 

2010; Smith et al., 2015), wastewater treatment (Huang et al., 

2011), and multi-agent systems (Li et al., 2015). 

Traditional ILC has strict assumptions about the repetitiveness 

or iteration-invariance of key factors, such as the reference 

trajectories, system parameters, initial conditions, external 

disturbances, etc. But in practice, it is difficult to meet the 

requirements of strict repetitiveness. Non-strict repetitiveness 

means that a system which runs repeatedly exhibits different 

dynamic characteristics during each run. For example, control 

the robot manipulator to continuously draw different circles or 

carry standard parts with different mass (Xu, 1997; Chen et al., 

2002). In addition, systems are generally subject to state 

disturbance, measurement noise, input disturbance and so on 

(Saab, 2001; Ahn et al., 2009). Under the condition of non-

strict repetitiveness, the ILC design based on strict 

repetitiveness cannot achieve the prefect control effect, and 

even make the system divergent.  

In fact, non-repetitive or iteration-varying problems can be 

generally divided into two situations: with known variation 

pattern or unknown variation pattern (Zhou et al., 2015). In the 

case of unknown variation pattern, robust ILC is mainly used 

to overcome the influence of non-repetitiveness (Bu et al., 

2011; Yu et al., 2017). In view of the known variation pattern, 

many researchers have exploited the high-order internal model 

(HOIM) along the iteration axis to describe the iteration-

varying pattern of the system and design the iterative learning 

control law, to completely eliminate the effects of non-

repetitiveness (Yu et al., 2019). The internal model principle 

provides a theoretical basis for the system to perfectly track the 

reference signals without steady-state errors (Francis et al., 

1975). Chen et al. (2002) analysed the influence of external 

disturbance on learning performance based on HOIM, and the 

internal model principle in the iteration domain is used to 

design the iterative learning control algorithm. HOIM can be 

also used to describe the iteration-varying desired trajectories 

of the system, and the internal model coefficients are used to 

design the learning gain parameters, which makes it satisfy the 

convergence condition of the contraction mapping method 

(Liu et al., 2010). The HOIM is introduced to the continuous-

time nonlinear dynamic systems in (Yin et al., 2010), in which 

the iteration-varying unknown parameter is depicted by HOIM 

and the adaptive ILC (AILC) method is used to guarantee the 

convergence of the tracking errors. AILC scheme developed 

hitherto is designed by means of Lyapunov theory (Yu et al., 

2012; Chi et al., 2015). HOIM-based ILC is introduced into 

the discrete-time systems by Zhou et al. (2015), and the zero-

error tracking along the iteration direction is ensured with the 

contraction mapping method. 

However, the existing HOIM methods all assume that the used 

HOIM is invariant in the direction of iteration, which means, 

the change rule of non-repetitiveness factors with iteration is 

invariant, which is also difficult to be fully satisfied in reality. 

For example, the change rules of reference trajectories or 
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system parameters between successive iterations may be 

different. Therefore, it is of great significance to consider the 

HOIM which is iteration-varying. In the case that the HOIM 

varies with iteration, there have been no research about how to 

use the known change rule to define and describe the iteration-

varying HOIM, which is used to make the system tracking 

errors asymptotically convergent along the iteration axis. In 

addition, the applications of HOIM-based ILC in discrete-time 

systems and nonlinear systems are relatively few, but discrete-

time nonlinear systems are widespread in practice. 

Therefore, this paper considers a discrete-time nonlinear 

system with unknown time-iteration-varying parameters, in 

which the change rule of the unknown parameters with 

iteration is expressed as an iteration-varying HOIM, and the 

appropriate control law is designed by using the discrete 

adaptive learning control method, so that the system tracking 

errors converge asymptotically to zero along the iteration axis. 

The contributions of this article are presented as: ⅰ) The 

HOIM for iteration-dependent parameters is considered as 

iteration-varying, and the dimension of the HOIM matrix is 

uniformed by choosing an upper bound for iteration-varying 

orders of the HOIM. ⅱ) The AILC scheme is applied to the 

discrete-time nonlinear system with iteration-varying 

parameters described by an iteration-varying HOIM. 

This paper is organized as follows. In Section 2, the problem 

formulation is given. Next, the iteration-varying HOIM-based 

adaptive ILC scheme is designed in Section 3. Then, the 

learning convergence is proved in Section 4. The proposed 

adaptive ILC scheme is applied in an illustrative example in 

Section 5. Finally, the conclusion is elaborated in Section 6.  

2. PROBLEM FORMULATION 

In this paper, we consider a discrete-time nonlinear system as 

follows:  

𝑥𝑘(𝑡 + 1) = 𝜃𝑘(𝑡)𝜉(𝑥𝑘(𝑡), 𝑡) + 𝑏𝑘(𝑡)𝑢𝑘(𝑡)          (1) 

where 𝑘 ∈ 𝑍+denotes the k-th iteration and 𝑡 ∈ {0,1, … , 𝑇} is 

the discrete time index. 𝑥𝑘(𝑡) ∈ 𝑅 is the measurable state with 

random initial value 𝑥𝑘(0) . 𝑢𝑘(𝑡) ∈ 𝑅  is the system input. 

𝜃𝑘(𝑡) ∈ 𝑅  is the unknown time-iteration-varying parameter. 

𝜉(𝑥𝑘(𝑡), 𝑡) is the known nonlinear function. 𝑏𝑘(𝑡) ∈ 𝑅 is the 

iteration-varying gain of the system input. The dimension of 

the system is one. 

The reference trajectory in the k-th iteration is denoted as 

y𝑘
𝑟(𝑡). 

We have the following assumptions. 

Assumption 1 𝑏𝑘(𝑡)  are bounded and non-zero for all 𝑡 ∈
{0,1, … , 𝑇}. 

Assumption 2 𝑥𝑘(0) and  y𝑘
𝑟(𝑡) are uniformly bounded for all 

𝑡 ∈ {0,1, … , 𝑇}  and 𝑘 ∈ 𝑍+ , which means |𝑥𝑘(0)| ≤ 𝛼1  and 

|y𝑘
𝑟(𝑡)| ≤ 𝛼2, where 𝛼1, 𝛼2 are constants. 

Assumption 3 𝜉(𝑥𝑘(𝑡), 𝑡) satisfies the linear growth condition, 

that is, ∀𝑡 ∈ {0,1, … , 𝑇} and ∀𝑘 ∈ 𝑍+, we have  

|𝜉(𝑥𝑘(𝑡), 𝑡)| ≤ 𝛽1 + 𝛽2|𝑥𝑘(𝑡)|                   (2) 

where 0 < 𝛽1 < ∞ and 0 < 𝛽2 < ∞ are positive constants. 

Assumption 4 The time-iteration-varying unknown parameter 

𝜃𝑘(𝑡)  is bounded, and is generated by a general iteration-

varying HOIM as  

𝜃𝑘(𝑡) = ℎ1(𝑘)𝜃𝑘−1(𝑡) + ℎ2(𝑘)𝜃𝑘−2(𝑡) + ⋯+
                             ℎ𝑚(𝑘)(𝑘)𝜃𝑘−𝑚(𝑘)(𝑡)                                               (3) 

where 𝑚(𝑘) is the iteration-varying order of the HOIM and 

ℎ𝑙(𝑘), 𝑙 = 1⋯𝑚(𝑘) are coefficients of the iteration-varying 

HOIM, 𝑘 is the iteration number. 

Remark 1 In practice, it is possible that at the k-th iteration, the 

unknown factor 𝜃𝑘(𝑡) is related to the process of the previous 

m iterations, while at the (𝑘 + 1)-th iteration, the unknown 

factor 𝜃𝑘+1(𝑡)  is related to the process of the previous n 

iterations, that is, the order 𝑚(𝑘) of the HOIM will change 

with iteration. In addition, it is also possible that the correlation 

relationship changes, that is, the coefficients of HOIM changes. 

Define 𝜽𝑘(𝑡) = [𝜃𝑘+1−𝑚(𝑘)(𝑡)⋯𝜃𝑘−1(𝑡)   𝜃𝑘(𝑡)]
T, and  

𝑨(𝑘) =

[
 
 
 
 

0 1 0 … 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

ℎ𝑚(𝑘)(𝑘) ℎ𝑚(𝑘)−1(𝑘) ℎ𝑚(𝑘)−2(𝑘) ⋯ ℎ2(𝑘) ℎ1(𝑘)]
 
 
 
 

     

                 (4) 

If m(k) is a positive constant, the following relationship can be 

easily obtained  

𝜽𝑘(𝑡) = 𝑨(𝑘)𝜽𝑘−1(𝑡) = ⋯ = ∏ 𝑨(𝑘 − 𝑖)𝑘−1
𝑖=0 𝜽0(𝑡)   (5) 

where 𝜽0(𝑡) = [𝜃−𝑚(𝑘)+1(𝑡)⋯ 𝜃0(𝑡)]
T  is the time-varying 

iteration-invariant vector consisting of the unknown basis 

functions of HOIM and the unknown basis functions are 

linearly independent. 

But when 𝑚(𝑘) is iteration-varying, 𝑚(𝑘) may be different at 

each iteration, so that the above HOIM matrixes 𝑨(𝑘) (𝑘 ∈ 𝑍+) 

cannot be multiplied directly. In practice, there always exists 

an upper bound 𝑀 for the order of HOIM such that 𝑚(𝑘) ≤ 𝑀. 

We will utilize this relationship to uniform the dimension of 

𝑨(𝑘). 

Then we have 

{
ℎ𝑚(𝑘)+1(𝑘) = ⋯ = ℎ𝑀(𝑘) = 0,𝑚(𝑘) < 𝑀

ℎ𝑀(𝑘) ≠ 0,                                      𝑚(𝑘) = 𝑀
        (6) 

Redefine 𝜹𝑘(𝑡) = [𝜃𝑘+1−𝑀(𝑡)⋯𝜃𝑘−1(𝑡)   𝜃𝑘(𝑡)]
T, and  

𝚲(𝑘) =

[
 
 
 
 

0 1 0 … 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

ℎ𝑀(𝑘) ℎ𝑀−1(𝑘) ℎ𝑀−2(𝑘) ⋯ ℎ2(𝑘) ℎ1(𝑘)]
 
 
 
 

   

(7) 
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Then according to (5) and (7), we can easily obtain 

𝜹𝑘(𝑡) = 𝚲(𝑘)𝜹𝑘−1(𝑡) = ⋯ = ∏ 𝚲(𝑘 − 𝑖)𝑘−1
𝑖=0 𝜹0(𝑡)    (8) 

where 𝜹0(𝑡) = [𝜃−𝑀+1(𝑡)⋯ 𝜃0(𝑡)]
T is the generalized time-

varying iteration-invariant vector consisting of the unknown 

basis functions. Define the last row of matrix ∏ 𝚲(𝑘 − 𝑖)𝑘−1
𝑖=0  

as 𝒂𝑘 = [𝑎1,𝑘  𝑎2,𝑘⋯𝑎𝑀,𝑘] , and the following  relationship 

can be obtained according to (8) 

𝜃𝑘(𝑡) = 𝒂𝑘𝜹0(𝑡)                                 (9) 

Remark 2 To make HOIM neutrally stable, ℎ𝑙(𝑘), 𝑙 = 1⋯𝑀 

are the coefficients of a stable characteristic polynomial 

𝑃(𝑧) = 𝑧𝑀 − ℎ1(𝑘)𝑧
𝑀−1⋯− ℎ𝑀(𝑘) , where all roots of its 

characteristic equation lie inside the unit circle or the roots 

with unit modulus are single. 

Remark 3 From (9), we divide the unknown time-iteration-

varying unknown parameter into the product of a known 

iteration-varying vector and unknown time-varying iteration-

invariant basis function; thus, the learning objective can be 

shifted from 𝜃𝑘(𝑡) to 𝜹0(𝑡) that is time-varying only (Yu et al., 

2017). 

Denote 𝑒𝑘(𝑡) = 𝑦𝑘
𝑟(𝑡) − 𝑥𝑘(𝑡) and 𝑒𝑘(𝑡 + 1) = 𝑦𝑘

𝑟(𝑡 + 1) −
𝑥𝑘(𝑡 + 1). According to (1) and (9), we obtain that 

𝑒𝑘(𝑡 + 1)/𝑏𝑘(𝑡) = [𝑦𝑘
𝑟(𝑡 + 1) − 𝒂𝑘𝜹0(𝑡)𝜉(𝑥𝑘(𝑡), 𝑡)]/𝑏𝑘(𝑡)

− 𝑢𝑘(𝑡) 

                               =
𝑦𝑘
𝑟(𝑡+1)

𝑏𝑘(𝑡)
−Φ𝑘(𝑡)𝜑(𝑡) − 𝑢𝑘(𝑡)             (10)                         

where Φ𝑘(𝑡) = 𝒂𝑘𝜉(𝑥𝑘(𝑡), 𝑡) ∕ 𝑏𝑘(𝑡) and 𝜑(𝑡) = 𝜹0(𝑡), and 

the argument 𝑥𝑘(𝑡) is omitted where no ambiguity arises. 

The control objective is to design a control input 𝑢𝑘(𝑡) (𝑡 ∈
{0,1, … , 𝑇 − 1}), so that the actual system output 𝑥𝑘(𝑡) tracks 

the reference trajectory 𝑦𝑘
𝑟(𝑡), asymptotically as the iteration 

number 𝑘 → ∞. 

3. ILC SCHEME DESIGN  

The designed controller is as follows 

𝑢𝑘(𝑡) = 𝑦𝑘
𝑟(𝑡 + 1) ∕ 𝑏𝑘(𝑡) − Φ𝑘(𝑡)𝜑

^

𝑘(𝑡)            (11) 

where 𝜑
^

𝑘(𝑡) is the estimate of 𝜑𝑘(𝑡) at k-th iteration. Based 

on the least square method, the updating law for 𝜑
^

𝑘(𝑡)  is 

designed as 

𝜑
^

𝑘(𝑡) = 𝜑
^

𝑘−1(𝑡) − 𝑃𝑘−1(𝑡)Φ𝑘−1
T (𝑡)𝑒𝑘−1(𝑡 + 1) ∕ 𝑏𝑘(𝑡)  (12) 

where 𝑃𝑘−1(𝑡) is a positive-definite learning gain matrix and 

is updated iteratively as 

𝑃𝑘−1(𝑡) = 𝑃𝑘−2(𝑡) −
𝑃𝑘−2(𝑡)Φ𝑘−1

T (𝑡)Φ𝑘−1(𝑡)𝑃𝑘−2(𝑡)

1+Φ𝑘−1(𝑡)𝑃𝑘−2(𝑡)Φ𝑘−1
T (𝑡)

     (13) 

Remark 4 The initial value 𝑃−1(𝑡)  and 𝜑
^

0(𝑡)  can be given 

arbitrarily. 

Remark 5 The traditional discrete-time adaptive control 

method which updates point by point in the time domain is not 

applicable to this problem because the uncertain parameters 

are discrete-time-varying and a prefect tracking is required on 

a finite time interval. In addition, uncertain parameters are 

iteration-varying, the discrete adaptive ILC method proposed 

in (Chi et al., 2008) is also not applicable to this problem. Since 

𝜃𝑘(𝑡) satisfies a certain HOIM in the iteration domain, the 

proposed parameter learning law is a format of parallel 

updating of a group of vectors. 

4. LEARNING CONVERGENCE ANALYSIS 

Theorem 1 For discrete-time nonlinear systems (1) with 

assumptions 1-4, the proposed AILC law (11) with learning 

updating law (12) and (13) can guarantee that the tracking 

error 𝑒𝑘(𝑡)  converges to zero asymptotically as iteration 

number k approaches infinity for all 𝑡 ∈ {1,2,⋯ , 𝑇}, that is,  

𝑙𝑖𝑚
𝑘→∞

𝑒𝑘(𝑡) = 0, ∀𝑡 ∈ {1,2,⋯ , 𝑇}               (14) 

Proof  This proof consists of two parts. 

Substituting (11) into (10), it can be obtained that 

𝑒𝑘(𝑡 + 1) ∕ 𝑏𝑘(𝑡) = Φ𝑘(𝑡) (𝜑
^

𝑘(𝑡) − 𝜑(𝑡)) = Φ𝑘(𝑡)𝜑̃𝑘(𝑡)   (15) 

Then 

𝜑̃𝑘(𝑡) = 𝜑
^

𝑘(𝑡) − 𝜑(𝑡) 

= 𝜑̃𝑘−1(𝑡) − 𝑃𝑘−1(𝑡)Φ𝑘−1
T (𝑡)𝑒𝑘−1(𝑡 + 1) ∕ 𝑏𝑘(𝑡)   (16) 

According to matrix inverse lemma (Goodwin et al., 1984), we 

have 

𝑃𝑘−1
−1 (𝑡) − 𝑃𝑘−2

−1 (𝑡) = Φ𝑘−1
T (𝑡)Φ𝑘−1(𝑡)           (17) 

Part 1 The boundedness of 𝜑
^

𝑘(𝑡) 

Define the Lyapunov function at the k-th iteration as  

𝐸𝑘(𝑡) = 𝜑̃𝑘
𝑇(𝑡)𝑃𝑘−1

−1 (𝑡)𝜑̃𝑘(𝑡)                   (18) 

where 𝐸𝑘(𝑡)  is non-negative because 𝑃𝑘−1(𝑡)  is a positive-

definite matrix and its inverse matrix is positive-definite. 

The difference of 𝐸𝑘(𝑡) along the iteration axis is 

Δ𝐸𝑘(𝑡) = 𝐸𝑘(𝑡) − 𝐸𝑘−1(𝑡) = 𝜑̃𝑘
𝑇(𝑡)𝑃𝑘−1

−1 (𝑡)𝜑̃𝑘(𝑡) 

                        −𝜑̃𝑘−1
𝑇 (𝑡)𝑃𝑘−2

−1 (𝑡)𝜑̃𝑘−1(𝑡), 𝑘 ∈ 𝑍
+                    (19) 

Substituting (16) and (17) into (19), it can be derived that 

Δ𝐸𝑘(𝑡) = (𝜑̃𝑘−1(𝑡) − 𝑃𝑘−1(𝑡)Φ𝑘−1
T (𝑡)𝑒𝑘−1(𝑡 + 1)/𝑏𝑘(𝑡))

𝑇
 

× 𝑃𝑘−1
−1 (𝑡)(𝜑̃𝑘−1(𝑡) − 𝑃𝑘−1(𝑡)Φ𝑘−1

T (𝑡)𝑒𝑘−1(𝑡 + 1)/𝑏𝑘(𝑡)) 

              −𝜑̃𝑘−1
𝑇 (𝑡)𝑃𝑘−2

−1 (𝑡)𝜑̃𝑘−1(𝑡)  

              = 𝜑̃𝑘−1
𝑇 (𝑡)Φ𝑘−1

T (𝑡)Φ𝑘−1(𝑡)𝜑̃𝑘−1(𝑡) 

              −2𝑒𝑘−1(𝑡 + 1)Φ𝑘−1(𝑡)𝜑̃𝑘−1(𝑡)/𝑏𝑘(𝑡)  
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 +Φ𝑘−1(𝑡)𝑃𝑘−1(𝑡)Φ𝑘−1
T (𝑡)(𝑒𝑘−1(𝑡 + 1)/𝑏𝑘(𝑡))

2   (20) 

Form (12), the following equation can be obtained 

1 − Φ𝑘−1(𝑡)𝑃𝑘−1(𝑡)Φ𝑘−1
T (𝑡) =

1

1+Φ𝑘−1(𝑡)𝑃𝑘−2(𝑡)Φ𝑘−1
T (𝑡)

  (21) 

Form (15), (20) and (21), we have  

Δ𝐸𝑘(𝑡) = (Φ𝑘−1(𝑡)𝑃𝑘−1(𝑡)Φ𝑘−1
T (𝑡) − 1)(𝑒𝑘−1(𝑡 + 1) ∕ 𝑏𝑘(𝑡))

2      

          = −
(𝑒𝑘−1(𝑡+1)∕𝑏𝑘(𝑡))

2

1+Φ𝑘−1(𝑡)𝑃𝑘−2(𝑡)Φ𝑘−1
T (𝑡)

                                   (22) 

Therefore, we can get Δ𝐸𝑘(𝑡) ≤ 0 , which means 𝐸𝑘(𝑡) ≤
𝐸𝑘−1(𝑡) ≤ ⋯ ≤ 𝐸0(𝑡). 

So 

𝜑̃𝑘
𝑇(𝑡)𝑃𝑘−1

−1 (𝑡)𝜑̃𝑘(𝑡) ≤ 𝜑̃𝑘−1
𝑇 (𝑡)𝑃𝑘−2

−1 (𝑡)𝜑̃𝑘−1(𝑡) ≤ ⋯        

≤ 𝜑̃0
𝑇(𝑡)𝑃−1

−1(𝑡)𝜑̃0(𝑡)                      (23)   

And according to (17), we can get 

𝜆𝑚𝑖𝑛(𝑃𝑘−1
−1 (𝑡)) ≥ 𝜆𝑚𝑖𝑛(𝑃𝑘−2

−1 (𝑡)) ≥ ⋯ ≥ 𝜆𝑚𝑖𝑛(𝑃−1
−1(𝑡)) > 0 (24)   

Then, we have 

    𝜑̃𝑘
𝑇(𝑡)𝑃𝑘−1

−1 (𝑡)𝜑̃𝑘(𝑡) ≥ 𝜆𝑚𝑖𝑛(𝑃𝑘−1
−1 (𝑡)) ∥ 𝜑̃𝑘(𝑡) ∥

2      

≥ 𝜆𝑚𝑖𝑛(𝑃−1
−1(𝑡)) ∥ 𝜑̃𝑘(𝑡) ∥

2> 0   (25)   

 𝜑̃𝑘
𝑇(𝑡)𝑃𝑘−1

−1 (𝑡)𝜑̃𝑘(𝑡) ≤ 𝜑̃0
𝑇(𝑡)𝑃−1

−1(𝑡)𝜑̃0(𝑡)                            

≤ 𝜆𝑚𝑎𝑥(𝑃−1
−1(𝑡)) ∥ 𝜑̃0(𝑡) ∥

2          (26)   

From (25) and (26), the following equation is true 

∥ 𝜑̃𝑘(𝑡) ∥
2≤ 𝜅 ∥ 𝜑̃0(𝑡) ∥

2                            (27) 

where 𝜅 =
𝜆𝑚𝑎𝑥(𝑃−1

−1(𝑡))

𝜆𝑚𝑖𝑛(𝑃−1
−1(𝑡))

 is a constant. 

Due to 𝜑0(𝑡) and 𝜑̃0(𝑡) is bounded, therefore, ∥ 𝜑̃𝑘(𝑡) ∥ is 

bounded, which means 𝜑̃𝑘(𝑡)  is bounded for all 𝑡 ∈
{1,2,⋯ , 𝑇} and 𝑘 ∈ 𝑍+. 

Part 2 The asymptotical convergence of tracking error 𝑒𝑘(𝑡) 

To sum both sides of equation (22) finitely, we can get 

𝐸𝑘(𝑡) = 𝐸0(𝑡) − ∑
(𝑒𝑗−1(𝑡+1)∕𝑏𝑘(𝑡))

2

1+Φ𝑗−1(𝑡)𝑃𝑗−2(𝑡)Φ𝑗−1
T (𝑡)

𝑘
𝑗=1       (28) 

Because 𝐸𝑘(𝑡) and 𝐸0(𝑡) is non-negative and bounded for all 

𝑡 ∈ {1,2,⋯ , 𝑇} and 𝑘 ∈ 𝑍+, it is easily derived that 

lim
𝑘→∞

∑
(𝑒𝑗−1(𝑡+1)∕𝑏𝑘(𝑡))

2

1+Φ𝑗−1(𝑡)𝑃𝑗−2(𝑡)Φ𝑗−1
T (𝑡)

𝑘
𝑗=1 < ∞                (29) 

That is 

lim
𝑘→∞

𝑒𝑘−1(𝑡+1)∕𝑏𝑘(𝑡)

(1+Φ𝑘−1(𝑡)𝑃𝑘−2(𝑡)Φ𝑘−1
T (𝑡))1/2

= 0                  (30) 

According to Assumption 1, we can obtain that 
1

𝑏𝑘(𝑡)
 is 

bounded, which can be expressed as |
1

𝑏𝑘(𝑡)
| ≤ 𝛽

^

, where 𝛽
^

 is 

a constant. 

From Assumptions 2 and 3, the following relationship can 

be derived that 

 

|𝜉(𝑥𝑘(𝑡), 𝑡)| ≤ 𝛽1 + 𝛽2(|𝑒𝑘(𝑡)| + |𝑦𝑘
𝑟(𝑡)|) 

≤ 𝛽̅ + 𝛽2𝑚𝑎𝑥𝜏=1,⋯𝑡|𝑒𝑘(𝜏)|           (31) 

where 𝛽̅ = 𝛽1 + 𝛽2𝑒𝑘(0) + 𝛽2|𝑦𝑘
𝑟(𝑡)| is bounded, and we 

can also know |𝜉(𝑥𝑘(𝑡), 𝑡)| is bounded. 

From Assumption 4, 𝒂𝑘 is bounded, which can be written as  

∥ 𝒂𝑘 ∥≤ 𝛼
^
, where 𝛼

^
 is a constant. 

Therefore, we can have 

(1 + Φ𝑘−1(𝑡)𝑃𝑘−2(𝑡)Φ𝑘−1
T (𝑡))

1
2
 

≤ 1 + 𝜆𝑚𝑎𝑥(𝑃𝑘−2(𝑡))|
1

𝑏(𝑡)
| ⋅∥ 𝒂𝑘 ∥⋅ |𝜉(𝑥𝑘(𝑡), 𝑡)|   

 ≤ 1 + 𝛼
^
𝛽
^

𝜆𝑚𝑎𝑥(𝑃𝑘−2(𝑡))|𝜉(𝑥𝑘(𝑡), 𝑡)|            (32) 

Using key technology lemma (Goodwin et al., 1984), and 

from (30), (31) and (32), we can get that lim
𝑘→∞

𝑒𝑘−1(𝑡 + 1) =

0, that is,  

lim
𝑘→∞

𝑒𝑘(𝑡) = 0                              (33) 

which implies the asymptotical convergence of tracking error 

𝑒𝑘(𝑡) as k goes to infinity for all 𝑡 ∈ {1,2,⋯ , 𝑇}. 

5.  ILLUSTRATIVE EXAMPLE  

Consider a discrete-time nonlinear system as follows 

𝑥𝑘(𝑡 + 1) =
𝜃𝑘(𝑡) sin(𝑥𝑘

2(𝑡))

10
+ 𝑏𝑘(t)𝑢𝑘(𝑡)          (34) 

y𝑘
𝑟(𝑡) = 1 + 2sin (0.05𝜋𝑡)                        (35) 

where 𝑡 ∈ {1,2,⋯ ,100} is the sampling instant , 
sin(𝑥𝑘

2(𝑡))

10
 is 

the known nonlinear function, and 𝑏𝑘(t) is randomly varying 

in the interval [−1,0) ∪ (0,1]. 

The unknown time-iteration-varying parameter 𝜃𝑘(𝑡)  is 

generated by an iteration-varying HOIM as follows 

{
 

 

                                                 
𝜃𝑘(𝑡) = −2 cos(0.05) 𝜃𝑘−1(𝑡) − 𝜃𝑘−2(𝑡),                     

  𝑘 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 
𝜃𝑘(𝑡) = −𝜃𝑘−1(𝑡) − 2 cos(0.05) 𝜃𝑘−2(𝑡) − 𝜃𝑘−3(𝑡),

        𝑘 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟        

(36) 

where the upper limit of the iteration-varying order M is 3. The 

initial time-varying parameters for 𝜃𝑘(𝑡)  are  𝜃−2(𝑡) =
0.01𝑠𝑖𝑛 (𝑡) , 𝜃−1(𝑡) = 1.4𝑠𝑖𝑛 (0.02𝜋𝑡) ,  and  𝜃0(𝑡) =
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0.3𝑐𝑜𝑠 (0.01𝜋𝑡) . The magnitude variation profile of the 

parameters generated by the iteration-varying HOIM is shown 

in Fig.1. 

The system initial condition 𝑥𝑘(0)(𝑘 ∈ 𝑍
+) is randomly 

varying in the interval [−0.5,0) ∪ (0,0.5]. 

Define the maximum absolute tracking error as 

𝑠𝑢𝑝|𝑒𝑘| = 𝑠𝑢𝑝
𝑡∈{1,2,…,100}

|𝑦𝑘
𝑟(𝑡) − 𝑥𝑘(𝑡)|              (37) 

Using the designed AILC control law (11) and parameter 

learning law (12) and (13), the tracking error 𝑠𝑢𝑝|𝑒𝑘| is shown 

in Fig. 2. The maximum absolute tracking errors along the 

iteration axis converge to zero asymptotically.  

 

Fig. 1 Time-iteration-varying parameter 𝜃𝑘(𝑡) 

 

Fig. 2. The maximum absolute tracking error 𝑠𝑢𝑝|𝑒𝑘| 

The effectiveness of the proposed algorithm can be clearly 

seen for the discrete-time nonlinear system with random initial 

condition and time-iteration-varying unknown parameters. 

 

Fig. 3. The system output at 100th and 150th iteration 

According to Fig. 3, it can be seen that, although there is some 

deviation in the initial state, for the discrete-time system, 

prefect tracking can be always achieved at all discrete-time 

points after iterative learning. 

6. CONCLUSIONS 

We have developed an iteration-varying HOIM based adaptive 

ILC for the discrete-time nonlinear systems with iteration-

varying initial condition and time-iteration-varying unknown 

parameters. Both the theoretical analysis and the simulation 

results demonstrate the effectiveness of the proposed method. 

We have extended the iteration-invariant HOIM based ILC to 

the iteration-dependent HOIM based ILC for discrete-time 

systems, and it can be also further extended to continuous-time 

systems. In addition, we just consider the HOIM of time-

iteration-varying parameters is iteration-varying, but the 

HOIM for non-repetitive reference trajectories could also be 

iteration-varying, which means the change rule of the 

reference trajectories is expressed as the iteration-varying 

HOIM. It can be considered to design the learning gain law by 

using the λ-normal-based contraction mapping method.  
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