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Abstract: In this paper, a novel Repetitive Control (RC) scheme for a class of nonlinear
systems is presented and discussed. This work generalizes the approach proposed in Biagiotti
et al. (2015) where a RC scheme based on the modification of a B-spline reference trajectory
has been presented. Also in this case, the generation of the B-splines based on dynamic filters
plays a crucial role in the control scheme since it allows to implement a feedforward action
that, coupled with an exact feedback linearization and a stabilizing state feedback, makes the
RC robustly asymptotically stable. In this manner, the tracking error at the via-points defining
the reference trajectory is nullified even if parametric uncertainties on the system model or
exogenous (cyclic) disturbances are present. The application to a two-dof robot manipulator
shows the effectiveness of the proposed method and its inherent robustness.
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1. INTRODUCTION

In many industrial applications based on robot manipula-
tors, the tasks to be performed are based on the iteration
of given motion profiles and are therefore inherently cyclic.
For this type of application, the Repetitive Control (RC)
approach represents an effective solution to reduce the
tracking error over repetitions by learning from previous
iterations (Inoue et al. (1981); Hara et al. (1988)). Starting
from this consideration, and observing that in practical
applications the reference signals are typically defined by
means of tools such as Spline, Bezier, Nurbs curves, and
other similar functions, in the seminal work of Biagiotti
et al. (2015) a RC scheme based on the modification of a
B-spline reference trajectory has been proposed with the
purpose of improving the tracking accuracy. This idea, ini-
tially developed for a single-input single-output minimum-
phase plant (a robot joint actuator), has been generalized
to multi-input multi-output systems (in Biagiotti et al.
(2019b) a robot manipulator with a decentralized control
has been considered) and also to non-minimum phase
systems, see Biagiotti et al. (2019a). However, in all these
works the plant is supposed to be linear, while stan-
dard motion control applications are based on nonlinear
mechanisms. For this reason, the same design philosophy
proposed by Biagiotti et al. (2015) has been adapted to
nonlinear systems by exploiting a feedback linearization
approach (Isidori (1995)), that allows e.g. to deal with the
centralized control of a robot manipulator.
The combination of feedback linearization and RC has
been firstly proposed in Ghosh and Paden (2000). How-
ever, to guarantee the stability of the control loop the
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standard time-delay internal model, valid for any peri-
odic signal with period τ , has been approximated by a
finite-dimensional system that takes into account only a
finite number of harmonics.As a consequence, the perfect
tracking of the periodic signal cannot be guaranteed, even
in nominal conditions. This choice is driven by the fact
that for systems with relative degree other than zero, the
asymptotic convergence of the RC loop cannot be achieved
(Hara et al. (1985)). Note that the zero relative degree
condition is generally not satisfied in robot control applica-
tions because of the need for an acceleration measurement.
For the same reason, an approach similar to the one used
by Ghosh and Paden (2000) has been exploited in the
work of Kasac et al. (2008), where a finite set of oscillators
are employed to control a robot manipulator. Alternative
methods are based on the modification of the basic RC
scheme by using an artificial feedthrough term in parallel
to the plant as proposed by Hara et al. (1985), or by
inserting in the internal model loop a low-pass filter Q(s)
in series with the time-delay element. This is what has
been done for instance in a recent paper of Zhou et al.
(2020), where the RC for nonlinear systems is addressed
by using a Lyapunov-based technique.
A completely different approach for solving the issue tied
to the relative degree is based on the design of the RC in
the discrete-time domain, Tomizuka et al. (1988). The con-
trol method proposed in this paper belongs to this class of
solutions since the modification of the control points defin-
ing the B-spline reference trajectory leads to a discrete-
time scheme whose sampling period is the knot span T
between the control points. This represents an undoubted
advantage of this approach, being the time T generally
quite large at least in comparison with the typical sampling
periods of discrete-time systems. Note that the use of B-
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spline functions combined with learning mechanisms, such
as RC and ILC (Iterative Learning Control) and similar,
has been proposed in different works with the purpose of
reducing the complexity of the controller and increasing its
robustness. For instance, in Sadegh and Guglielmo (1992);
Rakprayoon et al. (2011) B-spline functions are employed
to parameterize a feedforward control action that improves
the position control of a robotic manipulator. The control
points defining the spline are modified according to a
learning algorithm based on the tracking error, leading to
the control scheme called Desired Compensation Learning
Law (Sadegh and Guglielmo (1991)). In Wang and Zou
(2014), the precise output tracking of a multiaxis nanoma-
nipulation system is achieved by constructing a library of
the basic output functions, parameterized as B-spline, and
then determining via ILC the corresponding input signals.
Finally, the control is deduced by decomposing the desired
output trajectory according to the function primitives of
the library and by synthesizing the input signal via the
superposition principle.

With respect to the approach initially proposed in Bia-
giotti et al. (2015), the method that we are presenting now
deals with nonlinear systems leading to a control scheme
whose convergence does not depend on the reference input
(while in the former approach the stability of the RC loop
was influenced by the sampling period T and therefore by
the time period between the via-points to be interpolated).
The novel scheme maintains a straightforward implemen-
tation that does not require the tuning of any parameter.
Finally, it is worth highlighting that the use of B-splines is
not imposed by the need of reducing the dimensionality of
a problem but it is the direct consequence of the adoption
of this type of curves for the definition of complex trajec-
tories in many applications involving robots or automatic
machines.

2. OVERVIEW OF THE USED TECHNIQUES

2.1 Reference trajectory generation via B-spline filters

In many practical applications, smooth reference signals
are defined using spline functions interpolating a set of
desired via-points q⋆

k, k = 0, . . . , N − 1. A typical example
is represented by uniform B-splines, i.e. splines in the so-
called B-form characterized by an equally-spaced distribu-
tion of the knots, which are defined as

q(t) =

N−1∑

k=0

p⋆
k B

d(t− kT ), 0 ≤ t ≤ (N − 1)T (1)

where Bd(t) is the uniform B-spline basis function of de-
gree d, T the knot span, that is the distance between knots,
and the constants p⋆

k, called control points, determine
the shape of the curve and are deduced by imposing the
interpolation condition on q⋆

k, i.e.

q(kT ) = q⋆
k, k = 0, . . . , N − 1. (2)

Note that the dimension of p⋆
k ∈ R

m determines the
dimension of the trajectory q(t), that will be defined in
a m-dimensional space.
The particular interest towards uniform B-splines is due
to the fact that they can be generated online by means of
the chain Md(s), composed by d dynamic filters defined
as

M(s) =
1− e−sT

Ts
,

fed by the staircase signal p(t) obtained by maintaining
the value of each control point p⋆

k for the entire period
kT ≤ t < (k + 1)T with a zero-order hold H0(s) applied
to the sequence of impulses p⋆

k of period T (Biagiotti
and Melchiorri (2010)). Obviously, for multi-dimensional
trajectories a separated chain of filters is necessary for
each trajectory component qi(t), by considering the input
sequence p⋆i,k, k = 0, 1, . . . , N − 1.

The degree d of the spline and therefore the number of
filters composing the B-spline generator determines the
smoothness of the output trajectory, which will be a
function of classCd−1. A fundamental property of the filter
for B-spline generation is the possibility to compute online
the profiles of all the time derivatives of the trajectory
up to the order d, as shown in Fig. 1. In this scheme
the B-spline trajectory generator is preceded by a block
that takes into account the computation of the control
points from the via-points. In the majority of applications
this task is performed off-line by solving the linear system
deriving from (2). However, as detailed in Biagiotti et al.
(2019b), the mapping between a sequence of ordered via-
points q⋆

k and the corresponding sequence of control points
p⋆
k can be approximated in the discrete-time domain with

a FIR (with sampling-period T ) defined by

P (z)

Q(z)
≈ H(z) =

r∑

i=−r

h(i) z−i (3)

whose coefficients h(i), in the case of cubic B-splines
(d = 3) used in Sec. 4, are given by

h(i) =
1− α

1 + α
α|i| with α = −2 +

√
3. (4)

Note that the value of h(i) becomes extremely small in
magnitude as |i| grows. This means that for the com-
putation of the control points p⋆

k, only the weights of
the via-points close to q⋆

k are important, while, from a
practical point of view, the others can be neglected with
consequent small approximation errors. Moreover, because
of its definition, the filter H(z) is not causal and the
insertion of a r samples delay is necessary for its practical
implementation.

2.2 Exact state feedback linearization for output tracking

Given a single-input single-output system in the input-
affine state space form, i.e.

ẋ = f(x) + g(x)u (5)

y = h(x) (6)

and assumed that at point x0 its relative degree is r = n,
being n the order of the system 1 , it is always possibile
to find a local coordinate transformation z = Φ(x) in a
neighborhood of x0, which is defined as







z1
z2
...
zn







=







Φ1(x)
Φ2(x)

...
Φn(x)







=








h(x)
Lfh(x)

...
Ln−1
f h(x)








1 This condition is not necessary for for input-output linearization
but it allows to simplify the analysis. Moreover, it is consistent with
the application to robotic systems.
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n−1∑
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i
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− −
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q(1)(t)

q(n−1)(t)

q(n)(t)

q⋆k Control points

computation

1

sn

Fig. 1. Block-scheme representation of a control approach based on feedback linearization and B-spline output reference
generation.

where Lf(h(x)) denotes the Lie derivative of h(x) with
respect to the vector field f(x), that transforms the system
(5)-(6) in

ż1 = z2
ż2 = z3

. . .

żn−1 = zn
żn = b(z) + a(z)u

with a(z) 6= 0. By assuming now the state feedback control
law

u =
1

a(z)
(−b(z) + v)

=
1

a(Φ(x))
(−b(Φ(x)) + v) (7)

the initial nonlinear system is finally transformed in a
linear and controllable system, i.e. a chain of n integrators
with input v and output y, that can be stabilized with
standard techniques for linear systems like for instance the
pole-placement.
By considering the original system (5)-(6), the linearizing
control law (7) becomes

u =
1

LgL
n−1
f h(x)

(−Ln
fh(x) + v), (8)

see Isidori (1995). In order to guarantee the convergence
of the output function to a prescribed function yr(t) the
auxiliary input v can be assumed as

v = y(n)r +

n−1∑

i=0

αi (y
(i)
r − y(i))

= y(n)r +

n−1∑

i=0

αi (y
(i)
r − Li

fh(x)). (9)

By substituting (9) in (8) and then in (5), the error
dynamics

e(n) + αn−1e
(n−1) + . . .+ α1e

(1) + α0e = 0 (10)

with e = yr − y, is obtained. Since the roots of the
characteristic equation associated with (10) can be freely
chosen by acting on parameters αi, the decay of the error
can be made arbitrarily fast. Remark. The proposed
approach can be extended to multi-input multi-output
systems of the form

ẋ = f (x) + gT (x)u

y = h(x)

provided that the number of inputs u equals the number
of outputs y. In particular, if {r1, . . . , rm} denotes the
relative degree at a point x0, the system of order n can be
decomposed into m chains of ri integrators each, i.e.

G(s) =








1
sr1

0 . . . 0
0 1

sr2
. . . 0

...
...

. . .
...

0 0 . . . 1
srm








,

if
r1 + r2 + . . .+ rm = n

and the decoupling matrix

Q =








Lg1L
r1−1
f h1(x) . . . LgmLr1−1

f h1(x)

Lg1L
r2−1
f h2(x) . . . LgmLr2−1

f h2(x)
...

...
...

Lg1L
rm−1
f hm(x) . . . LgmLrm−1

f hm(x)








is nonsingular at x0 (Isidori (1995)).
This is exactly the case of a robot manipulator.

3. FEEDBACK LINEARIZATION-BASED
REPETITIVE CONTROL

The application of a B-spline reference signal generated by
dynamic filters to a feedback linearized nonlinear system
is straightforward, provided that the relative degree r of
the plant (which in this case is supposed to be equal to
its order n) does not exceed the degree d of the spline,
and accordingly the number of filters composing the gen-
erator. In Fig. 1 the combination of these two elements is
shown in a schematic manner. Note the role of the real-
time trajectory generator that, together with the reference
spline, provides the value of the derivatives used for the
computation of the feedforward control action.
In nominal conditions, this scheme is sufficient for obtain-
ing asymptotic perfect tracking of the planned B-spline
trajectory. However, even if estimation parametric uncer-
tainties and possible exogenous disturbances do not desta-
bilize the system, they rapidly deteriorate the tracking
performance. For this reason, the feedback linearization
control approach described in Sec. 2.2 is often coupled
with a mechanism for improving its robustness, starting
from a simple integral control as in Khalil (2002). In this
paper, the controlled system and the trajectory generator
are both inserted in an outer control loop that includes
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Discrete-time subsystem (T )Discrete-time subsystem (T ) Continuous-time subsystem P (s)Continuous-time subsystem P (s)
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Lin. System
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i=0

αis
i

n−1∑

i=0

αis
i

1

sn
1

sn
sn+

n−1∑

i=0

αis
isn+

n−1∑

i=0

αis
iMd(s)Md(s)z−rH(z)z−rH(z)

z−Nz−N

z−mz−m z−n+m+rz−n+m+r

++ −−−

TTT
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r
k

qmod(t−mT ) v(t−mT )

y(t−mT )

qk−mqk−m

q⋆k q⋆k−mq⋆k−m q̃k−mq̃k−m p̃k−m−rp̃k−m−r

p⋆kp
⋆
k

ONON

OFFOFF

KpKp H0(s)H0(s)H0(s)

00

Fig. 2. Discrete-time repetitive control scheme based on B-spline trajectory generator and on feedback linearization.

- the term
1

1− z−N
(11)

where N is the periodicity of the input signal, that in
this case coincides with the sequence of the via-points
q⋆
k;

- a freely modifiable gain Kp;
- the digital filter H(z) defined in (3) for the compu-
tation of the control points from the corresponding
via-points;

- some additional delays for the synchronization of all
the elements in the loop (r is the number of delays
that are necessary to make H(z) feasible, m = d+1

2 is
the delay, caused by the trajectory generator, between
a control point application and the corresponding via-
point interpolation).

The final scheme is shown in Fig. 2, where the continuous-
time plant P (s) and the discrete-time loop are highlighted.
According to the internal model principle (Francis and
Wonham (1975)), the presence in the loop function of
the term (11) assures asymptotic perfect tracking of any
periodic signal with period N provided that the system
is asymptotically stable. After simple manipulations the
scheme can be simplified as in Fig. 3, where P (z) denotes
the plant, discretized with sampling time T , i.e.

P (z) = Z
{

H0(s)M
d(s)

[

sn+
n−1∑

i=0

αis
i

]
1
sn

1 + 1
sn

∑n−1
i=0 αisi

}

= Z
{
H0(s)M

d(s)
}

(12)

A sufficient condition for asymptotic stability of this
scheme can be derived by means of classical Nyquist
analysis:

|L(ejωT )− 1| < 1, ∀ω ∈ [0, π/T ]. (13)

where L(z) is the loop function except the internal model
term (11), i.e.

L(z) = H(z)Kp z
m Z

{
H0(s)M

d(s)
}
.

Since the transfer function Z
{
H0(s)M

d(s)
}

is obtained
by discretizing the B-spline trajectory filter with sampling
period T , it represents the relationship between the se-
quence of control points P (z) and the sequence of via-
points Q(z), with an additional delay of m samples. As a
consequence, by considering the meaning of H(z) it fol-
lows that H(z) zmZ

{
H0(s)M

d(s)
}
≈ 1 and accordingly

L(z) ≈ Kp. The value Kp = 1 allows L(z) to meet (13)
with the largest margin. Additional details can be found
in Biagiotti et al. (2019b).

P (z)H(z) z−N zm
+−

qi−mq⋆i−m q̃i−m
Kp

Fig. 3. Equivalent block-scheme representation of Repeti-
tive Control in Fig. 2.

4. FEEDBACK-LINEARIZATION-BASED RC FOR A
ROBOT MANIPULATOR

Let’s consider the dynamics of a robot manipulator with
rigid joints

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ. (14)

The feedback linearization based control, that in this case
is called inverse dynamics (Chung et al. (2007)), assumes
the form

τ = M̂(q)v + Ĉ(q, q̇)q̇ + ĝ(q) (15)

where M̂(·), Ĉ(·, ·) and ĝ(·) are approximations of the real
functions and the auxiliary variable v is generally assumed
to be

v = q̈⋆ +KV (q̇
⋆ − q̇) +KP (q

⋆ − q) (16)

or with an integral control action

v = q̈⋆+KV (q̇
⋆−q̇)+KP (q

⋆−q)+KI

∫

(q⋆−q)dt (17)

The two control actions are based on the assumptions that
both position and velocity of the robot joints are available.
In general, the control based on feedback linearization
relies on the knowledge of the full state of the plant. The
robotic plant, together with the controller described by
(15) and (16), and a cubic B-spline trajectory generator
is shown in Fig. 4. This system, inserted in the scheme of
Fig. 2 in lieu of continuous-time subsystem P (s), leads to
the final RC controller.

4.1 Numerical simulations

Some numerical simulations based on a two-dof robotic
manipulator have been performed in order to validate the
proposed control scheme. The nominal values of the robot
parameters are reported in Tab. 1. Note that, differently
from the model (14), in the simulative model the viscous
friction at the joints has been considered.
Since the controller is based on feedback linearization (15)
the scheme strongly depends on the knowledge of the plant
model. For this reason, it is of great interest to investigate
how the accuracy of the model influences the performance
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k

Fig. 4. Block-scheme representation of the robot manipulator with inverse dynamics based controller and cubic (d = 3)
B-spline trajectory generator.

Table 1. Nominal parameter values of the two-
link manipulator.

Description Symbol Value

Joint inertia Ji 1.15e-2 kgm2

Joint viscous friction coeff. di 0.005 N sm−1

Joint mass mi 0.54 kg
Link center lc,i 0.085 m
Link length li 0.3 m
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3
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3
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0
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t/τ

q⋆

q⋆

q

q

q 1
q 2

(a) (b)

Fig. 5. Reference Trajectory q⋆(t) and joint positions
q(t) of the robot manipulator with integral (a) and
repetitive (b) control based on feedback linearization
(parameters uncertainty ±10%).

of the overall algorithm. The tracking performance ob-
tained with the sole controller (17) is compared with the
one produced by (16) combined with the RC, both in
nominal conditions and in case of estimation errors on the
model parameters. In particular, random variations of all
parameters, with the exception of geometric quantities, i.e.
links lengths, that are usually known with good precision,
have been taken into account.
The matrices KV and KP (and KI) that appear in (16)
and (15) have been chosen so that all the roots of the
characteristic equation of the error dynamics are located
in λ = −8. The reference trajectory has been defined by
means of 9 control points that form a cyclic motion. The
knot span T is assumed equal to 0.5s.
In nominal conditions, both the controllers, with integral
control action and with RC, lead to a perfect tracking of
the reference input.
In Fig. 5 the reference trajectory and the actual joints
position obtained with the two controllers, deduced with
an uncertainty of ±10% in the parameters’ values, are
illustrated as a function of the cycle number t/τ , being
τ the total duration of the iterated trajectory, while the
related tracking errors are shown in Fig. 6. Note that
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0
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0.1

t/τ

e 1
e 2

(a) (b)

Fig. 6. Tracking error of the robot manipulator with inte-
gral (a) and repetitive (b) control based on feedback
linearization (parameters uncertainty ±10%).
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-0.01
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0
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-0.01
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0
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0.01

t/T

e 1
e 2

(a) (b)

Fig. 7. Tracking error of the robot manipulator with RC
based on feedback linearization during 10-th iteration.
Parameters uncertainty ±10% (a) and ±50% (b).

the RC is activated after 4 iterations in which only the
inverse dynamics control, without integral, acts on the
robotic plant. A moderate error on the model parameters
causes small tracking errors in both cases (slightly smaller
for RC), even if it is worth noticing that at least at the
via-points the RC guarantees a perfect interpolation, see
Fig. 7(a) where the tracking errors during the 10-th iter-
ation is shown. When the uncertainty on the parameters
knowledge grows, like in case of Fig. 8 where a random
error of ±50% is considered, the tracking error increases
as well but the level obtained with the RC is considerably
smaller and, in any case, is vanishing at the via-points,
see Fig. 7(b). In Fig. 9 the maximum tracking error 2

obtained with the two control schemes considered in this
section is reported as a function of the uncertainty on the
parameters±γ and of the knot span T , that determines the

2 For the scheme based on RC, the error during the 10-th iteration
is considered.
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Fig. 8. Tracking error of the robot manipulator with inte-
gral (a) and repetitive (b) control based on feedback
linearization (parameters uncertainty ±50%).
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Fig. 9. Maximum error as a function of parameters un-
certainty ±γ and of knot span T for schemes with
integral control (a) and with RC (b).

duration of the trajectory. In both cases the error increases
when the uncertainty grows 3 and the duration of the
trajectory becomes smaller. In particular, the combination
of fast trajectories and large uncertainty is quite critical
for the scheme with integral control (see Fig. 9(a)), while
the approach based on RC is significantly more insensitive
(Fig. 9(b)).

5. CONCLUSIONS

In this paper, a novel control scheme has been presented
that guarantees asymptotic perfect tracking of a set of
desired via-points, used for defining the interpolating B-
spline trajectory, by a nonlinear (input affine) system. The
proposed approach is based on the application of repetitive
control to the sequence of control points of the B-spline
curve, supposed cyclic, so that the plant, provided with a
standard feedback linearization control, exactly crosses the
via-points despite parametric uncertainties and periodic
exogenous disturbances. With respect to previous control
schemes based on a similar concept, the new method offers
the advantage of being able to deal with plants with
nonlinear dynamics, leading to a control scheme whose
stability is guaranteed for any value of the “sampling time”
T and without the need for special tuning operations.
Its structural simplicity and the lack of free parameters
that require a complicated selection procedure make this
scheme ideal for practical applications, e.g. with robotic
systems, in which B-splines are employed as reference
trajectories. The fact that the tracking error is nullified
only at the via-points does not seem a limitation, since
usually in this type of applications the via-points are
the only input provided, while the specific shape of the
continuous trajectory joining these points is not unique.
3 Note that the relationship between γ and the maximum errors
does not seems to be monotonic, but this is due to the fact the γ

represents the maximum variation of the parameters and not their
actual variation.

In any case, the RC scheme causes a significant reduction
of the tracking error also during the intersamples. Finally,
the fact the sampling period T of the outer control loop is
very large can be profitably exploited in those applications
in which are used “slow” sensors, like cameras or motion
tracking systems.
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