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Abstract: Many data-driven and knowledge-driven methods for process monitoring have been developed 

in the last decade. In this study we show that the combined use of techniques from both categories can 

potentially outperform their standalone use. The proposed hybrid approach for fault detection and 

diagnosis is grounded in conventional multivariate statistical process monitoring. However, the datasets 

subject to analytics include not only field measurements, but also data obtained from a state estimator 

based on a mathematical model of the process. We apply the proposed methodology to a pharmaceutical 

case study, using the mechanistic model of a segmented fluid bed dryer from gPROMS 

FormulatedProducts. The hybrid framework demonstrates improved fault detection and diagnosis 

performances, when compared to data-driven monitoring or state estimation taken in isolation. 

Keywords: process monitoring, process control, fault detection, fault diagnosis, hybrid model, gPROMS, 
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

1. INTRODUCTION 

The economic loss associated with the occurrence of a fault 

in a plant increases quickly with the time and resources 

needed for its detection and diagnosis. Efficient online 

monitoring systems must be able to promptly detect 

deviations from normal operating conditions (NOC) and to 

provide effective tools to assess the cause of the abnormal 

behavior. 

The techniques proposed in the last decade to fulfil these 

tasks can broadly be divided into two categories: data-driven 

(Jiang et al., 2019) and knowledge-driven methods 

(Venkatasubramanian et al., 2003). Latent-variables models 

(LVMs; Qin, 2012) are probably the most popular data-

driven techniques used for monitoring purposes in the 

process industry. LVMs are multivariate correlative models, 

trained on field measurements representing the NOC of a 

plant. Faults are detected on multivariate charts when new 

field measurements are foreign to the NOC correlation 

structure (Nomikos and MacGregor, 1995). Contribution 

plots (Miller et al., 1998) are then used to assess which of the 

available measurements are most correlated to the abnormal 

condition. 

One drawback of this approach is that the fault can be 

detected only after it has manifested itself as a change in one 

or more measured variables. Therefore, if the measured 

variables do not relate to the fault directly, the fault cannot be 

detected promptly, because it must propagate into the process 

until it becomes visible through the available measurements. 

Fault diagnosis may then become difficult: since the process 

status has been altered significantly, several measurements 

might display high contributions to the fault (an issue known 

as the smearing-out effect; Qin, 2012), but none of them 

unequivocally pinpoints the root-cause of the fault. The 

monitoring task becomes even more difficult when only a 

limited number of measurement sensors are available. In such 

cases, fault detection may be delayed until those few 

measurements are affected by the fault, but the contribution 

plots will also unavoidably point always to the same 

measured variables, even for different fault scenarios, thus 

making fault diagnosis more challenging. 

The fault detection and diagnosis problems may be addressed 

through knowledge-driven monitoring, based on a 

mechanistic model that provides comprehensive information 

about the internal variables characterizing the process, even if 

they are not measured (Mohd et al., 2015). The main 

drawback is that the development of first-principles models is 

usually time-consuming, hence more expensive than data-

driven modeling. In addition, knowledge-driven models are 

affected by process-model mismatch. Nonetheless, 

mechanistic models, describing at least the main physical 

phenomena occurring in process units, are being increasingly 

used with the advent of the Industry 4.0 digitalization 

paradigm, and the interest towards their real-time application 

is also increasing (Pantelides and Renfro, 2013). Currently, 

their application for industrial process monitoring is mainly 

in soft-sensing or univariate process monitoring. 

In this study we propose a novel hybrid framework for fault 

detection and diagnosis, which combines multivariate data 

analytics techniques with information from a mechanistic 

model of the process under investigation. State-of-the-art 

approaches to hybrid monitoring focus on using data-driven 

models to compensate for process/model mismatch (Bonvin 

et al., 2016). We propose instead a straightforward and 

effective fusion strategy between the data-driven and 

knowledge-driven modeling approaches. First, we implement 
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a state estimator, based on a mechanistic model of the 

process, for soft sensing. Then, we use an LVM for 

multivariate monitoring. The data-driven model is built on a 

dataset consisting of i) field measurements, and ii) variables 

estimated by the state estimator. This ensures that the 

available first-principles knowledge on the process is 

embedded in the LVM effectively, and it is actively used for 

fault detection and diagnosis in addition to its soft-sensing 

features. Furthermore, partially uncompensated 

process/model mismatch can be tolerated as it becomes part 

of the correlation structure of the NOC dataset. 

We apply the hybrid framework to monitor the operation of a 

segmented fluid bed dryer, a cyclic batch process used in the 

pharmaceutical industry to emulate continuous processing. A 

first-principles model of this unit is available in the gPROMS 

FormulatedProducts software (Process Systems Enterprise, 

2020). We employ the extended Kalman filter (EKF; Ray, 

1981) solver available in gPROMS for state estimation, 

whereas we use principal component analysis (PCA; Jackson, 

1991) as the LVM.  

The remainder of this article is organized as follows. In 

Section 2 the mathematical methods employed are outlined. 

In Section 3, we present the proposed hybrid monitoring 

system. In Section 4, we apply the hybrid framework to the 

case study, and discuss the fault detection and diagnosis 

results. Final conclusions are addressed in Section 5. 

2. MATHEMATICAL METHODS 

2.1 Extended Kalman filter for state estimation 

A nonlinear mechanistic model of a process, formulated as a 

set of ordinary differential equations, can be represented as: 

( ( ), ( ), ) ( )t t t t x f x u w    , (1) 

where x is the state vector, u is the input vector, t denotes the 

time, f is a nonlinear function, and the process noise w is 

assumed to be normally distributed with 0 mean and 

covariance Q. The vector y of measurements from the plant 

sensors, available at finite sampling times tk, can be related to 

the system states through a measurement model: 

( ( ), ( ), ) ( )t t t t y h x u v    , (2) 

where h is a nonlinear function, and the measurement noise v 

is assumed to follow a normal distribution with 0 mean and 

covariance R.  

Based on (1) and (2), the discrete-time data EKF algorithm 

(Ray, 1981) produces estimates x̂  of the state vector and P̂ of 

the state covariance through subsequent prediction and 

update steps. The EKF is first initialized with the initial 

estimation of the states x0 and the initial state covariance P0. 

Between sampling times tk-1 and tk, the predictions of the 

states x̂ (tk|tk-1) and of the state covariance P̂(tk|tk-1) are 

obtained upon integration of (3) and (4), with the updated 

estimations of states x̂ (tk-1|tk-1) and state covariance P̂(tk-1|tk-1) 

at tk-1 as initial conditions: 

ˆ ˆ( ) ( ( ), ( ), )t t t tx f x u  (3) 

ˆ ˆ ˆ( )t   T
P FP PF Q     , (4) 

where F is the Jacobian matrix: 

ˆ ( ), ( ),t t t

 
  

 x u

f
F

x
   . (5) 

The estimates are updated at the sampling times with: 

   1 1
ˆ ˆ ˆ( | ) ( | ) ( | ), ( ),k k k k k k k k k

t t t t t t t t t 
    x x K y h x u  (6) 

 P̂(tk  | tk ) = (I – KH) P̂(tk | tk-1)       , (7) 

where the Kalman gain K and the Jacobian matrix H are 

respectively calculated according to: 

1

1 1
ˆ ˆ( | ) ( | )k k k k

t t t t


 
  
 

T T
K P H HP H R  (8) 

1ˆ ( | ), ( ),k k k kt t t t

 
  

 x u

h
H

x
  (9) 

In this study, we adopt a generalized version of the EKF 

(Cheng et al., 1997) for models expressed as mixed systems 

of algebraic and ordinary differential equations, instead of 

differential equations only as in (1). This state estimation 

algorithm is implemented within the solvers available in 

gPROMS FormulatedProducts.  

2.2 Principal component analysis for multivariate process 

monitoring 

Given a NOC dataset Z [N×M] with N observations and M 

variables, PCA extracts A principal components (PCs) 

expressing the directions of maximum variability in the data, 

and decomposes Z as: 

1

A

a aa
  T

Z t p E     , (10) 

where ta [N×1] and pa [M×1] are respectively the score and 

the loading vectors for the a-th PC, and E is the residuals 

matrix, consisting of random noise if A is selected 

appropriately (Ku et al., 1995). Upon calibration of a PCA 

model, the Hotelling T2 and the squared prediction error 

(SPE) statistics are calculated for observation n by: 

2 1

, ,1
λ

A

n a n a a na
T t t


  (11) 

SPE
n n n
 T

e e                  , (12) 

where ta,n and en are respectively the element in the a-th score 

vector and the row vector in E associated to observation n. λa 

is the eigenvalue of the ath PC, calculated via the PCA 

algorithm. In this study, we build monitoring charts as in 

Nomikos and MacGregor (1995), namely using the χ2-

distribution and the F-distribution 99% confidence limits for 

SPE and T2 respectively. 

When a new observation znew(tk) [1×M] from the process 

becomes available at time tk, SPEnew and
2

new
T are calculated 

and monitored in the corresponding charts. If some (e.g., 
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three) consecutive observations are out-of-control for a given 

statistic, a fault is alarmed, and contribution plots (Miller et 

al., 1998) are looked at for diagnosis. Contributions to SPE or 

T2 are M-dimensional vectors that, when calculated upon 

detection of a fault, provide meaningful indication of the 

variables in Z that are most related to the abnormal condition. 

The SPE and T2 contribution vectors for observation n are 

obtained by: 

SPE

n n
c e  (13) 

2 0.5

,1
λ

AT

n a n a aa
t 


 T

c p      . (14) 

To further aid visual assessment of the variables mainly 

responsible for the fault, we calculate the Gaussian 99% 

confidence limits on the contributions for the NOC dataset 

(Westerhuis et al., 2000). 

To monitor a dynamic process, like the one considered in this 

study, the standard PCA procedure should be modified to 

consider also the auto-correlation of the data in Z. To this 

purpose, we use multi-model moving-window PCA 

(Camacho et al., 2008). Namely, at each time step tk we build 

a PCA model on the data matrix Zdyn(tk), consisting of z(tk) 

and l lags, i.e. the observations at the previous l time steps: 

     ( ) 1 ...
dyn k k k k

t t t t l    
T T T

Z z z z    . (15) 

3. PROPOSED HYBRID MONITORING FRAMEWORK 

The proposed hybrid monitoring framework is based on a 

serial-parallel approach (Fig. 1). Let us consider a process 

with a set of measured inputs u and measured outputs y, 

subject to unmeasured disturbances d. A knowledge-driven 

block receives the measurements u and y and performs state 

estimation, based on an available mechanistic model of the 

process. A subset x of the estimated variables is then used in 

the data-driven block, together with the measurements from 

the plant, for fault detection and diagnosis through an LVM. 

Hence, the dataset upon which we build the LVM is: 

 Z u y x     . (16) 

Among all the variables calculated by the state estimator, 

only those considered to have a physical meaning useful for 

fault detection and diagnosis are selected for inclusion in x . 

As a result, x  includes a subset of the differential states and 

algebraic variables defined in the mechanistic model. Since a 

subset of the estimated variables might also be measured, Z 

will include those variables twice: once in y (measurements 

from sensors) and once in x  (measurements reconstructed by 

the estimator). State estimators are often also employed for 

online adjustment of the model parameters. In this situation, 

it might be convenient to include the estimated parameters in 

x , especially if they are related to specific fault conditions to 

be monitored. 

The proposed hybrid framework has important advantages 

over its individual building blocks taken in isolation. 

Augmentation of the measurements dataset with the 

estimated variables allows the LVM to access information on 

the physical phenomena occurring in the process, thus 

resulting in improved fault detection and diagnosis over what 

is achievable via data-driven monitoring on its own. Besides, 

inclusion of estimated variables within the multivariate 

framework is more effective for fault detection and diagnosis 

than using the estimated variables by themselves in a 

univariate fashion. In fact, faults often manifest themselves 

earlier as a (possibly small) co-variation of states rather than 

as a co-variation of measurements, and this can be detected 

promptly by multivariate analysis using the proposed 

framework. On the other hand, monitoring by knowledge-

driven modeling alone may be problematic in the presence of 

process-model mismatch, which can partially mask drifts in 

unmeasured variables, thus resulting in a state estimator that 

captures only small deviations spread across several 

variables. In such a situation, there are further benefits from 

using a multivariate data-driven block. 

In the example under investigation, we use an EKF in the 

knowledge-driven block, and PCA in the data-driven block. 

However, other state estimators or multivariate modeling 

techniques could be used within the same framework. 

 
Fig. 1. Proposed hybrid monitoring framework. 

4. HYBRID MONITORING OF A SEGMENTED FLUID 

BED DRYER 

4.1 The process 

To test the proposed hybrid monitoring framework, we 

generate synthetic data with the segmented fluid bed dryer 

model available in gPROMS FormulatedProducts. The model 

(223 differential equations and 6256 algebraic equations) 

represents the physical phenomena occurring in real fluid bed 

dryers (Burgschweiger and Tsotsas, 2002). 

We use the dryer model to simulate a pharmaceutical process 

(Fig. 2) in which the moisture content of wet granules fed to 

the unit is reduced by flowing hot air. The dryer receives a 

continuous feed of wet granules, with each of the six 

segments behaving as a fluidized bed that cycles through four 

phases: loading, drying, discharging and waiting. We refer to 

the sequence of loading, drying and discharging phases in a 

given segment as a “batch”; the waiting phase is not 

considered here as the segment is empty in that period of 

time. During the dryer operation, a batch is processed in each 

of the segments. In Fig. 2, segment #2 is being loaded with 

wet granules, thus starting a new batch for that segment. 

When segment #2 is fully loaded, the loading of segment #3 

(which was in the waiting phase until that moment) starts. 

Meanwhile, segment #4 is discharging, while segments #1, 

#5 and #6 are in the drying phase. Hot air is continuously fed 
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to the dryer, and its flow is distributed between the six 

segments through a distributor plate (not shown in Fig. 2). 

Details about the model assumptions and equations can be 

found in Burgschweiger and Tsotsas (2002). 

We assume that, as in typical industrial settings, 

measurement sensors are available for five inputs (total 

flowrate, temperature and relative humidity of the inlet air; 

total flowrate and moisture of the wet granules) and six 

outputs (temperature in each segment). The air flows to 

individual segments are not measured. Note that, for a given 

batch, only one output measurement is available (namely, the 

temperature of the segment wherein the batch is being carried 

out).  

 

Fig. 2. Sketch of a six-segmented fluid bed dryer. The full 

lines represent the active streams in the current phase of the 

process, while the dashed lines are streams not currently 

under operation. FT, MT and TT represent flowrate, 

moisture/humidity and temperature transmitters. The air 

distributor plate is not shown. 

We simulate 100 NOC batches, corresponding to a total of 

about 6 h of dryer operation. The duration of each batch is 

fixed and equal to 800 s. To mimic inter-batch variability 

under NOC, all the five measured inputs are varied according 

to smoothed pseudo-random binary sequences (PRBSs) of 

maximum amplitude  0.5% around the set-point. Also the 

split ratios of the air among the six segments follow a 

smoothed PRBS pattern of maximum amplitude 1% around 

their nominal values. Thus, the air is not distributed evenly 

between the segments (not even under NOC), a situation that 

may arise in practice due to the distributor plate design.  

We generate data for 3 faulty batches involving disturbances 

in the air flow to the segments, something which could be 

caused by partial blockage of the distributor plate. All 

abnormal batches start from NOC; at t = 300 s, for a given 

faulty batch we introduce a step (‒5% for Fault #1, ‒10% for 

Fault #2) or a ramp (‒0.025%/s for Fault #3) decrease in the 

air flow to the relevant segment. The segment air flow 

changes are simulated by changing the air split ratios. For 

each fault, Fig. 3 compares the inlet air flow to the segment 

to the flow variability (expressed as 99% confidence limits) 

induced by the application of the smoothed PRBSs on both 

the total inlet air inflow and the split ratios. 

The input and output measurements are affected by white 

noise with standard deviations of 1% of the set-point for the 

inputs, and 0.05 °C for the outputs.  
 

 
Fig. 3. Profiles of segment inlet air flow (unmeasured) for the 

three faulty batches.  

4.2 Implementation of the hybrid monitoring framework 

The hybrid system of Fig. 1 is implemented to monitor the 

batches operated in the dryer segments. The measured inputs 

u and outputs y for a batch are summarized in Table 1 

(Variables #1-6).  

The EKF available within the gPROMS platform is employed 

as the state estimator in the knowledge-driven block. Process-

model mismatch arises from the fact that the EKF is not 

aware of the disturbances in the split ratios. The update step 

of the EKF is performed every 5 s. To improve the EKF 

robustness, we filter its inputs with a moving average 

approach. The state estimator is initialized with the true 

initial states x0 under NOC and with a null P0 matrix, because 

at the beginning of the process the dryer is empty and there is 

no uncertainty on this condition. The only non-null entries of 

the Q matrix are the diagonal elements corresponding to the 

vapor phase enthalpy of each segment, which are set equal to 

1. R is a diagonal matrix, whose ith element is the variance of 

the sensor noise for measurement yi.  

We apply the EKF to each of the 100 NOC batches to 

reconstruct the differential states and the algebraic variables. 

We arrange dataset Z as in (16), thus augmenting the set of 5 

input measurements u and 1 output measurement y (Table 1, 

Variables #1-6) with 9 estimated variables x   (Table 1, 

Variables #7-15) selected to provide additional information 

on the unmeasured phenomena occurring in the dryer.  

We divide each batch of 800 s into time intervals of 10 s, and 

construct a separate dynamic PCA model at each of the 

corresponding 81 time points. By trial and error, we select a 

number of lags l = 4 (cf. (15)), resulting in a [100×75] Zdyn(tk) 

matrix for each time point. We retain 10 PCs in each of the 

81 PCA models, with the explained variance ranging from 

75% to 85%. Confidence limits for SPE, T2 and the 

contributions are derived as discussed in Section 2. 

The hybrid monitoring system can be implemented for real-

time applications as the EKF, i.e., the most demanding 

component of the framework, requires a computational time 

smaller than the sampling time. 

4.3 Fault detection and diagnosis 

The hybrid model proves capable of detecting all faults (Fig. 

4), with the first out-of-control signal always coming from 

the T2 chart. The larger step decrease (‒10%, Fault #2) in the 

air flow to a segment is detected earlier than the ramp fault 
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(Fault #3). The hardest fault to detect is the smaller step 

(‒5%, Fault #1). The SPE does increase sharply at the 

beginning of the discharging phase (t = 750 s), but the faults 

are already detected well before that on the basis of the T2 

criterion. 

Table 1. List of variables included in the augmented data 

matrix of the hybrid monitoring model 

# Variable Unit Variable type 

1 Total flowrate of inlet air 

to the dryer 

kg/h Input (u) 

2 Relative humidity of inlet 

air to the dryer 

% Input (u) 

3 Temperature of inlet air 

to the dryer 

°C Input (u) 

4 Total flowrate of inlet 

granules 

kg/h Input (u) 

5 Moisture of inlet granules kg/kg Input (u) 

6 Segment temperature °C Output (y) 

7 Heat loss rate J/s Estimated ( x ) 

8 Mass of air in the 

segment 

kg Estimated ( x ) 

9 Mass of granules in the 

segment 

kg Estimated ( x ) 

10 Temperature of air in the 

segment 

°C Estimated ( x ) 

11 Temperature of granules 

in the segment 

°C Estimated ( x ) 

12 Drying rate kg/s Estimated ( x ) 

13 Moisture of granules in 

the segment 

kg/kg Estimated ( x ) 

14 Absolute humidity of air 

in the segment 

g/kg Estimated ( x ) 

15 Relative humidity of air 

in the segment 

% Estimated ( x ) 

Contributions to T2 shortly after fault detection are similar for 

all faults, and Fig. 5 shows an example for Fault #2. Note that 

most of the out-of-limit contributions to T2 result not from 

measurements (green bars), but from estimated values (red 

bars). Fig. 5 shows that, for the batch under investigation, the 

segment temperature is smaller than normal, both for the raw 

measurement (Variable #6) and for its value as reconstructed 

by the EKF (Variable #10). In addition, the drying rate 

(Variable #12) is smaller than normal. Taken together, these 

two results suggest than the fault is probably due to a reduced 

energy exchange (low temperature) in the segment, which is 

causing a reduction of the drying rate. Since the source of 

energy for the process is the total hot air feed, one may 

diagnose the fault as a problem in the air feed received by the 

segment. This diagnosis is corroborated by the fact that the 

relative air humidity in the segment (Variable #15) is 

abnormally high despite the lower drying rate (Variable #12). 

This indicates that the flux of water being vaporized is picked 

up by a lower air flow.  

To compare the monitoring performance of the proposed 

hybrid system to the one of a standard PCA approach, we 

also performed a PCA on a reduced dataset including sensor 

measurements only (Variables #1-6). Results are not shown 

for lack of space, but they nevertheless deserve discussion. 

Though the faults are still detected (with minor delay), the 

contributions can only point to the measured temperature in 

the segment (Variable #6) as responsible for the fault. 

Without the additional information generated by the EKF, 

diagnosing the fault is much harder and further investigation 

would therefore be required. Note that the multivariate 

analysis introduced by the PCA is essential for fault 

detection. Fig. 6 shows univariate charts for three of the five 

variables exhibiting out-of-control contributions in Fig. 5; the 

corresponding charts for the other two variables are very 

similar. We note that Fault #1 does not result in significant 

deviations from the confidence limits established under NOC. 

Faults #2 and #3 do result in some deviations, but their 

magnitude is very small: the strongest deviations, those in the 

measured temperature (Variable #6), are only ~0.2°C for 

Fault #2 and ~0.5°C for Fault #3.  

 
 (a) 

 
  (b) 

Fig. 4. Fault detection: (a) SPE monitoring chart and (b) T2 

monitoring chart for the three fault scenarios. 

5. CONCLUSIONS 

We presented a novel hybrid monitoring framework for 

process monitoring. Fault detection and diagnosis were 

performed through a latent-variable model built on a dataset 

comprising both process measurements and variables 

obtained in real-time through a state estimator. We tested the 

methodology on a detailed mechanistic model of a segmented 

fluid bed dryer. Even though only a single output 

measurement was available, the faults were detected 

promptly, and contribution plots demonstrated powerful 

diagnostic capabilities. The hybrid monitoring model 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11819



 

 

     

 

performed better than standalone data-driven and knowledge-

driven monitoring approaches. 

 

Fig. 5. Contributions to T2 few instants after fault detection 

for Fault #2. Variables are numbered as in Table 1. Green 

bars refer to measured variables, red bars to estimated 

variables. Confidence limits at 99% for NOC are shown as 

black dashed lines. 

 
Fig. 6. Mean-centered univariate monitoring charts of 

selected variables displaying high contributions in Fig. 5. 

Variables are numbered as in Table 1. 
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