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Abstract: The engine control and estimation problem is an important area of research in
the automotive industry. Researchers have been working to make the vehicles more efficient
and economically friendly while producing lesser pollutants. To reduce emissions, the air-fuel
ratio must be controlled to a specific value. The requirement of air-fuel ratio improvement
has increased the need for the investigation of engine dynamical models and their parameter
estimation. Some of the main parameters affecting the air-fuel ratio are the throttle discharge
coefficient, thermal efficiency and volumetric efficiency. The precise values of these parameters
are essential for accurate control of the air-fuel ratio of the engine. Under steady state, these
parameters are constant but in the long run due to wear and tear of the engine and various
uncertainties, their value may change. The main challenges are how to obtain the information
of parameters and that of the states under the influence of process noise, measurement noise
and parameter uncertainty, which are essential elements to develop an effective control strategy.
In this work, the problem of physical parameter estimation of the nonlinear system comprising
a throttle, intake manifold, engine speed dynamics and fuel system altogether with unknown
states have been considered. A novel method with a unique combination of Unscented Kalman
Filter and Recursive Least Squares with forgetting factor for estimation of parameters and
states of spark ignition engines has been developed. Simulation results are provided for state
and parameter estimation for spark ignition engine model.

Keywords: Spark Ignition engine, Recursive Least Squares method, Unscented Kalman Filter,
coefficient of discharge in throttle body, volumetric efficiency, thermal efficiency.

1. INTRODUCTION

Internal combustion engines are very complex. There are
many mathematical models available in the literature for
combustion engines with different assumptions. Multiple
objectives such as optimized fuel economy and lower pol-
lutant emission from the engine requires control strategy
and parameter estimation of the engine. Also, knowledge
of parameter values is essential for calibration and fault
diagnosis. This makes parameter estimation an important
part of the automotive engine world.
In the literature, most of the papers focus on controlling
the inputs of Spark Ignition (SI) engine to keep the air-
fuel ratio equal to the stoichiometric ratio Yildiz et al.
(2008). Stoichiometric ratio implies that there is correct
amount of air and fuel for a complete combustion in the
cylinder. While doing so, some parameters of the model
are estimated first and then control strategy is applied. In
Chen et al. (2017), recursive least squares and batch least
squares is used for estimating the lumped parameters. In
Gao et al. (2017), stochastic gradient descent algorithm is
used for the parameter estimation. Some papers have em-
ployed observer to get estimated states which are used for
the control purpose. In Butt et al. (2009), a sliding mode

observer has been designed for estimation of coefficient
of discharge in automotive gasoline engines. In Cavina
and Suglia (2005), parameters of spark advance model
are estimated for combustion phase control of gasoline
SI engines. There are state estimation based parameter
estimation methods for linear systems Ding (2014). The
problem of physical parameter estimation of the nonlinear
system comprising a throttle, intake manifold, engine dy-
namics and fuel system altogether with unknown states
has not been considered before. In Tang et al. (2009)
similar parameters have been adopted from the work done
by Khan and Spurgeon Khan and Spurgeon (2003) but
with known states. In this work, the problem of model
parameter estimation with unknown states has been con-
sidered. Model parameters Ka, Cp and Ct which gives
information about throttle discharge, volumetric efficiency
and thermal efficiency are estimated. The objective is to
estimate the parameters for a given set of input-output
data. Values of these parameters monitor the condition
of the engine. In this case, the parameters are considered
as time signals. In many methodologies parameter are
estimated as function of other variables or with defined
dynamics. In other cases, huge amount of training data is
required or the parameters are estimated using the known
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states. Another case is applying Unscented Kalman Filter
(UKF) for joint state and parameter estimation Wan and
Van Der Merwe (2000). For dual and joint estimation by
any variant of Kalman Filter, parameters are considered as
states and hence their dynamics are required. But in this
work, parameter dynamics are unknown. EKF and RLS
have been combined for synchronous estimation of road
grade and vehicle mass for a hybrid electric busYong Sun
(2016). The combination of UKF and RLSF for an esti-
mation of parameters of SI engines is the novelty that we
explore through this work. RLSF is preferred over Kalman
Filter for parameter estimation because Kalman Filter
needs dynamics of the parameters and they are not known
in this work. Since RLSF requires state information, UKF
which is robust to parameters in many cases is used for
state estimation.

2. A MEAN VALUE ENGINE MODEL FOR ANY
INTERNAL COMBUSTION ENGINE

There are number of engine dynamic models available
in the literature. Mean Value Engine Model (MVEM)
developed by Hendricks and Sorenson (1990) is considered
for this work. It is mathematically compact, serves as
a nonlinear dynamic engine model and is suitable for
control applications Tang et al. (2009). It comprises of
three subsystems: air flow system, engine speed dynamics
and fuel system.

2.1 Air flow system

The air mass flowing through the intake manifold is
described by the intake manifold pressure dynamics as:

ṗ =
RTi
Vi

(ṁat − ṁap) (1)

ṁap = Cppn (2)

ṁat = Ka(1− cos(θ − θ0))β(p) (3)

β(p) =

{
1, for patm/2 < p

(2/patm)
√
patmp− p2, for p ≥ patm/2

where p is the intake manifold pressure, ṁat is the air
mass flow rate past throttle plate, ṁap is the air mass flow
rate into cylinder, θ is throttle angle, θ0 is the minimum
possible throttle angle and patm is the atmospheric pres-

sure. Cp and Ka are the parameters. Cp =

√
Ti

Ta

Vdηvol
120RTi

,

Ta: ambient temperature, Vd: engine displacement, ηvol:
volumetric efficiency. Ka: throttle discharge coefficient.

2.2 Engine speed dynamics

Engine speed dynamics are described as a function of
injected fuel mass flow rate.

ṅ =
τe + τpf

J
=
Ct
J

ṁf

n
+
τpf
J

(4)

where τe = Ctṁf/n is the engine torque, τpf = 1.673 +
0.272n + 0.0135n2 + p(−0.969 + 0.206n) is pumping and
frictional torque, n is the engine speed, ṁf is the injected
fuel mass flow rate, J is the moment of inertia and Ct
is a parameter. Ct = Hµηi, Hµ: fuel energy constant, ηi:
thermal efficiency.

2.3 Fuel system

The fuel flow is described by wall wetting phenomenon in
the intake manifold.

ṁf = ṁff + ṁfv (5)

m̈ff =
1

τf
(−ṁff + χṁfi) (6)

ṁfv = (1− χ)ṁfi (7)

where ṁf is the fuel flow rate into the cylinder for
combustion, ṁff is the fuel film flow rate, ṁfv is the fuel
vapor flow rate, ṁfi is the injected fuel flow rate, τf is
fuel evaporation time constant and χ is a parameter. χ:
fraction of ṁfi which is deposited on the manifold as a
film.
Special Case: The fraction of injected fuel flow rate that
is deposited on the manifold film (χṁfi) is equal to the
fuel film flow rate (ṁff ). In othe words, fuel flow rate is
not affected by wall wetting phenomenon. Using (7), (5)
becomes:

ṁf = ṁfi (8)

Air flow system

Fuel system

Engine speed dynamics
Cylinder

ṁap

p

ṁat

ṁfṁfi

θ
λN

n

τe

Fig. 1. Spark ignition engine model

In this work, Multi Input-Multi Output (MIMO) system
as shown in figure 1, is considered with two inputs (throttle
angle and injected mass flow rate), two states (intake
manifold pressure and engine speed) and three outputs
(normalized air-fuel ratio λN , engine torque tor and air
mass flow rate past throttle plate ṁat).
Inputs: u1 = θ, u2 = ṁfi = ṁf

States: x1 = p, x2 = n

Outputs: y1 = λN , y2 = τe, y3 = ṁat

ẋ1 =
RTi
Vi

[Ka(1− cos(u1 − θ0))β(x1)− Cpx1x2] + vx1

ẋ2 =
Ct
J

u2

x2
+
τpf
J

+ vx2

y1 = Cp
x1x2

14.67u2
+ dy1

y2 = Ct
u2

x2
+ dy2

y3 = Ka(1− cos(u1 − θ0))β(x1) + dy3

(9)
where Ka, Cp and Ct are the parameters.
vxi: process noise corresponding to state xi, i = 1, 2
dyi: observation noise corresponding to output yi, i =
1, 2, 3
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3. METHOD FOR PARAMETER ESTIMATION
USING STATE ESTIMATES

In the model, the relation between the parameters and
the outputs is linear. So Recursive Least Squares (RLS)
method can be used for online parameter estimation Is-
ermann and Münchhof (2010). Information of states is
required for the estimation. Considering the states are un-
known and have known physics based nonlinear dynamics,
the states behavior can be modeled with the reasonable
values of the parameters. Since Unscented Kalman Filter
(UKF) is most widely used for nonlinear state estimation
Kandepu et al. (2008), so UKF can be used to get the
estimated states which are then fed to RLS with forgetting
factor (RLSF) for parameter estimation.
In this methodology, the algorithm starts by initializ-
ing the parameters, states and corresponding covariances.
Next, input-output data is collected from the plant. State
estimation is done using UKF for one time step. The
estimated states along with known inputs and outputs are
then fed to RLSF for parameter estimation. The estimated
parameters are then used for the next time step state
estimation. This cycle goes on.
Assume that the states are known. Let the nonlinear
system be represented by the following discrete time equa-
tions:

x̃(k) = f(x̃(k − 1), ṽ(k − 1), ũ(k − 1), ϑ̃(k − 1))

ỹ(k) = h(x̃(k), d̃(k), ũ(k), ϑ̃(k))
(10)

such that

[
x̃1(k)
x̃2(k)

]
=



RTi
Vi

[Ka(k − 1)(1− cos(u1(k − 1)− θ0))

β(x̃1(k − 1))− Cp(k − 1)x̃1(k − 1)
x̃2(k − 1)]

+vx1(k − 1)

Ct(k − 1)

J

u2(k − 1)

x̃2(k − 1)
+
τpf
J

+vx2(k − 1)


∆t

. +

[
x̃1(k − 1)
x̃2(k − 1)

]

[
ỹ1(k)
ỹ2(k)
ỹ3(k)

]
=



Cp(k)
x̃1(k)x̃2(k)

14.67u2(k)
+ dy1(k)

Ct(k)
u2(k)

x̃2(k)
+ dy2(k)

Ka(k)(1− cos(u1(k)− θ0))β(x̃1(k))
+dy3(k)


where ∆t is the sample time. Sensors frequency and the
method used for discretization takes care of the sample
time. ỹ(k) is the measured output.
Consider output model

ỹ1M (k) = ψ1(k)ϑ1(k) + e1(k) (11)

such that ψ(k) =
x̃1(k)x̃2(k)

14.67u2(k)
, ϑ1(k) is model parameter

and e1(k) = ỹ1(k) − ỹ1M (k). For sample 1 to k, cost
function V(k) with weight matrix W(k) is introduced such
that

V (k) = ET (k)W (k)E(k) (12)

W(k) : symmetric positive definite matrix,

E(k) = Y1M (k)− Y1(k) = Ψ(k)ϑ1(k)− Y1(k) (13)

Y1M (k) = [y1M (1) y1M (2)...y1M (k)]T

Y1(k) = [ỹ1(1) ỹ1(2)...ỹ1(k)]T

Ψ(k) is the corresponding data matrix.
W(k) takes care that more weight is given to the recent
data. The weight increases exponentially to 1 for the most
recent data. To minimize the cost function V(k), take
derivative of V (k) with respect to parameter vector in (12)
and equate it to zero. This gives,

2ΨT (k)W (k)E(k) = 0 (14)

Let ϑ̂1(k) be the estimated parameter vector at kth in-
stant. Using (13) and (14),

ΨT (k)W (k)(Y1 −Ψ(k)ϑ̂1(k)) = 0

ϑ̂1(k) = (ΨT (k)W (k)Ψ(k))−1ΨT (k)W (k)Y1(k)
Take Pϑ1(k) = (ΨT (k)W (k)Ψ(k))−1

Then,

ϑ̂1(k) = Pϑ1(k)ΨT (k)W (k)Y1(k)

ϑ̂1(k + 1) = Pϑ1(k + 1)ΨT (k + 1)W (k + 1)Y1(k + 1)

ϑ̂1(k + 1) =Pϑ1(k + 1)[ΨT (k)lW (k)Y (k) + ψ1(k + 1)

. w(k + 1)y1(k + 1)]

since w(k + 1) = 1

ϑ̂1(k+ 1) = Pϑ1(k+ 1)[P−1
ϑ1 (k)ϑ̂1(k) +ψ1(k+ 1)y1(k+ 1)]

ϑ̂1(k+1) = ϑ̂1(k)+γϑ1(k)(y1(k+1)−ψ1(k+1)ϑ̂1(k)) (15)

where

γϑ1(k) =
Pϑ1(k)ψ1(k + 1)

ψ1(k + 1)Pϑ1(k)ψ1(k + 1) + l
(16)

Pϑ1(k + 1) = (I − γϑ1(k)ψ1)Pϑ1(k)/l (17)

This method is known as Recursive Least Squares method
with forgetting factor l Isermann and Münchhof (2010).
Equation (15)-(17) are the three main equations used
in RLS method. In this manner, all the parameters are
estimated using one output for one parameter. Since the
states are unknown, x̃ is replaced by x̂. UKF is used for
estimating the states. For a given model (known parame-
ters), the nonlinear space of the states are transferred to
sigma points state. The states are updated in the sigma
points space and the output is calculated in that space
and then transferred back to the original space. This has
proven to be better than linearizing the nonlinear function
and predicting the states Kandepu et al. (2008).
Since the parameters in this work are unknown, UKF
is initialized with a guess of parameters. The guess can
be taken a value which is known from history or can be
calculated from history Yong Sun (2016). Figure 2 shows
the flow chart of the algorithm. The steps for implementing
this method are written below:

(1) Initialization of parameters ϑ̂ = [ϑ̂1 ϑ̂2 ϑ̂3]T , aug-

mented state xa = (x̃, ṽ, d̃) and covariances Pϑi(for
i=1,2,3), P a at k = 0.

ϑ̂(0), Pϑi(0)(for i=1,2,3), x̂0 = E[x̃0],

Px̃(0) = E[(x̃(0)− x̂(0))(x̃(0)− x̂(0))T ],
E[.] : expectation of (.)
x̂(0)

a
= E[xa] = E[x̂(0) 0 0]T

P̂ (0)
a

= E[(xa(0)− x̂a(0))(xa(0)− x̂a(0))T ]
(2) Set k = k + 1.
(3) For state estimation, transfer the states to sigma

plane. Calculate N (number of states + state noise
+ output noise + 1) sigma points Xa(i, k − 1) and
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obtain constraint sigma points Xx,C(i, k− 1) if there
are any state constraints.

Xa(i, k−1) =

{
x̂a(k − 1), for i = 0
x̂a(k − 1) + γSi, for i = 1, ..., N
x̂a(k − 1)− γSi, for i = N + 1, ..., 2N

where Si is the ith column of S =
√
P a(k − 1),

γ =
√
N + λ is a scaling parameter,

λ = α2(N +K)−N . α and K are tuning parameters.
Xx,C(i, k − 1) = P (Xx(i, k − 1)), i = 0, 1, ...2N
where P referes to the projection.

(4) Update state vector using state update function,
corresponding mean (apriori state) and covariance:

Xx(i, k/k − 1) =fϑ̂(Xx,C(i, k − 1), Xv(i, k − 1),

. u(k − 1), ϑ(k − 1)), i = 0, 1, ...2N

Xx,C(i, k/k − 1) =P (Xx
i,k/k−1), i = 0, 1, ...2N

x̂−(k) =

2N∑
i=0

(w(i)
m Xx,C(i, k/k − 1))

P̂−
x (k) =

2N∑
i=0

w(i)
c (Xx,C(i, k/k − 1)− x̂−(k))

. (Xx,C(i, k/k − 1)− x̂−(k))T

where w
(0)
m =

λ

N + λ
, i = 0,

w
(0)
c =

λ

N + λ
+ (1− α2 + β), i = 0,

w
(0)
m = w

(0)
c =

λ

2(N + λ)
, i = 1, ..., 2N , and β is a

parameter.
(5) Calculate output sigma points, corresponding mean

and covariance:

Y (i, k/k − 1) =hϑ̂(Xx,C(i, k/k − 1), Xd(k − 1), u(k),

. ϑ(k)), i = 0, 1, ..., 2N

ŷ−(k) =

2N∑
i=0

(w(i)
m Y (i, k/k − 1))

P−
y (k) =

2N∑
i=0

w(i)
c (Y (i, k/k − 1)− ŷ−(k))

. (Y (i, k/k − 1)− ŷ−(k))T

(6) Calculate cross covariance and kalman gain.

P−
xy(k) =

2N∑
i=0

w(i)
c (Xx(i, k/k − 1)− x̂−(k))

. (Y (i, k/k − 1)− ŷ−(k))T

K(k) =P−
xy(k)(P−

ȳ (k))−1

(7) Calculate the state estimate and its covariance.

x̂(k) =x̂−(k) +K(k)(y(k)− ŷ−(k))

Px(k) =P−
x (k)−K(k)P−

y (k)KT (k)

(8) For a value of forget factor l, calculate gain γϑ1, γϑ2,
γϑ3 for estimation of Cp, Ct, Ka respectively, using
estimated states

γϑi(k−1) =
Pϑi(k − 1)ψi(k)

ψi(k)Pϑi(k − 1)ψi(k) + l
, for i = 1, 2, 3.

(9) Calculate the estimated parameters and correspond-
ing covariance.

ϑ̂i(k) =ϑ̂i(k − 1) + γϑi(k − 1)(yi(k)− ψi(k)

.ϑ̂i(k − 1)), for i = 1, 2, 3.

ϑ̂(k) =[ϑ̂1(k) ϑ̂2(k) ϑ̂3(k)]T

Pϑi(k) =(I − γϑi(k − 1)ψi(k))Pϑi(k − 1)/l,

.for i = 1, 2, 3.

(10) 10. Collect new data and repeat from step 2.

Initialize at k=0

Set k=k+1

Guess value of augmented state xa(0),
Covariance matrices Pϑ(0), P

a(0)
Parameter ϑ̂(0) taken/calutalated from history

Calculate sigma points Xa(i, k − 1)

Update state vector Xx(i, k/k − 1)

Calculate apriori state x̂−(k)

Calculate apriori state covariance P̂−
x (k)

Calculate output vector Y (i, k/k − 1)

Calculate output mean ŷ−(k)

Calculate output covariance P−
y (k)

Calculate cross covariance P−
xy(k)

Calculate kalman gain K(k)

Calculate state estimate x̂(k)
Calculate state covariance Px(k)

Calculate parameter gain γϑi(k − 1), i=1,2,3.

Calculate parameter estimate ϑ̂(k)
Calculate covariance Pϑi(k), i=1,2,3.

with constraints

with constraints

Step1

Step2

Step3

Step4

Step5

Step6

Step7

Step8

Step9

Fig. 2. Algorithm Flow Chart

4. SIMULATION RESULTS

4.1 Implementation of the algorithm

The data is collected by running the Simulink model for
the following values of the parameters: Cp = 0.0113,
Ct ∈ [12000, 11998], Ka = 0.6(1 + 10−5x2) + 9× 10−5(1 +
0.0002x2)u1 + 9× 10−5(1 + 0.0001x2)u2

1 (polynomial func-
tion of throttle angle and engine speed Franchek et al.
(2007)). The simulation is run for 50 sec with time step
= 0.005 sec. x1(0) = 0.7, x2(0) = 5. Process noise:
x1 ∼ N (0, 10−2), x2 ∼ N (0, 10−2). Measurement noise:
y1 ∼ N (0, 10−6), y2 ∼ N (0, 10−6), y3 ∼ N (0, 10−4).
First 50 data points are considered as history (states are
known). The algorithm starts after the first 50 data points.
The parameters are initialized by applying Least Squares
method on the history points. Initial state values taken:
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x̃1(0) = 0.2, x̃2(0) = 10. l = 0.9. Px̃(0) = diag(0.6, 5),
Pϑi(0) = 105 for i=1,2,3. Constrains applied: 0 ≤ x1 ≤ 1,
x2 ≥ 10−6.

0 10 20 30 40 50time(s)

40

50

u 1(d
eg

)

0 10 20 30 40 50time(s)

2.8
3

3.2
3.4
3.6

u 2(k
g/

s)

10-3

Fig. 3. Input data

0 10 20 30 40 50
time(s)

0

1

2

y 1

0 10 20 30 40 50time(s)
0

5

y 2(N
m

)

0 10 20 30 40 50time(s)
0.5

1

1.5

y 3(k
g/

s)

Fig. 4. Output data

Figure 3 shows the input data collected from the simulink
model. u1 is throttle angle (deg) and u2 is fuel mass flow
rate injected (kg/s). Figure 4 shows the collected output
from the simulink for the input data. y1 is normalized air-
fuel ratio, y2 is engine torque (Nm) and y3 is air mass flow
rate past throttle (kg/s). The simulink acts as plant for
the experiment which produces synthetic data.

0 10 20 30 40 50

time(s)

0.6

0.8

1

x
1
(b

a
r)

actual

estimated

0 10 20 30 40 50time(s)

5

10

x
2
(k

rp
m

) actual

estimated

Fig. 5. State estimation

In figure 5, the first plot shows the estimated manifold
pressure with orange curve and simulated manifold intake
pressure in blue. Both the curves are almost coinciding.
Initial value of the manifold pressure taken is 0.7 bar
whereas the simulated value is 0.2 bar. The second plot
in the figure shows estimated engine speed in orange

and simulated speed in blue. The initial value for the
speed is taken as 5000 rpm whereas the simulated value
is 10000 rpm. The estimated speed converges to the
simulated speed with time. In figure 6, behavior of the
parameters with time is shown. Cp is a constant whereas
Ct and Ka are time-varying. The estimated parameters
converges towards the actual parameters in small time.
The estimates track the actual values within a very small
error band.

0 10 20 30 40 50time(s)

0.0113

0.01135

0.0114

C
p

actual
estimated

0 10 20 30 40 50time(s)

1.1998
1.2
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t
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0 10 20 30 40 50time(s)
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Fig. 6. Parameter estimation
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C
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C
t
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K
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Fig. 7. Relative error percentage of states and parameters

Figure 7 shows the relative error percentage for the state
and parameter estimation. The error is very small and
acceptable. It can be observed from the figure that the
algorithm converges for this case. Relative error percentage
for both the states and parameters Cp and Ct is less than
0.4%. Relative error percentage for Ka is less than 11%.

r.e.% =
actual value− estimated value

actual value
100

4.2 Joint estimation using UKF

For the same data and initial conditions, joint state and
parameter estimation is done using UKF for comparison.
In joint estimation, states and parameters are estimated
jointly by using one UKF. The parameters are consid-
ered as state variables for the estimation Wan and Van
Der Merwe (2000). The system model of the system defined
by (10) becomes:

x̃p(k) = f(x̃p(k − 1), ṽ(k − 1), ũ(k − 1))

ỹ(k) = h(x̃p(k), d̃(k), ũ(k))

where state vector x̃p(k) = (x̃(k), ϑ̃(k)). Process noise
corresponding to additional states: Cp ∼ N (0, 0.001), Ct ∼
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N (0, 100),Ka ∼ N (0, 10). Px̃(0) = diag(0.6, 5, 0.1, 100, 0.1).
Constrains applied: 0 ≤ x1 ≤ 1, x2 ≥ 10−6, x3 ≥ 10−6,
x4 ≥ 104, x5 ≥ 10−6. Dynamics of the parameters fed to
UKF:

Ċp = vCp; Ċt = vCt; K̇a = vKa

where vCp, vCt, vKa represents the process noise corre-
sponding to Cp, Ct, Ka respectively.
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time(s)
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Fig. 8. State estimation using UKF for joint estimation
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Fig. 9. Parameter estimation using UKF for joint estima-
tion

Figure 8 shows the state estimation and figure 9 shows the
parameter estimation using UKF for joint estimation. The
parameter estimates tries to track the behavior but does
not converges to their actual values. However, the state
estimates converges to the actual states. This is because
of two reasons: 1). we did not provide the true dynamics of
Ct and Ka to UKF, 2). since UKF is robust to parameters
within some range, so even with the estimates as in figure
9, the states with known dynamics i.e., intake manifold
pressure and engine speed are estimated correctly.

5. CONCLUSION

Parameter estimation with unknown states has been done
for SI engine model under the influence of process noise
and measurement noise. The method estimates the pa-
rameters by using state estimates. States are estimated by
UKF and parameters are estimated by RLSF. The results

shows that the algorithm converges for the combination
of constant and time varying parameters. In this case
where one parameter is constant and two parameters are
time varying, joint state and parameter estimation by
using UKF does not converge. Further work will focus
on parameter estimation with unknown states and wall
wetting phenomenon.
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