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Abstract: In this paper, we provide a constructive way of specifying initial/boundary data
for a given continuous 2-D autonomous system described by a set of linear partial differential
equations (PDEs) with real constant coefficients. One of the ways of specifying initial/boundary
data is by specifying the values of various derivatives of the solution trajectories at the origin; the
derivatives correspond to a standard monomial set obtained using Gröbner basis. However, such
an initial/boundary data often lacks physical interpretation. In this paper, we consider subsets
of the domain having some algebraic structure (in the form of subspaces and strips of finite
width around such subspaces) such that trajectories restricted to these subsets, often called
characteristic sets, serve as initial/boundary conditions for the given autonomous system of
linear PDEs. We provide a systematic way to construct such characteristic sets with the help of
Gröbner bases and Oberst-Riquier algorithm. Thus we bridge the gap between initial/boundary
conditions involving standard monomials and more conventional initial/boundary conditions in
the form of restrictions on characteristic sets. We also show that every scalar system of PDEs
admits such a characteristic set given by a rectangular strip of finite width around a subspace
whose dimension equals the Krull dimension of the system’s quotient ring.

Keywords: Distributed parameter systems, boundary control, linear control system.

1. INTRODUCTION

Solving a system of partial differential equations (PDEs)
requires initial and/or boundary conditions. In this pa-
per, we consider systems of PDEs with two independent
variables having no inputs/free variables. Such systems
are also called continuous 2-D autonomous systems in the
literature. It is known from the literature that exponential
solutions for a given continuous n-D autonomous sys-
tem can be computed using the Oberst-Riquier algorithm
(see (Pal and Pillai, 2014, Algorithm 22)). The Oberst-
Riquier algorithm uses Gröbner bases for determining a
standard monomial set (Cox et al. (2007)), and then, the
initial/boundary data is provided by specifying the values
at the origin of various derivatives – corresponding to these
standard monomials – of the trajectory to be evaluated.
However, such initial/boundary data, based on standard
monomials, often lacks a physical interpretation, which
might be of crucial importance for problems arising in engi-
neering. This is because the shape of a standard monomial
set is often arbitrary, depending on the given system of
equations and the term ordering used for computing the
requisite Gröbner basis.

A more useful initial/boundary data comes in the form
of restrictions of trajectories to proper subsets of the do-
main having some algebraic structure. For example, such
restrictions of trajectories to a subset of the domain play
? This work has been supported in parts by DST-INSPIRE Faculty
Grant, the Department of Science and Technology (DST), Govt. of
India (Grant Code: IFA14-ENG-99).

an important role in systems theory, namely, boundary
control (Krstic and Smyshlyaev (2008)), causality (For-
nasini and Marchesini (1976); Fornasini et al. (1993)), sta-
bility analysis (Pillai and Shankar (1998); Valcher (2000);
Oberst (2006)), controller design (Shankar (2000)) etc. In
this paper, we attempt to bridge this gap by considering
subsets of the domain having some algebraic structure (in
the form of subspaces and strips of finite width around
such subspaces) such that trajectories restricted to these
subsets serve as initial/boundary conditions for a given
2-D autonomous system. Such sets are known as char-
acteristic sets in the literature. A characteristic set is a
proper subset of the domain (here Rn) with the defining
property that trajectories restricted to this subset allows
to uniquely extend the trajectory over the whole domain.
We provide, in this paper, a systematic way to construct
characteristic sets (of the form as mentioned above) for
continuous scalar 2-D autonomous systems with the help
of Gröbner bases and Oberst-Riquier algorithm.

The notion of characteristic sets was originally developed
for discrete 2-D systems (that is, for systems of partial
difference equations having two independent variables)
in Valcher (2000), and was later extended to arbitrary
dimensions in Mukherjee and Pal (2016, 2017, 2019). It
was shown in Pal (2017) that every dicrete autonomous
2-D system admits a characteristic set given by a union
of finitely many parallel lines. This rightly generalizes the
1-D case where a characteristic set is always a collection
of finitely many points of the domain (Willems (1991)).
In this paper, we prove the continuous analogue for 2-D
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autonomous systems. It is important to note, here, that
the extension to the continuous case requires significant
developments over the discrete case. This is primarily
because of the difference in action of a discrete and a
continuous operator on a trajectory – in the discrete case
the operator action is a shift action while for a continuous
case the operator acts on a trajectory by differentiation.

An autonomous scalar system of PDEs having two inde-
pendent variables can either be finite dimensional or be
infinite dimensional depending on the Krull dimension of
the system. It is known that in the finite dimensional
case, that is when the system has Krull dimension equal
to zero, a characteristic set for the system is a collection
of finitely many points of the domain R2 (see Fornasini
et al. (1993)). For the case when the Krull dimension
of the system is equal to one, it is not clear what kind
of subsets of R2 can then qualify as a characteristic set.
We answer this question in this paper. We show that a
rectangular strip of finite width containing a 1-D subspace,
having the special property of being free with respect to
the system, is a characteristic set for the system. We also
show that every scalar 2-D autonomous system admits
a characteristic set given by a rectangular strip of finite
width around a subspace.

The paper is organized as follows. Section 2 discusses the
preliminaries and sets the notation to be used for the rest
of the paper. In Section 3 we characterize initial/boundary
data using the notion of characteristic sets. Section 4 shows
that every scalar system of PDEs admits a characteristic
set given by a rectangular strip of finite width containing
a free subspace.

2. NOTATION AND PRELIMINARIES

2.1 Notation

We use the symbols N and R to denote the set of natural
numbers and the field of real numbers, respectively. We use
the shorthand ∂i to denote differentiation with respect to
the independent variable xi, that is ∂i := ∂

∂xi
, for i = 1, 2.

The polynomial ring in two indeterminates is denoted by
R[∂], where ∂ = (∂1, ∂2). We use the symbol 〈, 〉 to denote
the standard inner product in R2.

2.2 System Description

In this paper, we consider linear systems of partial dif-
ferential equations (PDEs) with real constant coefficients
having one dependent variable (i.e., a scalar system) and
evolving over two independent variables. Consider the sys-
tem of PDEs given by

f1(∂)
f2(∂)

...
fr(∂)

w = 0, (1)

where fi ∈ R[∂] for i ∈ {1, 2, . . . , r}. The solution to this
system of PDEs, w, is called a trajectory. A trajectory w
is a real valued function from the domain R2 to R, that is
w : R2 → R. Such a function can belong to the space of
analytic functions, the space of exponential functions and
so on. It is important to choose a solution space for our

analysis. We consider real entire analytic solutions of the
exponential type as defined below.

Definition 2.1. We denote by Exp(R2,R) the set of all
formal power series in two variables

w(x) =
∑
ν∈N2

wν
ν!
xν ,

where ν := (ν1, ν2) is a 2-tuple, xν := xν11 x
ν2
2 and ν! :=

ν1!ν2! with the sequence of real numbers {wν}ν∈N2 being
such that w is convergent at all points of the domain, that
is w(x) ∈ R for all x ∈ R2.

Following Willems (Willems (1991)), the collection of all
trajectories that satisfy a given system of PDEs is called
the behavior, B, of the system. That is,

B =
{
w ∈ Exp(R2,R) f1(∂)w = . . . = fr(∂)w = 0

}
.
(2)

It has been shown in Oberst (1990) that the set of expo-
nential trajectories, Exp(R2,R), is a large injective cogen-
erator. Therefore, the one-to-one correspondence between
ideals in R[∂] and scalar autonomous behaviors can be
utilized here. In other words, given a system of PDEs as
in equation (1), let a := 〈f1, f2, . . . , fr〉 ⊆ R[∂] be the
equation ideal generated by the describing PDEs. Then

B(a) :=
{
w ∈ Exp(R2,R) f(∂)w = 0 ∀ f ∈ a

}
= B. (3)

Given the equation ideal a ⊆ R[∂], define the quotient ring
M := R[∂]/a, as the set of all equivalence classes defined
by the following equivalence relation: f1, f2 ∈ R[∂] are
related if and only if f1− f2 ∈ a. For an element f ∈ R[∂],
the equivalence class of f is denoted by f . This gives the
canonical surjection R[∂] � M, where every element is
mapped to its equivalence class.

For an A-module M, the annihilator ideal is defined as

annAM := {f ∈ A fm = 0 for all m ∈M} . (4)

Definition 2.2. An A-module M is said to be a faithful
module over A if annAM = {0}.

In this paper, we consider autonomous systems. Such
systems have been characterized using various equivalent
conditions in the literature (see Pillai and Shankar (1998);
Rocha and Willems (1989), Pommaret and Quadrat
(1999), Zerz (2000) among others). It follows from the
equivalent characterizations that a scalar 2-D system B
is autonomous if and only if the equation ideal a ⊆ R[∂] is
non-zero.

The Krull dimension of the system plays a crucial role in
this paper. By Krull dimension of a system B, we mean the
Krull dimension of the associated quotient ring M. The
Krull dimension of a ringA1 is defined to be the supremum
of the lengths of chains of prime ideals in A1, where a chain
of prime ideals of the form p0 ( p1 ( . . . ( p` is said to
be of length `.

2.3 Restriction of trajectories to 1-D subspaces

Restriction of trajectories plays an important role in this
paper. In this section, we look at restriction of trajectories
to 1-D subspaces of the domain.

Let V ⊆ R2 be a 1-D subspace spanned by a non-zero

vector v = [v1 v2]
T ∈ R2. That is,

V :=
{
x ∈ R2 x = vt, t ∈ R

}
. (5)
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Definition 2.3. For a 2-D system B and a 1-D subspace
V ⊆ R2 spanned by a non-zero vector v ∈ R2, the
restriction of B to V is defined as the following set of 1-D
trajectories:

B|V := {w(vt) ∈ Exp(R,R) w ∈ B} . (6)

An immediate question would be whether this subspace is
free with respect to the system. We first define free-ness
in this context.

Definition 2.4. A subspace V ⊆ R2 is said to be free with
respect to a given 2-D system B if the restriction of B
to V, as defined in equation (6), is equal to the space
of 1-D real entire functions of exponential type. That is,
B|V = Exp(R,R).

Later in the paper, we use the notion of vectors being free
with respect to a system. By this, we mean the subspace
spanned by the vector to be free with respect to the
system, according to Definition 2.4.

A necessary and sufficient condition for free-ness of a 1-D
subspace with respect to a scalar system was provided in
Pal and Pillai (2014). This characterization plays a crucial
role in this paper. To state the result some constructions
are required which we first note.

Denote by 〈v, ∂〉 the linear polynomial v1∂1 + v2∂2. Note
that, the polynomial 〈v, ∂〉 is transcendental over R.
Therefore, the R-algebra R[〈v, ∂〉] is isomorphic to the
polynomial ring in one indeterminate. Further note that
R[〈v, ∂〉] is a sub-algebra of R[∂]. Consider the R-algebra
homomorphism Φ : R[〈v, ∂〉]→M defined as follows:

Φ : R[〈v, ∂〉] ↪→ R[∂] � M
p 7→ p 7→ p.

(7)

Observe that ker Φ = a∩R[〈v, ∂〉]. Since Φ is an R-algebra
homomorphism, ker Φ is an ideal in R[〈v, ∂〉]. We call this
the intersection ideal of a and denote it by aV , that is
aV := a∩R[〈v, ∂〉]. Corresponding to the intersection ideal
aV , we have the following 1-D behavior

BV :=

{
w̃ ∈ Exp(R,R) f(

d

dt
)w̃ = 0 ∀ f(〈v, ∂〉) ∈ aV

}
.

(8)

Proposition 2.5 relates the 1-D behavior, as defined in
equation (8), to the behavior restricted to a 1-D subspace
as defined in equation (6). The proof of the result can be
found in Pal and Pillai (2014).

Proposition 2.5. Consider a scalar autonomous 2-D sys-
tem B with equation ideal a ⊆ R[∂]. Let V ⊆ R2 be a 1-D
subspace spanned by a non-zero v ∈ R2. Let B restricted
to V be as defined in Definition 2.3. Consider the 1-D
behavior as defined in equation (8). Then B|V ⊆ BV .

We now return to the question of free-ness of a subspace
with respect to a given behavior. Proposition 2.6 gives an
algebraic characterization of free-ness. The proof can be
found in Pal and Pillai (2014).

Proposition 2.6. Consider a scalar autonomous 2-D sys-
tem B with equation ideal a ⊆ R[∂]. Let V ⊆ R2 be a
1-D subspace spanned by a non-zero v ∈ R2. Then the
following are equivalent:

(1) V is free with respect to B.

(2) The intersection ideal aV = a ∩ R[〈v, ∂〉] is the zero
ideal.

(3) The R-algebra homomorphism Φ : R[〈v, ∂〉]→M, as
defined in equation (7), is injective.

It also follows from the characterization in Proposition 2.6
that free subspaces are abundant in R2. In other words, a
1-D subspace V ⊆ R2 chosen at random will almost always
be free with respect to a given 2-D behavior B. For details
and proof please see Pal and Pillai (2014).

3. CHARACTERIZATION OF INITIAL DATA

In this section, we provide a constructive way of specifying
initial data for a given system of PDEs using the notion
of characteristic sets. Characteristic sets were initially
defined for discrete 2-D systems (Valcher (2000)) and later
extended to n-D system in Mukherjee and Pal (2016,
2017, 2019). Here, we define a characteristic set for the
continuous case, that is for autonomous systems described
by linear PDEs with real constant coefficients.

3.1 Characteristic sets

Definition 3.1. Given a system B, a subset S of the
domain is called a characteristic set for B if for every
trajectory w ∈ B, the restriction of w to S allows to
uniquely determine the remaining portion of w, that is
w|R2\S can be uniquely determined if w|S is known.

It is often infeasible to acertain if a given arbitrary subset
of the domain is a characteristic set. In this paper, we
provide a way of constructing a characteristic set for a
given scalar 2-D autonomous system B.

Consider a 2-D autonomous system B with equation ideal
a ⊆ R[∂] and corresponding quotient ring M. The Krull
dimension of M as an R[∂]-module can either be zero
or one. For the case when the Krull dimension of M
equals zero, M becomes a finite dimensional vector space
over R. In that case, B is a strongly autonomous system
and a characteristic set for B is a set of finitely many
points of the domain (see Fornasini et al. (1993)). The
other possibility for an autonomous 2-D system is to have
Krull dimension of M to be equal to one. It is not yet
known what kind of subsets of R2 can then qualify as
a characteristic set in this case. We address this in the
following section.

3.2 Rectangular strips of finite width as characteristic sets

In this section, we show that rectangular strips of finite
width containing a 1-D subspace, which is free with respect
to the system, is a characteristic set for the system. This
result is proved by first showing that for a system B having
Krull dimension equal to one and a 1-D subspace V which
is free with respect to B, following Definition 2.4, the
quotient ring M is a finitely generated faithful module
over R[〈v, ∂〉]. This result uses the idea of integral ring
extension. We briefly discuss this here; for details please
refer to (Atiyah and MacDonald, 1969, Chapter 5).

Let A1 and A2 be rings such that A1 ⊆ A2 as a subring.
Then an element α ∈ A2 is said to be integral over A1 if
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α satisfies a monic polynomial equation with coefficients
from A1. When A1 ⊆ A2 as a subring, A2 is said to be an
integral extension of A1 if every element of A2 is integral
overA1. Proposition 3.2 summarizes the results on integral
ring extension required for this paper. For proofs, please
see (Atiyah and MacDonald, 1969, Chapter 5).

Proposition 3.2. Let A1 and A2 be rings. Further, let A2

be a finitely generated algebra over A1. Then the following
are equivalent.

(1) A2 is integral over A1.
(2) A2 is a finitely generated module over A1.

Theorem 3.3. Consider a 2-D autonomous system B with
equation ideal a ⊆ R[∂] and corresponding quotient ring
M having Krull dimension equal to one. Let V ⊆ R2 be
a 1-D subspace spanned by a non-zero vector v ∈ R2 such
that V is free with respect to B. Recall the sub-algebra
R[〈v, ∂〉] of R[∂]. Then M is a finitely generated faithful
module over R[〈v, ∂〉].

Proof: Recall the R-algebra homomorphism Φ : R[〈v, ∂〉]→
M as defined in equation (7). Since V is free with respect
to B, Φ is injective (Statement 3 of Proposition 2.6). This
shows that M is a faithful module over R[〈v, ∂〉].
Note that, M is naturally a finitely generated algebra
over R. Since R ⊆ R[〈v, ∂〉], M is a finitely generated
algebra over R[〈v, ∂〉] as well. To show thatM is a finitely
generated module over R[〈v, ∂〉], it then suffices to show
that Φ : R[〈v, ∂〉] → M is integral (Proposition 3.2). We
prove this by contradiction. Suppose Φ is not integral.
Then there exists an element ξ ∈ M transcendental over
R[〈v, ∂〉] such that R[〈v, ∂〉] ( R[〈v, ∂〉, ξ] ⊆ M. Now
Krull dimension of R[〈v, ∂〉, ξ] is one more than the Krull
dimension of R[〈v, ∂〉]. Again R[〈v, ∂〉, ξ] ⊆ M implies
Krull dimension of R[〈v, ∂〉, ξ] is less than or equal to the
Krull dimension of M which contradicts the assumption
that the Krull dimension of M is equal to one. �

For a given 1-D subspace V ⊆ R2 spanned by a non-zero
vector v ∈ R2, let U ⊆ R2 be a complementary subspace
(not necessarily orthogonal) of V spanned by u ∈ R2 such
that R2 = V ⊕ U . Note that, T := [v u] is non-singular.
Define the linear polynomial 〈u, ∂〉 := u1∂1 + u2∂2. As
before, 〈u, ∂〉 is transcendental over R.

Lemma 3.4. Let V ⊆ R2 be a 1-D subspace spanned by
a non-zero v ∈ R2. Let U ⊆ R2 be a complementary
subspace of V spanned by u ∈ R2 such that R2 = V ⊕ U .
Then R[∂] = R[〈v, ∂〉, 〈u, ∂〉] as R-algebras.

Proof: Note that, R[〈v, ∂〉, 〈u, ∂〉] ⊆ R[∂]. To show R[∂] ⊆
R[〈v, ∂〉, 〈u, ∂〉], we need to show that ∂is can be expressed
as R-linear combinations of 〈v, ∂〉 and 〈u, ∂〉 for i = 1, 2.
In other words, we need to show that there exists a matrix
A ∈ R2×2 such that[ ∂

∂x1
∂
∂x2

]
= A

[
〈v, ∂〉
〈u, ∂〉

]
.

Define T := [v u] ∈ R2×2. Note that, T is non-singular. It

can be easily verified that A =
(
TT
)−1

, where TT is the
transpose of T . �

We now state Corollary 3.5 which follows from Theorem
3.3 and Lemma 3.4. The proof follows from standard

results in integral ring extension. For details please refer
to (Atiyah and MacDonald, 1969, Chapter 5).

We use the shorthands ∂u := 〈u, ∂〉 and ∂v := 〈v, ∂〉
henceforth.

Corollary 3.5. Consider a 2-D autonomous system B with
equation ideal a ⊆ R[∂] and corresponding quotient ring
M having Krull dimension equal to one. Let V ⊆ R2 be a
1-D subspace spanned by a non-zero v ∈ R2 such that V
is free with respect to B. Let U ⊆ R2 be a complementary
subspace of V spanned by u ∈ R2. Then the following are
true:

(1) M is a finitely generated faithful module over
R[〈v, ∂〉].

(2) There exists d ∈ N, such that

∂du + ad−1(∂v)∂
d−1
u + . . .+ a1(∂v)∂u + a0(∂v) ∈ a

where ai ∈ R[∂v] for i ∈ {0, 1, . . . , d− 1}.

Using Corollary 3.5, we prove Lemma 3.6 which gives an
explicit list of generators forM as a module over R[〈v, ∂〉].
Lemma 3.6. Consider a 2-D autonomous system B with
equation ideal a ⊆ R[∂] and corresponding quotient ring
M having Krull dimension equal to one. Let V ⊆ R2 be
a 1-D subspace spanned by a non-zero v ∈ R2 such that
V is free with respect to B. Then there exist u ∈ R2 and
d ∈ N such that {

∂ju 0 6 j 6 d− 1
}

(9)

is a generating set for R[∂]/a as a module over R[〈v, ∂〉].

Proof: Since Krull dimension of M is equal to one and
V ⊆ R2 is a 1-D subspace it follows from Theorem
3.3 that M is a finitely generated faithful module over
R[〈v, ∂〉]. It follows from Lemma 3.4 that, there exists a
complementary subspace U ⊆ R2 of V spanned by u ∈ R2

such that R[∂] = R[〈v, ∂〉, 〈u, ∂〉]. Define ∂v := 〈v, ∂〉
and ∂u := 〈u, ∂〉. Then every polynomial in R[∂] can be
rewritten as a finite R-linear combination of monomials
of the form ∂av∂

b
u, where a, b ∈ N. Since M is a finitely

generated faithful module over R[〈v, ∂〉], according to
Corollary 3.5, there exists d ∈ N such that

p(∂v, ∂u) := ∂du+ad−1(∂v)∂
d−1
u +. . .+a1(∂v)∂u+a0(∂v) ∈ a,

where ai ∈ R[∂v] for i ∈ {0, 1, . . . , d − 1}. Now p(∂v, ∂u)
being a monic polynomial in ∂u, ∂av∂

b
u can be divided by

p(∂v, ∂u) using the Euclidean division algorithm. Thus we
have

∂av∂
b
u = p(∂v, ∂u)q(∂v, ∂u) + r(∂v, ∂u),

where p(∂v, ∂u)q(∂v, ∂u) ∈ a and the remainder r(∂v, ∂u) is
an R[∂v]-linear combination of monomials {1, ∂u, . . . , ∂d−1u }.
Under the canonical surjection we have ∂av∂

b
u = r(∂v, ∂u).

Thus every monomial ∂av∂
b
u, where a, b ∈ N, is equal to an

R[∂v]-linear combination of monomials {1, ∂u, . . . , ∂d−1u }.
�

Theorem 3.7. Consider a 2-D autonomous system B with
equation ideal a ⊆ R[∂] and corresponding quotient ring
M having Krull dimension equal to one. Let V ⊆ R2 be a
1-D subspace spanned by a non-zero v ∈ R2 such that V is
free with respect to B. Then a rectangular strip of finite
width containing V is a characteristic set for B.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4397



Proof: To show that a characteristic set for B is given
by a rectangular strip of finite width containing V we
show that to evaluate a trajectory at an arbitrary point
x = (x1, x2) ∈ R2, the information of the trajectory on
this rectangular strip is sufficient. Recall, from Definition
2.1, that, w(x) can be computed if wν is known for all
ν ∈ N2. Note that, wν = (∂ν)w|x=0.

Applying Lemma 3.4, the solution trajectory in the trans-
formed domain can be written as

w(x) =
∑
ν∈N2

w̃ν
ν!
ξν ,

where x = Tξ with T = [v u] ∈ R2×2 and w̃ν =
(∂ν1v ∂

ν2
u )w|x=0. Using Lemma 3.6, ∂ν1v ∂

ν2
u is equivalent

modulo the equation ideal to a finite R[∂v]-linear combina-
tion of monomials 1, ∂u, . . . , ∂

d−1
u for some d ∈ N. Thus to

calculate w̃ν we must know the action of these monomials
on a trajectory w ∈ B evaluated at x = 0. In other words,{(

∂iu∂
j
v

)
w|x=0 0 6 i 6 d− 1, j ∈ N

}
(10)

lets us uniquely determine w at an arbitrary x ∈ R2.

Let S ⊆ R2 be a strip containing the subspace V spanned
by a non-zero v ∈ R2. That is,

S :=
{
x ∈ R2 ∃ ξ1, ξ2 ∈ R such that x = ξ1v + ξ2u,

where − ε 6 ξ2 6 ε} .
(11)

Then for all x ∈ S, the action of ∂iu∂
j
v on w evaluated at

x is given by(
∂iu∂

j
v

)
w|x =

((
∂iu∂

j
v

)
w
)

(ξ1v + ξ2u) =
∂i

∂ξi2

(
∂jwT

∂ξj1

)
(12)

where wT := w◦T . Thus wT must be known for all ξ1 ∈ R
and −ε 6 ξ2 6 ε. Therefore the initial data, as specified in
equation (10), can be calculated from w|S which in turn
helps in uniquely calculating w. �

Remark 3.8. Note that, a characteristic set only refers to
a subset of the domain having some special property. The
property of uniquely extending the trajectory to the whole
domain requires an algorithm for computing trajectories
at various points in the domain. One such algorithm is
the Oberst-Riquier algorithm as stated in (Pal and Pillai,
2014, Algorithm 22).

Remark 3.9. The Oberst-Riquier algorithm crucially uses
Gröbner basis for computing a standard monomial set. A
characteristic set is analogous to the standard monomial
set having some nice structure and useful system theoretic
properties.

4. EXISTENCE OF A RECTANGULAR STRIP OF
FINITE WIDTH AS A CHARACTERISTIC SET

In Section 3.2 we have shown that for a given scalar
autonomous 2-D system B and a 1-D subspace V ⊆ R2,
which is free with respect to B, a characteristic set for B is
given by a rectangular strip of finite width containing this
1-D subspace. In this section, we provide a systematic way
of finding a 1-D subspace, with the desired specification of
being free with respect to the given 2-D system, such that a
characteristic set can be constructed using it. This follows

from the application of a well-known result in commutative
algebra – the Noether’s Normalization Lemma (see Atiyah
and MacDonald (1969)).

Let T : R2 → R2 be an invertible linear map represented
by a non-singular matrix

T =

[
t11 t12
t21 t22

]
∈ R2×2.

Let x and y denote the co-ordinate functions of the domain
and co-domain, respectively. Then y = Tx. Define the
T -induced linear map between the tangent spaces, T ∗ :
TxR2 → TyR2, in the following way. Let y 7→ w(y) be in
Exp(R2,R). Then for i = 1, 2,(

T ∗
∂

∂xi

)
(w(y)) :=

∂

∂xi
w(Tx). (13)

Applying the definition of T ∗ (equation (13)) to the co-
ordinate function yjs, we have(

T ∗
∂

∂xi

)
yj=

∂

∂xi

2∑
k=1

tjkxk= tji.

By varying j, we have
(
T ∗ ∂

∂xi

)
=
∑2
k=1 tji

∂
∂yj

. Thus for

w ∈ Exp(R2,R), we have[ ∂
∂x1
∂
∂x2

]
w(Tx) = T ∗

[ ∂
∂x1
∂
∂x2

]
w(y) = TT

[
∂
∂y1
∂
∂y2

]
w(y), (14)

where TT denotes the transpose of T . Define ∂x :=
{ ∂
∂x1

, ∂
∂x2
} and ∂y := { ∂

∂y1
, ∂
∂y2
}. Define the T -induced R-

algebra homomorphism ψ : R[∂x] → R[∂y] defined in the
following way

ψ : R[∂x] → R[∂y]
∂x 7→ TT∂y.

(15)

Since T is non-singular, TT is also non-singular and thus ψ
is an isomorphism of R-algebras. Lemma 4.1 below relates
the behaviors corresponding to equations written using the
partial differential operators ∂x and ∂y owing to the co-
ordinate transformation of the domain. The proof can be
found in Pal and Pillai (2014).

Lemma 4.1. Let T ∈ R2×2 be a linear co-ordinate trans-
formation on the domain R2 defined by x 7→ Tx =: y.
Consider the R-algebra isomorphism ψ : R[∂x] → R[∂y],
induced by T , as defined in equation (15). Let a ⊆ R[∂x]
be an ideal. Then ψ(a) ⊆ R[∂y] is also an ideal. Consider
the behaviors

Bx :=
{
w(x) ∈ Exp(R2,R) m(∂x)w = 0 ∀ m ∈ a

}
,

By :=
{
w(y) ∈ Exp(R2,R) m(∂y)w = 0 ∀ m ∈ ψ(a)

}
.

Let vx, vy ∈ R2 be such that vy = Tvx. Then there is a
bijective map between By|vy and Bx|vx in the set-theoretic
sense.

We now state a version of the Noether’s normalization
lemma suited for our purpose in Proposition 4.2 below.
For details please refer to (Kreuzer and Robbiano, 2000,
Tutorial 78, item `).

Proposition 4.2. Let a ⊆ R[∂] be a non-zero ideal. Then
there exists a non-singular matrix T ∈ R2×2 defined by
x 7→ Tx =: y and the corresponding T -induced map
ψ : R[∂x] → R[∂y], such that R[∂y]/ψ(a) is a finitely

generated faithful module over R[∂y1 ], where ∂y1 := ∂
∂y1

.
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We now prove Theorem 4.3.

Theorem 4.3. Consider a 2-D autonomous system B with
equation ideal a ⊆ R[∂] having Krull dimension equal to
one. Then there exists a 1-D subspace V ⊆ R2 such that
V is free with respect to B.

Proof: Let T ∈ R2×2 be the non-singular matrix rep-
resenting the co-ordinate transformation on the domain
R2 as defined in Proposition 4.2. It further follows
from Proposition 4.2 that the R-linear map R[∂y1 ] →
R[∂y]/ψ(a) is injective and integral. Injectivity of the map

implies that e1 = [1 0]
T

is free with respect to By. Then
v := T−1e1 is free with respect to B. Thus the 1-D
subspace V ⊆ R2 that is free with respect to B is given by
the span of v ∈ R2. �

Therefore, given a 2-D autonomous system B with equa-
tion ideal a ⊆ R[∂], there exists a non-singular matrix
T ∈ R2×2 defined by x 7→ Tx =: y and the corresponding
T -induced map ψ : R[∂x] → R[∂y], such that R[∂y]/ψ(a)
is a finitely generated faithful module over R[∂y1 ]. Using
Theorem 3.7, a characteristic set for By is given by a
rectangular strip of finite width containing e1 in the trans-
formed domain. Applying the inverse transformation we
obtain a characteristic set for B. Thus, every scalar 2-D
autonomous system, described by a set of linear PDEs
having exponential solution, admits a characteristic set
given by a rectangular strip of finite width containing a
free subspace.

Remark 4.4. The theory of Gröbner bases can be applied
for implementation and verification of the results pre-
sented in this paper.

5. CONCLUDING REMARKS

In this paper, we provided a method of constructing a
region (in the form of subspaces and strips of finite width
around such subspaces) in the domain such that trajec-
tories restricted to these regions serve as initial/boundary
data for the given scalar 2-D autonomous system of PDEs.
Note that, we have considered only exponential trajec-
tories; on bigger function spaces – like infinitely often
differentiable functions or distributions – the main results
of this paper often fail to hold. Formulating characteristic
sets for these function spaces would be a matter of future
research.

REFERENCES

Atiyah, M. and MacDonald, I. (1969). Introduction
to Commutative Algebra. Addison-Wesley Publishing
Company, Britain.

Cox, D., Little, J., and O’Shea, D. (2007). Ideals, Varieties
and Algorithms. Springer, NY.

Fornasini, E. and Marchesini, G. (1976). State-space real-
ization theory of 2-Dimensional filters. IEEE Transac-
tions on Automatic Control, AC-21(4), 484–492.

Fornasini, E., Rocha, P., and Zampieri, S. (1993). State
space realizations of 2-D finite-dimensional behaviours.
SIAM Journal on Control and Optimization, 31(6),
1502–1517.

Kreuzer, M. and Robbiano, L. (2000). Computational
Commutative Algebra 2. Springer.

Krstic, M. and Smyshlyaev, A. (2008). Boundary Control
of PDEs: A course on backstepping designs. SIAM,
Philadelphia.

Mukherjee, M. and Pal, D. (2016). On characteristic cones
of scalar autonomous nD systems, with general n. In
the Proceedings of the 22nd International Symposium
on Mathematical Theory of Networks and Systems, 839–
845.

Mukherjee, M. and Pal, D. (2017). Algorithms for verifi-
cation of characteristic sets of discrete autonomous nD
systems with n > 2. In the Proceedings of the 20th IFAC
World Congress, 50(1), 1840–1846.

Mukherjee, M. and Pal, D. (2019). On characteristic
cones of discrete nD autonomous systems: theory and
an algorithm. Multidimensional Systems and Signal
Processing, 30(2), 611–640.

Oberst, U. (1990). Multidimensional constant linear sys-
tems. Acta Applicandae Mathematicae, 20, 1–175.

Oberst, U. (2006). Stability and stabilization of multi-
dimensional input/output systems. SIAM Journal on
Control and Optimization, 45(4), 1467–1507.

Pal, D. (2017). Every discrete 2D autonomous system
admits a finite union of parallel lines as a characteristic
set. Multidimensional Systems and Signal Processing,
28(1), 49–73.

Pal, D. and Pillai, H.K. (2014). On restrictions of n-D
systems to 1-d subspaces. Multidimensional Systems
and Signal Processing, 25, 115–144.

Pillai, H.K. and Shankar, S. (1998). A behavioral approach
to control of distributed systems. SIAM Journal on
Control and Optimization, 37(2), 388–408.

Pommaret, J.F. and Quadrat, A. (1999). Algebraic anal-
ysis of linear multidimensional control systems. IMA
Journal of Mathematical Control and Information, 16,
275–297.

Rocha, P. and Willems, J.C. (1989). State for 2-D systems.
Linear Algebra and its Applications, 122-124, 1003–
1038.

Shankar, S. (2000). Can one control the vibrations of a
drum? Multidimensional Systems and Signal Processing,
11, 67–81.

Valcher, M.E. (2000). Characteristic cones and stability
properties of two-dimensional autonomous behaviors.
IEEE Transactions on Circuits and Systems – Part I:
Fundamental Theory and Applications, 47(3), 290–302.

Willems, J.C. (1991). Paradigms and puzzles in theory of
dynamical systems. IEEE Transactions on Automatic
Control, 36(6), 259–294.

Zerz, E. (2000). Topics in Multidimensional Linear Sys-
tems Theory. Springer, London.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4399


