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Abstract: The development of a noninvasive technique to measure tissue temperature during
retinal laser treatment allows feedback control approaches to regulate the temperature rise to
desired values. The main challenge is to provide fast and consistent good control performance
regardless the uncertainty of the dynamics of the temperature increase at the different irradiated
spots on the retina, which is due to the large variance of the retinal light absorption. In this
paper, we demonstrate a successful experimental application in ex-vivo of robust H∞ PID
control to handle such a control problem. The system input is the applied laser power and its
output is the temperature increase. Based on measurements of input-output data, we employ
system identification to model the range of the system dynamics at different retinal irradiation
sites. Then, we use a loop shaping approach to express the performance specifications of the
closed-loop system and we synthesize accordingly the controller using efficient robust H∞
synthesis tools for fixed structure controllers. The experimental implementation of the closed-
loop system for tracking different reference temperatures demonstrates the achievement of the
control objectives consistently at the different irradiation sites.

Keywords: Biomedical control systems, System identification, H∞-robust control, PID control.

1. INTRODUCTION

Laser irradiation is a standard transpupillary therapy for
several retinal diseases such as diabetic retinopathy. The
treatment operation depends on choosing an appropriate
laser power of a continuous wave laser (cw-laser) device
to heat up the irradiated site on the retina until desired
heating effects appear, like a visible lesion. The heating
effects due to the temperature rise depend on the light
absorption properties of the irradiated sites. The current
treatment depends on visible inspection of the irradiation
sites of previous lesions owing to the typically short
irradiation time around 0.1 s. Thus, ophthalmologists can
adjust manually the required amount of laser power for the
following spots. However, due the strong in-homogeneity of
the thermal absorption rates of the irradiated sites on the
retina, it is very difficult to achieve uniform heating effects
using such manual titration, which can lead to over/under
treatment effects, pain, bleeding, visual field defects and
other complications, see, e.g., Mainster (1999).

The recent development of an optoacoustic (OA) method
by Brinkmann et al. (2012) to measure noninvasively tem-
perature increase at the retinal irradiation sites during
the treatment allows the application of feedback control
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to regulate automatically the temperature increase to a
desired value. Temperature feedback-controlled laser treat-
ment can automatically modify the laser power to proper
values, which can lead to uniform thermal effects. Sev-
eral approaches have been introduced for controlling the
temperature rise using the OA temperature measurement;
however, most of them such as the approaches of Schlott
et al. (2012) and Baade et al. (2017), were based on
empirical open-loop control. The first trail of using proper
automatic control engineering was introduced in Herzog
et al. (2018) based on H∞ control; it proposed a robust
closed-loop control, which can achieve consistently about
50± 6 ms irradiation time to track a desired temperature
value. However, safety limits regarding the applied laser
power were not taken in account by the closed-loop system
which makes it prone to saturation effects and possible
termination due excessive use of laser power. Moreover, it
is usually desired to provide fast irradiation time of about
40 ms or less to follow a desired temperature.

The large variance of the absorption rates at the retinal
irradiation sites demands robust control strategies to deal
with the uncertainty of the corresponding rates of the
temperature increase and to achieve consistent temper-
ature rise regardless the heterogeneity of the absorption.
Moreover, the controller should also respect safety limits of
the applied laser power and attenuate disturbances/noise
effects. H∞ control approach offers very efficient methods,
see, e.g., Zhou and Doyle (1998), Skogestad and Postleth-
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waite (2005), supported by software tools, such as that of
Balas et al. (2011), to systematically achieve performance
shaping of the control system. It can also provide robust
stability and performance guarantees.

In order to design the required controller, we adopt in this
paper H∞ control using mixed sensitivity loop shaping,
see, e.g., Skogestad and Postlethwaite (2005), which can
easily translate the required control objectives in the de-
sign. However, for such a model based control approach, a
mathematical model is required to describe the relation
between the laser power and the temperature increase
at different irradiation sites. For this purpose, we use
system identification, Ljung (1999), based on measured
data sets. For practical implementation, we design a robust
PID controller using recently devloped techniques for de-
signing robust fixed-structure H∞ controllers of Apkarian
et al. (2015). The implementation of the PID controller
includes an integral sum correction algorithm to provide
simple anti-windup to deal with laser power limits. The
experimental results in ex-vivo of the proposed controller
show fast and consistent response for tracking desired
temperature values within irradiation time of 32± 7 ms.

The paper is organized as follows: Section 2 illustrates
the OA measurement system, the experimental setup and
the model of the system. The control design approach is
detailed in Section 3. The simulation and experimental re-
sults are demonstrated and discussed in Section 4. Finally,
the conclusion is drawn in Section 5.

2. MODELING

A successful feedback control system for controlling the
retinal temperature increase relies essentially on the avail-
ability of a mathematical model, which can describe
the dynamical relation between the temperature increase
∆T (t) and the applied lased power PL at different retinal
irradiation sites. In this section, we first discuss briefly the
OA method of Brinkmann et al. (2012) for measuring the
temperature at the irradiated sites, then an overview of
the experimental setup used in this work is given. Finally,
we present the system identification approach we used to
develop a dynamical model for the system.

2.1 OA Temperature Measurement

The principle of the OA temperature measurement is to
emit laser pulses on the retina, which excites the irradi-
ated tissue to generate bipolar pressure waves (ultrasonic
waves) propagating through the eye globe. Such waves can
then be detected by an ultrasonic transducer embedded
in a contact lens. The peak amplitude of the pressure
wave is proportional to the temperature at the irradi-
ated site via the so-called Grüneisen coeffiecient, which is
used to compute the corresponding temperature given the
peak pressure measurement. The OA temperature mea-
surement has been verified experimentally in Brinkmann
et al. (2012) with direct temperature measurements using
thermocouples and clinical trials.

2.2 Experimental Setup

The experimental setup considered in this work is located
at the Medical Laser Center Lübeck (MLL), Lübeck, Ger-
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Fig. 1. Experimental Setup: A standard treatment laser
is combined with a probe (measurement) laser. Both
are transmitted via a quartz fiber to a standard slit-
lamp. A piezo-transducer is embedded in a contact
lens (Mainster OMRA-S laser Lens) used to measure
the OA signal, and hence, the temperature value.

many, a simplified schematic diagram is shown in Fig. 1. It
consists of two laser devices: The heating (treatment) cw-
laser, which is a frequency doubled Nd:YAG (Visulas 532 s,
Carl Zeiss Meditec AG, wave length λ = 532 nm, continu-
ous wave) and the measurement laser, which is a frequency
doubled Q-switched Nd:YLF (QC-523-1000, CrystaLaser,
λ = 523 nm, pulse width 75 ns, f = 3 kHz) generating one
pulse every 1/3 ms. The heating laser basically implements
the laser power computed by the controller, whereas, the
measurement laser is used to generate the laser pulses
into the radiation sites for measuring the temperature as
discussed in Section 2.1. The radiations from both lasers
are coupled via a microscope objective into a multimode
fiber and focused onto the retina for the irradiation. A
piezo ceramic ultrasonic transducer with high sensitivity
and resonance frequency of 1 MHz embedded in a contact
lens is used to detect the produced pressure waves. The
signal processing and the control algorithm calculations
are performed using a PC running LabView, see Baade
et al. (2017) for more details. In this work, we consider
experiments on ex vivo explants from porcine eyes 1 at
room temperature Troom = 20oC.

2.3 System Identification

System identification, see Ljung (1999), is an engineering
tool for creating mathematical models of dynamical sys-
tems from experimental measured data. In this work, we
consider discrete-time linear time-invariant (LTI) models
with transfer function representation as follows:

y(k)

u(k)
= q−nk

b0 + b1q
−1 + · · ·+ bnb

q−nb

1 + a1q−1 + · · ·+ ana
q−na

, (1)

where u(k) and y(k) are the input and output of the
system, respectively, at a sampling time instant k, q−1

is the backward shift operator, i.e., q−1u(k) = u(k − 1),
b0, b1, · · · , a1, · · · are constant coefficients for parameteriz-
ing the system, na is the model order such that (na ≥ nb)
and nk represents time delay. In system identification,
given the values of na, nb, nk, the constant coefficients
are determined using measured input-output data of the
system. In most of systems, the measured output is usually

1 Retina tissue are taken from pig eyes and used within 6 hours.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16673



affected by disturbance/noise v. In order to characterize
the properties of v, thus, better describing the measured
output, model structures are used in system identification.
These include AutoRegressive with eXternal input (ARX),
Output-Error (OE), AutoRegressive moving Average with
eXternal input (ARMAX), and Box-Jenkins (BJ) models.
They are different in the way that v is described via a
so-called noise model with white noise input e, see Fig. 2.
The model structures range from the simplest structure

y

v

u
model

e

noise
model

Fig. 2. Model structure with model noise characterization.

(the ARX) to the complicated one (the BJ), which can
provide the most linear rigorous noise model for describing
v. Commonly, the prediction error minimization approach
is used to obtain the constant coefficients of the transfer
function model, in which the error between the measured
output y and the simulated output ŷ of the identified
model is minimized over the coefficients of the system
model and the noise model.

For the system under study here, the input is the laser
power PL and the output is the temperature increase ∆T .
Based on 528 input-output data sets of (PL, ∆T ), see
Fig. 3, from different pig eyes, it turns output that the
relationship between ∆T and PL can be described by the
first-order differential equation, Herzog et al. (2018),

τ∆Ṫ (t) = −∆T (t) + κPL(t), (2)

where τ, κ are the time constant and the static gain, re-
spectively, of the model. The model (2) indicates that na =
nb = nk = 1 in (1), thus, three coefficients b0, b1, a1 can be
considered to parameterize a transfer function model for
the system. In principle, these coefficients characterize τ
and κ of the system. Due to the heterogeneity of the retinal
absorption rate, the coefficients b0, b1, a1 are dependent
on the irradiation site absorption properties, which are
related to its amount of pigmentation and its thickness. In
order to design an appropriate robust controller, it is very
important to identify the range of values of b0, b1, a1 (and
consequently of τ and κ). Therefore, different data sets,
in total 528 input-output date sets, have been gathered
from different sites on the retina of several pig eyes. The
experiments for collecting the data have been carried out
by applying different two level steps input over three
phases as shown in Fig. 3. Note that in the first 10 ms only
laser pulses are applied, i.e., PL = 0, this is a necessary
phase of each experiment for calibrating the temperature
measurement according to the irradiation site property,
see Baade et al. (2017) for more details. In the second and
third phases (20 ms for each) the two different levels of PL

are applied while the temperature rise is recorded.

Next, the system identification is performed for each data
set, where four models have been identified with the

Fig. 3. Superimposed plots of the input and output mea-
surements for system identification.

different structures as discussed above. The identification
problem has been solved using the system identification
toolbox in Matlab, Ljung (2018). Each model is validated
using the best fit rate (BFR) criterion given by

BFR = max

(
0,
‖y − ŷ‖2
‖y − ȳ‖2

)
· 100 % (3)

where ‖ · ‖2 indicates a vector 2-norm, ȳ represents the
mean value of the measured output y. The BFR evaluates
the error between the measured and simulated data in %.
For each data set, we checked the model structure whose
BFR is the highest among the others. We observed that
the BJ model structure gave the best BFR for most of
data sets, therefore, we select all models as BJ models
for compatibility. Then, the time constant and static gain
of each model have been calculated from the identified
coefficients. Table 1 shows the minimum, maximum, mean
and standard deviation (std) of the BFR, τ and κ of the
identified models. The identified 528 models demonstrate

Table 1. Results of the identified model.

[min, max] mean±std

BFR % [84.19, 95.65] 91.76 ± 1.91
τ ms [7.27, 77.65] 23.94 ± 13.81
κ oCmW−1 [0.33, 1.86] 0.77 ± 0.24

proportionate BFR as shown in the table. The time
constant and static gain as shown in Table 1 assess the
physical proprieties of the models, and their values provide
realistic ranges from the physiological point of view and
confirm their ranges of uncertainties to be used in control
design. To visualize the quality of the models, Fig. 4 shows
validation plots for the best and worst models according to
the BFR values, it indicates that the models have captured
well the dynamics of the temrpature rise at the different
irradiation sites.

It is worth to mention that the models used in Herzog
et al. (2018) had been identified from the same data
used here; nevertheless, the identitifcation method used in
Herzog et al. (2018) had been carried out by writing the
prediction error in linear regression form, thus, ignored the
noise/disturbance in the data, to solve the identification
problem as a linear least squares (LS) problem. However,
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Fig. 4. Validation plots with BFR of 95.65% (up) and
84.19% (down): measured data in red-solid and sim-
ulated data in gray-dashed.
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Fig. 5. The linear correlation between the time constants
and the static gains of the identified models.

LS leads to biased parameters estimation — except for
ARX model structure — when it is applied on noisy data
as the case here, see Ljung (1999). This had resulted in
wider ranges for τ and κ than those obtained here, which
can lead to more conservative controllers.

Finally, it turns out like the case in Herzog et al. (2018),
a linear correlation between τ and κ as shown in Fig. 5,
which can be given by

κ = 17.33τ + 0.36± 0.2. (4)

This is exploited in the control design as shown below.

3. ROBUST H∞ PID CONTROLLER DESIGN

In this section, we demonstrate the control objectives
and the design procedure adopted for controlling the
temperature rise at the retinal irradiation site based on the
model obtained in the previous section. We consider H∞-
norm optimal control to optimally design the parameters
of the proposed PID controller.

The H∞-norm of a transfer function model measures its
maximum gain over all frequencies. It can be used to spec-
ify performance for a feedback interconnection in terms of

a generalized plant P , thus, the interconnection includes a
controller K, which can be synthesized to stabilizes the
closed-loop interconnection and achieves a performance
index γ that provides an upper bound on the H∞-norm of
the closed-loop system. The uncertainty (∆) of the model
can be included as well via linear fraction representation
(LFR) of P and the uncertainty, as shown in Fig. 6, and
hence, robust controllers can be design, which can provide
robustness against the range of uncertainty in the model,
i.e., for all ∆ ∈ ∆, where ∆ represents the set of all
admissible values of the uncertainty ∆. Currently, efficient
software tools are readily available, e.g., in the Matlab
Robust Control Toolbox, Balas et al. (2011), for H∞
design. The proposed generalized plant interconnection,
i.e., P , translates the performance specifications into the
objective of minimizing a closed-loopH∞-norm. The prob-
lem of designing a robust H∞ controller is an optimization
problem given as follows

γ = min
K
‖T∞zw‖∞, ∀∆ ∈∆, (5)

where T∞zw is the closed-loop transfer function between w
and z, which define the performance channels, see Fig. 6.
In this work, we deal with parametric uncertainty and
we want to design PID controllers, i.e., strucutred con-
trollers, with robust stability and performance guarantees.
Recently, methods have been introduced, e.g., in Apkarian
et al. (2015), to design H∞ control with fixed structured
controllers as well as robust stability and performance
guarantees; however, the challenging part of the design is
to provide meaningful performance specifications.

The design objectives considered for the system under
study is basically to provide responsibly fast tracking of
the reference (aim) temperature to approach its value
within less than 40 ms without overshoot, oscillations
or steady state errors and with a laser power less than
PLlim = 120 mW. A mixed sensitivity loop-shaping ap-
proach is adopted to achieve the control objectives. We
carry out the design directly in discrete time with a sam-
pling time of 1 ms to avoid performance deterioration due
to sampling. The generalized plant shown in Fig. 7 is used
to express the design specifications on the control system.
The performance channels are w = [r d]>, where r and d,
denote reference and disturbance inputs, respectively, and
z = [zK zS]> is a fictitious output vector to express design
specifications. The model with uncertainty developed in
the previous section is represented in LFR form by the
interconnection between the block G, which indicates the
nominal model, and the uncertainty ∆ block. The relation
between the uncertain parameters τ and κ as in (4) has
been exploited to reduce the size of the ∆ block, ∆ ∈ R3 .
The design specifications are expressed via the weighting
filters WS and WK to shape the sensitivity S and the con-
trol sensitivity KS functions, respectively, for the feedback
system and WR is a filter used to shape the reference input.
Including WR in the closed-loop implementation can have
a considerable effect on improving the reference tracking.
Using the discrete-time integrator and derivative blocks
in the generalized plant renders the PID parameters, i.e.,
its proportional gain Kp, integral time Ti, and derivative
time Td, directly the decision variables of the control
optimization problem. To achieve the control objectives
above WS, WK and WR have been chosen as follows

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16675



Pw z

∆

pq

K

vu

Fig. 6. Interconnection of LFR generalized plant with a
robust controller.

WR

G

K

WS

WK

∆

z−1
z

z+1
z−1

r

u y
−

e
zS

zK

d

pq

P

Fig. 7. Detailed generalized plant with shaping filters.

WS =
0.0975z + 0.0775

z − 0.9998
, WK =

2.6224z − 2.0364

z + 0.9534
,

WR =
0.0089z + 0.0083

z2 − 1.7770z + 0.7943
.

The optimization problem (5) associated with the gener-
alized plant shown in Fig. 7 has been solved using the
Matlab command systune, then, the H∞ PID controller
has been determined with the parameters Kp = 2.0673,
Ti = 9.1690× 10−5 min, Td = −8.3629× 10−6 min.

To deal with the windup effect of the controller when
the limits of the control output, i.e., the laser power, is
reached, we use an integral sum correction algorithm. It
is implemented online and it works as follows: If |up(k) +
ui(k)| > Plimit, where up, ui are the control inputs related
to the proportional and the integral parts, respectively,
then let ui(k) > Plimit + up(k). Note that the derivative
actions has not been taken into account. Such algorithm
can provide a satisfactory ant-windup action, yet with
a very simple implementation. However, more elaborated
ant-windup approaches will be considered in the future.

4. EXPERIMNTAL AND SIMULATION RESULTS

The closed-loop experiments have been conducted on dif-
ferent irradiation sites of four different ex vivo explants
from porcine eyes at Troom = 20oC. In total 122 successful
experiments have been performed for tracking aim tem-
peratures Taim = 30, 35, 40, 45, 50oC, where in each exper-
iment a single aim temperature should be tracked. Let the
controlled temperature be denoted as T = ∆T + Troom,
Troom = 20oC; the OA measurement system measures T
with a rate of 3 kHz, however, the controller sampling

rate is 1 KHz, due to hardware restrictions 2 , therefore,
the controller receives the average of three temperature
values. To evaluate the closed-loop system performance,
we consider the following parameters:

- Rise time, trise, which is defined here as the time for
T to reach its reference value starting from the room
temperature value.

- Max. overshoot, M = (max(T )− Taim)/Taim · 100%.
- Tratio, which is the percentage ratio between the

average value of T for t > trise and Taim, which is
used to indicate over-/under-heating conditions and
to evaluate average steady state errors.

The overshoot values computed by the standard way as
above might be greater than its actual value as the value
of max(T ) might be enlarged due to inaccuracies of the OA
measurement system. Therefore, we include another way
to evaluate max. overshoots, which is based on fitting the
measured values of T in one experiment by a polynomial,
where, 7th-order polynomials provided acceptable fit. The
overshoot in this way is considered as a fourth parameter
for evaluating the system performance:

- Mfit = (max(Tfit)− Taim)/Taim · 100%.

We summarize in Table 2 the closed-loop results based on
the mean value and the standard deviation of the param-
eters discussed above for all experiments at all considered
aim temperatures. Generally, the tracking performance

Table 2. Summary of experimental Results in
terms of mean and standard deviation.

trise [ms] Tratio [%] M [%] Mfit[%]
mean ± std mean ± std mean ± std mean ± std

31.82 ± 6.71 102.17 ± 0.90 9.41 ± 2.69 5.32 ± 1.88

of all aim temperatures at the different irradiation sits
is consistent, which is a good indication of the robust
performance of the closed loop system with the designed
controller. It is demonstrated that all aim temperatures
have been reached quite fast within less than 40 ms as
demanded. The mean value of Tratio in Table 2 indicates
a consistent small over-treatment condition of 2% in all
experiments, which is acceptable. The max. overshoot is
relatively high; however, as we mentioned above this could
be due to inaccuracies of the value of max(T ), therefore,
we assess the max. overshoot based on Mfit, which is
reasonable with such fast controller.

Figure 8 shows representative results of the experiments
of tracking aim temperatures of (30, 40, 50)oC in closed-
loop and the corresponding laser powers computed by the
designed robust PID controller. Note that the closed-loop
is switched on after 3 ms, whereas the first 3 ms are
used for calibrating the temperature measurement. The
tracking performance is very satisfactory for all reference
temperatures with smooth control actions. For comparison
with the simulation, we have tested the model in closed-
loop with values of τ and κ that most likely can produce
similar experimental results as depicted in Fig. 8 for both

2 The laser power computed by the controller is actuated via an
acoustic-optic modulator (AOM); the bandwidth of the amplifiers
used in the setup to operate the AOM is limited to 1 kHz. Therefore,
using 1 kHz sampling rate avoids including the dynamics of these
amplifiers in the control design.
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the input and the output. These values are τ = 22, 20, 15
ms and κ = 0.837, 0.553, 0.416 for the tracking simulation
of the reference temperatures (30, 40, 50)oC, respectively.
Such comparison confirms the quality of the identified
model we used for designing the controller.

Due to the uncertainty of τ and κ, it has been observed
that for some experiments the required PL for tracking
the same aim temperature was less or more than those
shown in Fig. 8. Note that the experiments have been
implemented at different retinal irradiation sites of dif-
ferent pigs’ eyes, which might vary significantly in the
thermal absorption properties. This has been confirmed in
simulation as well. Furthermore, for 7 experiments related
to tracking Taim = 50oC, the limit PLlim was active as
depicted in Fig. 9; however, due to the ant-wind up algo-
rithm that took just few milliseconds without significant
effects on the general response. We extend the time scale
in Fig. 9 to show the steady-sate value of PL.
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Fig. 8. Comparison between representative experimental
and simulation results: Taim = 30oC in orange, 40oC
in red and 50oC in burgundy, and the related PL in
light-green, green and dark-green, respectively, all the
corresponding simulation results in gray.
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Fig. 9. Experimental results where the laser power limit
was active.

5. CONCLUSION

This paper has demonstrated a successful application of
automatic control engineering in ex-vivo temperature-
controlled retinal laser therapy. The system identification
modeling approach has been utilized based on measured
input-output data sets to identity a mathematical model
with parametric uncertainties, which can describe the
dynamical relation between the applied laser power and
the temperature rise at the different irradiated tissues.
Then, efficient H∞ robust control tools have been used for
synthesizing a PID control based on the identified model.
The proposed robust PID control has achieved reasonably
well a uniform temperature rise at different irradiation
sites during the retinal laser application. The temperatures
within the range (30 – 50)oC were attained quite fast
within about 32±7 ms of the irradiation duration with an
acceptable small over-heating. The control system has the
ability to respect safety limits regarding the laser power.
The proposed automatic control engineering strategy will
have important impact for achieving a balanced and safe
retinal laser treatment with minimum intervention from
ophthalmologists. Moreover, the approach can be extended
to several other hyperthermial stimulation treatments.
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