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de Sevilla, Escuela Superior de Ingenieros, CO 41092 Spain. (e-mail:

{vmirasierra,dlm}@us.es).
∗∗ Universidade Federal de Santa Catarina, CO 88040-900 Brazil

(e-mail: vergara@utfpr.edu.br)

Abstract: Modifier-Adaptation methodologies have been widely used to overcome plant-
model mismatch and control a system to its steady-state optimal setpoint. They use gradient
information of the real plant to design modifiers that correct the model, so that the first order
necessary conditions for optimality of the model-based problem converge to those of the optimal
one. In this paper, we get rid of the hypothesis that the plant optimum needs to be an equilibrium
point. Instead, we only require it to be a periodic trajectory. We show the behaviour of the
proposed approach by means of a motivating example that highlights the necessity of this
formulation in cases where the system changes periodically through time.
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1. INTRODUCTION

Economic control of industrial systems has always been
of great relevance in both literature and industry. The
two-layer control scheme has become widely used for its
simplicity and effectiveness. In this scheme, the upper
layer, also known as real time optimizer (RTO), com-
putes the state/trajectory which optimizes the economic
cost of the plant, which in turn is provided to the lower
controller as a reference to be tracked. Although there is
a variety of solutions to the two-layer control, most of
them need a model of the system, which can be obtained
e.g. from historical data. These models differ from the
real plant behaviour, since it is in general impossible to
capture every minor dynamic or perturbance, even in
small systems. In the lower layer, model predictive con-
trollers (MPC) can deal with the plant-model mismatch by
means of disturbance estimators, which modify the model
to make its dynamic response converge to the plant’s
one locally. Modifier-adaptation methodologies have been
widely studied [Chachuat et al. (2009), Marchetti et al.
(2010), Marchetti et al. (2016), Rodŕıguez-Blanco et al.
(2018)] and arise to modify the upper layer of control so
that the necessary conditions for optimality (NCO) of the
model-based problem match with those of the original one.
By combining both, modifier-adaptation and disturbance
estimators, an offset-free optimization of the steady-state
economic cost can be achieved as shown in [Vaccari and
Pannocchia (2017, 2018)].

In this paper we generalize these results, allowing the
steady behaviour to be a periodic trajectory instead of

⋆ This work was supported by FEDER funds and the MINECO-
Spain under project DPI2016-76493-C3-1-R.

a single equilibrium point. For this purpose, we use a
dynamic RTO to compute the optimal economic trajectory
of the (modified) model-based problem and an offset-free
MPC to control the system to the trajectory found by
the dynamic RTO. We show the modifiers required to
make the model match the NCO of the original problem.
The computation of the plant’s gradients (needed for the
computation of the modifiers) is beyond the scope of this
paper. To show the performance of the proposed approach,
we test it on the numerical example of the quadruple-tank
process. Unlike state of the art approaches, ours is able
to compute the periodic optimal trajectory of the plant
and control the system to it with the knowledge of the
gradients of the real plant.

The structure of the paper is the following: In Section 2
we study the formulation of the optimal problem and the
its simplifications to make it tractable. Later, in Section
3 we analyse how to modify the model-based problem to
make it match the first order NCO of the optimal one.
Section 4 shows how to design the MPC so that it follows
the periodic trajectory given by the RTO. In Section 5
we study in depth the two-layer control scheme and give
details about its layers. Section 6 shows the algorithm
proposed, which is used in Section 7 to solve a motivational
example. Finally, Section 8 discusses about the relevance
of the results and future works.

2. PROBLEM FORMULATION

Let xT = [x1, x2, ⋯, xT ] ∈ RTnx , yT = [y0, y1, ⋯, yT−1] ∈
RTny and uT = [u0, u1, ⋯, uT−1] ∈ RTnu be the sequence
of states, outputs and inputs of the system. Consider that
the real system is defined by the following discrete-time
T -steps ahead equations:
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xT = FX(x0,uT )
yT = FY (x0,uT )
H(xT ,uT ) = 0

G(xT ,uT ) ≤ 0

(1)

The optimal economic control of the system consists of
finding the sequence of inputs that reduce a given economic
cost φ(yk, uk) over the time. That is, the optimal economic
control of this system given the initial state x0 can be
expressed as the following optimization problem:

min
u∞

∞

∑
k=0

φ(yk, uk) = Φ(y∞,u∞)

s.t. x∞ = FX(x0,u∞)
y∞ = FY (x0,u∞)
H(x∞,u∞) = 0

G(x∞,u∞) ≤ 0.

(2)

This ideal problem can not be implemented in general,
since the number of decision variables is infinite and the
functions FX , FY ,G and H that define the real system are
usually unknown. To simplify the infinite horizon problem,
we could take a practical approach such as an equilibrium
state strategy, in which we look for the equilibrium state of
the system that minimizes the economic cost and control
the system to it. Instead, in this paper we follow a periodic
strategy, that is, we find the best periodic trajectory and
repeat it through time. Note that this always results in
same or better performances than the equilibrium state
strategy, since it is a generalized version of it, and, in the
case of periodic systems with period T , is equivalent to the
optimal problem (2) as proven in [Limon et al. (2014)].
Following a two-layer control scheme for this periodic
approach, the optimal control problem (2) transforms into
both the trajectory planner:

min
x0,uT

Φ(yT ,uT ) (3a)

s.t. xT = FX(x0,uT ) (3b)

yT = FY (x0,uT ) (3c)

H(xT ,uT ) = 0 (3d)

G(xT ,uT ) ≤ 0 (3e)

x0 = xT , (3f)

and a lower layer of control that would take the current
state of the system to the path found by the trajectory
planner. Note that the expression (3f) corresponds to the
periodic constraint.

Although the previous formulation solves the optimal
problem for the case of periodic systems, it requires the
knowledge of the real system equations (1), which as
commented before are unknown in practice. To deal with
that, we use a model of the system and follow a two-layer
control scheme. Consider that the discrete-time T-steps
ahead model of system (1) is defined by:

x̂T = F̂X(x0,uT )
ŷT = F̂Y (x0,uT )
Ĥ(x̂T ,uT ) = 0

Ĝ(x̂T ,uT ) ≤ 0.

(4)

Following a periodic strategy such as the one followed in
(3), we define the dynamic RTO of the periodic model-
based economic problem (P-MEP) as:

min
x0,uT

Φ(ŷT ,uT )

s.t. x̂T = F̂X(x0,uT )
ŷT = F̂Y (x0,uT )
Ĥ(x̂T ,uT ) = 0

Ĝ(x̂T ,uT ) ≤ 0

x̂T = x0.

(5)

Given the initial state x0 and the reference trajectory
{xrN ,urN} from (5), the MPC of the P-MEP is defined
as:

min
uN

`(x̂N ,uN , x̂rN ,urN)

s.t. x̂N = F̂X(x0,uN)
ĥc(x̂N ,uN) = 0

ĝc(x̂N ,uN) ≤ 0,

(6)

where N is the control horizon considered and ` is a
cost function that penalizes the distance to the trajectory
{xrN ,urN}.

Despite the fact that the model-based economic problem
(5, 6) is convenient for implementation, the model used
makes the real plant converge to a different solution from
the optimal economic problem (2), even when the real
system is periodic. For this reason, we take a modifier-
adaptation (MA) approach that modifies the model, so
that the trajectory found by the P-MEP is the same that
the one found by the optimal of problem (5) is the same
that the optimal periodic one (3).

In the next section, we study how to modify the model to
accomplish this.

3. KKT MATCHING

In this section we analyze the first order necessary condi-
tions of optimality, also known as KKT conditions, for the
two problems discussed above. For the sake of simplicity

and comparison, we define θ = [x0
uT

] and compare problem

(5) to problem (3), which, as commented before, results in
an optimal steady-state solution for periodic systems with
real period T . First, we verify that the solutions given
by the RTO for both the optimal and the model-based
problem are the same. Then, in section 4 we will design
the MPC to follow this reference.

We formulate the dynamic RTO for the simplified version
of the periodic optimal economic problem (3) as follows:

min
θ

Φθ(F θY (θ), θ) (7a)

s.t. M1F
θ
X(θ) +M2θ = 0 (7b)

Hθ(F θX(θ), θ) = 0 (7c)

Gθ(F θX(θ), θ) ≤ 0, (7d)
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where Φθ, F θX , F
θ
Y ,H

θ and Gθ are functions derived from
rewritting the ones in (3) in terms of θ and (7b) corre-
sponds to the periodic constraint (3e).

We also define a modified version of the dynamic RTO for
the P-MEP (5).

min
θ

Φθ((F̂ θY (θ) + µθY θ), θ)

s.t. M1(F̂ θX(θ) + µθXθ) +M2θ = 0

Ĥθ((F̂ θX(θ) + µθXθ), θ) + µθHθ = 0

Ĝθ((F̂ θX(θ) + µθXθ), θ) + µθGθ ≤ 0,

(8)

where µ refers to the modifiers that will be used to match
the KKT conditions of both problems.

The gradient of the Lagrangian function associated to the
problem (7) is the following:

∂L
∂θ

= ∂Φθ

∂F θY
(∂F

θ
Y

∂θ
) + ∂Φθ

∂θ
+ πT1 (M1(

∂F θX
∂θ

) +M2)+

+ πT2 [∂H
θ

∂F θX
(∂F

θ
X

∂θ
) + (∂H

θ

∂θ
)] + πT3 [ ∂G

θ

∂F θX
(∂F

θ
X

∂θ
) + (∂G

θ

∂θ
)].

Analogously, the gradient of the Lagrangian function as-
sociated to problem (8) is the following:

∂L̂
∂θ

= ∂Φθ

∂F̂ θY
(∂F̂

θ
Y

∂θ
+ µθY ) + ∂Φθ

∂θ
+ πT1 (M1(

∂F̂ θX
∂θ
+ µθX)+

+M2) + πT2 [∂Ĥ
θ

∂F̂ θX
(∂F̂

θ
X

∂θ
+ µθX) + (∂Ĥ

θ

∂θ
+ µθH)]+

+ πT3 [ ∂Ĝ
θ

∂F̂ θX
(∂F̂

θ
X

∂θ
+ µθX) + (∂Ĝ

θ

∂θ
+ µθG)].

Analogously to the arguments in Vaccari and Pannocchia
(2017), to match the KKT conditions for both problems,
we need to set the modifiers µθX , µ

θ
Y , µ

θ
H and µθG so that:

∂F θX
∂θ

= ∂F̂
θ
X

∂θ
+ µθX

∂F θY
∂θ

= ∂F̂
θ
Y

∂θ
+ µθY

∂Hθ

∂θ
= ∂Ĥ

θ

∂θ
+ µθH

∂Gθ

∂θ
= ∂Ĝ

θ

∂θ
+ µθG.

Thus, the modifiers {µθX , µθY , µθH , µθG} need to take the
values:

µθX = ∂F
θ
X

∂θ
− ∂F̂

θ
X

∂θ

µθY = ∂F
θ
Y

∂θ
− ∂F̂

θ
Y

∂θ

µθH = ∂H
θ

∂θ
− ∂Ĥ

θ

∂θ

µθG = ∂G
θ

∂θ
− ∂Ĝ

θ

∂θ
.

(9)

All in all, we have proven that, if we modify the initial
model (4) with modifiers µθX , µ

θ
Y , µ

θ
H and µθG, the solution

of the dynamic RTO of the P-MEP will converge to that
of the optimal problem. For this purpose, we only need
to compute the gradients of the model and the real plant.
The gradients of the model can be easily computed, for
example, by numeric differentiation or by exploiting the
knowledge of the model, whereas the gradients of the real
system are more cumbersome and out of the scope of this
paper.

In the next section, we will study how to design the
MPC layer so that the system converges to the trajectory
planned by the dynamic RTO.

4. OFFSET-FREE MPC

In order to make the model converge to the real plant
dynamics in the lower layer of control, we propose an
offset-free MPC for periodic systems based on the ones
studied in Huang et al. (2011), Rawlings and Mayne
(2009) and Limon et al. (2015). Offset-free control algo-
rithms have been widely used and are usually based on
augmented models which incorporate a measure of the
difference between the model and the real system response,
called disturbance [Maeder et al. (2009),Pannocchia and
Rawlings (2003), Morari and Maeder (2012)]. State of the
art formulations of offset-free MPCs use a single model
with its associated disturbance to correct the model. The
general form of these formulations is:

x̂k+1 = f̂X(xk, uk, dk)
ŷk = f̂Y (xk, dk),

where f̂X and f̂Y correspond to the model dynamics and
dk is the disturbance associated to the model at time step
k, which computation depends on the disturbance model
chosen.

In this paper, we use the idea of augmented models and
design an offset-free MPC that converges to the periodic
reference given by the dynamic RTO. We propose to set
an independent disturbance model for each point in the
trajectory. That way, we can transform a stationary model
into a periodic one, which can ideally converge to the real
system. For the sake of simplicity, we consider that we can
measure the real states at any given time, otherwise, we
would need a state estimator and the notation would get
more complex. We formulate a simple disturbance model
for a system with period T as:

dk = dk−T + (xk−T − x̂k−T ), (10)

where xk−T and x̂k−T correspond to the real and the
estimated state at time step k − T . Note that, upon
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convergence of the disturbance (dk = dk−T ), the estimated
state of the system is equal to the real value of the state.
This disturbance model only requires knowledge of the
state and predicted state at time step k−T to converge to
the real periodic system.

5. CONTROL SCHEME

In this section we give a proper formulation for the RTO
and the MPC layers of the P-MEP. The model used
is a sum of the original model plus the modifier-terms
proposed in sections 3 and 4. From now on, we use a more
explicit notation for the modifiers, where µθ splits into
µx and µu to refer to the x0 and uT terms respectively.
We also use the abuse of notation µx0 to refer to the

composition of [µkx0, µk+1x0, ⋯, µk+T−1x0]T . Finally, we
use the disturbance model described in equation (10) and

the contraction dT = [d0, d1, ⋯, dT−1]T .

5.1 Trajectory Planner Design

The trajectory planner also known as dynamic real-time
optimizer (dynamic RTO) finds the trajectory (given by
its initial state x0 and the control sequence uT ) that
minimizes a given economic function Φ subject to the dy-
namics of the model, the periodic constraint and additional
constraints of the problem. The mathematical formulation
of the dynamic RTO is the following:

min
x0,uT

Φ(ŷT ,uT )

s.t. x̂T = F̂X(x0,uT ) +µxXx0 +µuXuT + dT

ŷT = F̂Y (x0,uT ) +µxY x0 +µuY uT + dT
M x̂T + x0 = 0

Ĥ(x̂T ,uT ) +µxHx0 +µuHuT = 0

Ĝ(x̂T ,uT ) +µxGx0 +µuGuT ≤ 0.

(11)

To run the dynamic RTO, we need to set the value of
T . This can be done either by previous knowledge of
the system, or we could estimate it with different online
algorithms such as the one presented in [Tsao and Qian
(1993)]. In this paper, we will suppose that period T is
always known beforehand.

5.2 Offset-free MPC Design

The offset-free MPC calculates the control sequence nec-
essary to follow the trajectory given by the dynamic RTO,
minimizing a cost function ` subject to constraints in the
states and in the inputs of the system. The problem can
be formulated as:

min
uN

`(x̂N ,uN , x̂rN ,urN)

s.t. x̂N = F̂X(x0,uN) +µxXx0 +µuXuN + dN
ĝc(x̂N ,uN) ≤ 0

ĥc(x̂N ,uN) = 0,

(12)

where x0 is the current state of the system and {x̂rN ,urN}
are the reference trajectory for states and inputs respec-
tively given by (11).

In the next section, we detail the full algorithm used
to achieve the optimal economic performance in periodic
systems.

6. PERIODIC MODIFIER-ADAPTATION
ALGORITHM

Given the real system defined in (1) and the model of
it defined in (4), we propose the following algorithm to
solve the P-MEP and obtain an optimal steady-state
performance. Constraint functions H and G are ommited
to simplify the algorithm.

(i) Initialize k = 0 and the predicted sequences of

modifiers µ̂xX , µ̂
u
X , µ̂

x
Y , µ̂

u
Y , d̂T to zero.

(ii) Given the predicted sequences for the modifiers,
compute the optimal trajectory with the dynamic
RTO defined in (11).

(iii) Synchronize the trajectory given by the dynamic
RTO with the current state, so that the starting point
in the trajectory is the one closest to the current state
(i.e. that minimizes a given norm).

(iv) Given the predicted sequences for the modifiers, the
reference trajectory calculated by the dynamic RTO
{x̂rN ,urN}, and the current state of the system xk,
use the MPC defined in (12) to compute the input
uk.

(v) Apply input uk to the system and get the following
state xk+1.

(vi) Estimate the gradients of the model and the real
system and update the modifiers µ̂k with them:

µ̂xX,k =
∂FX
∂x0

∣
xk−T

− ∂F̂X
∂x0

∣
xk−T

µ̂uX,k =
∂FX
∂uN

∣
ur

N,k−T

− ∂F̂X
∂uN

∣
ur

N,k−T

µ̂xY,k =
∂FY
∂x0

∣
xk−T

− ∂F̂Y
∂x0

∣
xk−T

µ̂uY,k =
∂FY
∂uN

∣
ur

N,k−T

− ∂F̂Y
∂uN

∣
ur

N,k−T

(vii) Estimate the perturbance dk modifier with the dis-
turbance model defined in (10):

dk = d̂k+(xk+1−(F̂X(xk, uk)+µxX,kxk+µuX,kuk+d̂k)),

(viii) Predict next period modifiers:

µ̂xX,k+T = µ̂xX,k
µ̂uX,k+T = µ̂uX,k
µ̂xY,k+T = µ̂xY,k
µ̂uY,k+T = µ̂uY,k
d̂k+T = dk,

(ix) Update k = k + 1 and return to step (ii).

Remark 1. After step (vii), one can filter the modifiers to
improve convergence at the expense of a slower update of
the modifiers:
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Fig. 1. Quadruple-tank system diagram, reproduced from
Alvarado et al. (2011)

µ̂xX,k = (I −Kx
X)µ̂xX,k−T +Kx

X µ̂
x
X,k

µ̂uX,k = (I −Ku
X)µ̂uX,k−T +Ku

X µ̂
u
X,k

µ̂xY,k = (I −Kx
Y )µ̂xY,k−T +Kx

Y µ̂
x
Y,k

µ̂uY,k = (I −Ku
Y )µ̂uY,k−T +Ku

Y µ̂
u
Y,k

dk = (I −Kd)d̂k +Kddk,

where K corresponds to the filter matrices.

In the next section, we will use this algorithm to solve a
benchmark problem.

7. MOTIVATIONAL EXAMPLE

To illustrate the algorithm proposed in the previous sec-
tion, we use it in the economic control of a periodic ver-
sion of the quadruple-tank process proposed in [Johansson
(2000)] and used in [Alvarado et al. (2011), Shneiderman
and Palmor (2010)] among others. We set parameter γ to
change periodically through time so that it let us study the
performance of the algorithm in a periodical system. The
objective of this motivational example is to control the
non-linear quadruple-tank system to its optimal steady-
state trajectory using a linear time-invariant model of the
plant.

The quadruple-tank system (Figure 1) consists of four
tanks interconnected so that they share water according
to the following equations:

S
dh1
dt

= −a1
√

2gh1 + a3
√

2gh3 +
γaqa
3600

S
dh2
dt

= −a2
√

2gh2 + a4
√

2gh4 +
γbqb
3600

S
dh3
dt

= −a3
√

2gh3 + (1 − γb)
qb

3600

S
dh4
dt

= −a4
√

2gh4 + (1 − γa)
qa

3600
.

We use a compact notation to define the parameters of the
plant:

Table 1. Parameters of the plant

Value Unit Description

S 0.03 m2 Cross-section of the tanks

a

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.31
1.51
0.927
0.882

⎤⎥⎥⎥⎥⎥⎥⎥⎦
e−4 m2 Discharge constants

hmax

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.36
1.36
1.30
1.30

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

m Maximum water level

hmin

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.2
0.2
0.2
0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

m Minimum water level

qmax [3.6
4.0

]
T

m3/h Maximum water flow

qmin [0
0
]
T

m3/h Minimum water flow

g 9.81 m/s2 Gravity acceleration

a =

⎡⎢⎢⎢⎢⎢⎢⎣

a1
a2
a3
a4

⎤⎥⎥⎥⎥⎥⎥⎦

,x =

⎡⎢⎢⎢⎢⎢⎢⎣

h1
h2
h3
h4

⎤⎥⎥⎥⎥⎥⎥⎦

,y = [h1
h2

] ,u = [qa
qb

] ,γ = [γa
γb

] .

From a state-space point of view, the water levels x
appoint the states of the system and y corresponds to
the outputs of it. All these levels are measured in meters
(m). Besides, u refers to the inputs of the system and
are measured in m3/h. Finally, γ refers to the parameters
of the three-way valves, is adimensional and changes
periodically through time in our example. Information
about the rest of the parameters is given in table 1.

To model the system, we linearize it at the point

x0 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.7293
0.8102
0.6594
0.9408

⎤⎥⎥⎥⎥⎥⎥⎦

, u0 = [1.948
2.00

] , γ0 = [0.3
0.4

]

and discretize it, with discretization time set to five
seconds. This results in the following linear model:

xk+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.945 0 0.040 0
0 0.940 0 0.032
0 0 0.959 0
0 0 0 0.967

⎤⎥⎥⎥⎥⎥⎥⎦

xk +

⎡⎢⎢⎢⎢⎢⎢⎣

0.0135 0.0006
0.0005 0.0180

0 0.0272
0.0319 0

⎤⎥⎥⎥⎥⎥⎥⎦

uk

yk = [1 0 0 0
0 1 0 0

]xk + [0 0
0 0

]uk,
(13)

Given economic parameters c = 1 and p = 20, the economic
cost of the plant at each time step is given by the following
expression:

φ(yk, uk) = (q2a + cq2b) + p
Vmin

A(h1 + h2)
. (14)

In this example, we consider a periodic nature of param-
eter γ given by (15), where the period is assumed to be
T = 10. The non-linearity of the plant plus the periodicity
of it, makes this periodic version of the quadruple-tank
system an excellent example to test our algorithm.
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time (s)
0 100 200 300 400 500 600 700 800 900

φ

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Offset-free MPC without MA
Offset-free MPC with MA
Optimal φ

Fig. 2. Evolution of the economic cost

γ = [0.3 0.375 0.45 0.525 0.6 0.4 0.35 0.3 0.25 0.2
0.6 0.525 0.45 0.3750 0.3 0.4 0.425 0.45 0.475 0.5

] .
(15)

We use the linearization point x0 as the initial state of the
system, take control horizon N = 10 and period equal to
that of γ, that is, T = 10 for the MPC and dynamic RTO
respectively. We also use the filtering step mentioned in
remark 1 with K = 0.6∗I. These two optimization problems
are solved using the CasADi optimization tool in Matlab
[Andersson et al. (In Press, 2018)], which suits for non-
linear optimization problems.

The results in Figure 2 show how, with the state of the art
approach, the trajectory of the economic cost is not able
to converge to the optimal cost trajectory. Whereas, with
the periodic MA algorithm the economic cost follows the
optimal cost trajectory when the system reaches its steady
behaviour. This means that the modifiers have converged
so that the model dynamics are equal to those of the real
system locally, therefore the KKT optimal conditions hold
for the periodic model-based economic problem.

8. CONCLUSIONS

In this paper we have presented the periodic modifier-
adaptation algorithm, which uses a modifier-adaptation
methodology to find the optimal trajectory of a real
dynamic system given a model of it. We have proven
that the proposed approach results in offset-free steady-
state control when the optimal trajectory is periodic, as in
the case of periodic systems, even when the model differs
much from the real system. We have tested the proposed
algorithm in the benchmark case of the quadruple-tank
system, where it uses a linear stationary model to control
the non-linear periodic system. As a result, the system
converges to its steady-state optimal trajectory without
offset, which is an improvement over the state of the art
approach. Future works could study how to take advantage
of the continuous stimulation of the system to compute the
real plant gradients.
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