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Abstract: To tackle the future air traffic demands and to enhance the safety of the Air
Transportation System (ATS), a proper flight routing and scheduling scheme is required. This
paper proposes an Air Traffic Flow Management (ATFM) model while considering the inherent
uncertainties present in the ATS. The proposed model aims to reduce capacity violations and
conflicts with the use of a probabilistic approach of chance constraint while minimizing adverse
effects due to demand and capacity uncertainties. Further, the proposed approach uses the
concept of flow-based modeling in which a set of flights are considered as a flow, to enlarge the
problem space with the added feature of scalability. In the end, a flow decomposition strategy
is used to obtain the individual flight information from the flow results. To the best of our
knowledge, this is the first attempt to propose an ATFM model with a flow-based structure while
considering both demand and capacity uncertainties. The optimization problem is formulated
as an Integer Linear Programming (ILP) problem. The NP-hard nature of the overall problem
is minimized by transforming the problem into a Maximum Weighted Independent Set (MWIS)
finding problem.

Keywords: Air Traffic Flow Management, Stochastic Programming, Optimization, Scheduling,
Uncertainty

1. INTRODUCTION

With the growth of demand in air transportation, efficient
Air Traffic Flow Management (ATFM) and Air Traffic
Control (ATC) services are indeed required for the bet-
terment of the overall Air Transportation System (ATS).
Similarly, the importance of safety is crucial to provide a
reliable and trustworthy air transportation service. With
this motivation, our intention of this paper is to propose
an ATFM model that can be expanded over large scale
networks with the consideration of inherent uncertainty in
the system.

In this paper, we consider two main types of uncertainties
present in the ATS, which are demand uncertainty and
capacity uncertainty, Smith and Gilbo (2005). The root
causes for the demand uncertainty are the departure time
deviation and cruising speed deviation, which eventually
develops unexpected flow deviations. The unpredictable
variation in weather conditions and controller workload are
the two major factors for the uncertainty of capacity. From
the existing literature on ATFM, Bertsimas et al. (2011),
Wei et al. (2013), Zhang et al. (2018), and Bertsimas
and Patterson (1998) have considered solving large scale
en-route ATFM problems. However, these models lack
consideration of the above described uncertainty types,
thus, less applicable in uncertain situations.

Only a few studies have incorporated the inherent uncer-
tainty in ATFM. Among them, Balakrishnan and Chan-
dran (2014), Clarke et al. (2009), Chen et al. (2017) have
considered only capacity uncertainty, while Sandamali

et al. (2020), Sandamali et al. (2017) have considered only
demand uncertainty in flight scheduling yet at a flight-by-
flight level. Most of the existing work has used the concept
of scenario tree approach, Balakrishnan and Chandran
(2014), Clarke et al. (2009) to take into the consideration
of uncertainty. However, the scenario tree-based stochastic
modeling approach has the main limitation of complexity
in expanding over large scale scenario sets. To overcome
such formulation difficulties, here, we use a probabilistic
approach of chance constraint in our model to guarantee
that the stochastic constraints are satisfied with a certain
level of confidence. However, none of the above mentioned
literature has considered both demand and capacity and
their imbalance in flight routing and scheduling.

In contrast, we have proposed an ATFM model in our pre-
vious work Sandamali et al. (Under review) using a flight-
by-flight structure, while scrutinizing both uncertainties
types. But, it has a major drawback in terms of the asso-
ciated computational complexity due to the involvement of
a very large number of decision variables with a flight-by-
flight formulation structure. Thus, here, we use the concept
of flow, which is defined as a group of flights, to reduce the
computational difficulties in our previous work. Among the
existing flow-based model, Zhang et al. (2018), Sun and
Bayen (2008), and Cao and Sun (2011) have used the basic
concept of cell transmission to describe the flow dynamics
in detail.

With regards to the solution strategy, we use a Maximum
Independent Set (MIS) based approach to reduce the
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computational complexity of our model, by decomposing
the problem into a set of independent sub-flows.

The contributions of this paper are listed below.

(1) An ATFM model, which takes en-route capacity
uncertainty and demand uncertainty (in terms of
flow uncertainty) into account, while enhancing the
scalability.

(2) Minimization of violations and conflicts due to un-
certainties present in the system, thus enhancing the
safety of the ATS.

(3) An efficient solution mechanism, which can be applied
in solving realistic large scale ATFM problems.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the problem statement and the ATFM
system. Section 3 depicts the proposed flow-based ATFM
model in detail and the solution mechanism. The exper-
imental results are illustrated in section 4, and finally,
section 5 concludes the paper.

2. PROBLEM STATEMENT AND ATFM SYSTEM

2.1 Problem Statement

Inherent uncertainties in ATS can induce unforeseen sit-
uations such as unexpected demand in air routes/sectors,
flight delays, higher workload for ATCs, safety risks, etc...
When the flights deviate from the scheduled time, there are
possibilities for unexpected demand in some sectors/links.
Similarly, the en-route speed can also be deviated from the
nominal values due to wind uncertainty, engine efficiency,
pilot behavior, etc.. Sandamali et al. (2019).Thus, the two
main factors for the time deviation can be identified as
departure delays and speed deviations, which eventually
result in flow uncertainties. With the increase in traffic
demand, this can be devastated. Thus, it is important to
consider the demand uncertainty in ATFM. Moreover, the
sector capacity is also an uncertain factor, mainly due
to weather fluctuation, emergency situations, etc... This
can even cause a higher controller workload, congestion,
and safety risks. Depending on the air traffic controller’s
efficiencies, the handling capacities can vary as shown in
it. Thus, we aim in this work to take both demand and
capacity uncertainties into consideration in flight routing
and scheduling to minimize the controller workload, con-
flicts/violations, and to enhance the safety of the overall
ATS.

2.2 ATFM System

Structure of the air traffic network (ATN):- The ATN
is a graph of connected waypoints (w ∈ W ) via air
routes/links (j ∈ J) with capacitated elements of airports,
links, and sectors. Each airport consists of a departure
link (d) and an arrival link (a). Waypoints are a two-
dimensional location of the airspace, which are used for
radar navigation. Links are the direct connection between
two waypoints with length denoted as Lj . The set of flights
is denoted as F with, fk ∈ F . Each flow is differentiated by
the OD pair o ∈ Op and aircraft type λ ∈ φ. The notations
used in our model are listed below.

• V λ, V̄ λ - Maximum and minimum crusing speed of
aircraft type λ.

• Tmin, Lmin - Required minimum in-trail time and
distance separation, separately.

• TPH , t4 - Prediction horizon and the duration of a
discrete time slot, respectively. t denotes the time
index, which is an integer such that t ∈ T , where T is
the total number of sampling points in the prediction
horizon and TPH = t4 ∗ T .

• zo,λj (t), z̃o,λj (t) - Deterministic and stochastic flows
with OD pair o and type λ in route j at time interval
t, respectively. j → w for waypoint.

• 4zj (t) - Uncertainty of flow (deviation from the
deterministic value) in route j at time interval t.

• zo,λj,in(t),zo,λj,out(t) - The number of incoming and
outgoing flights with OD pair o and type λ in route
j at time t. j → d for the departure link and j → a
for the arrival link, d ∈ JD, a ∈ JA where JD and JA
are the set of all departure and arrival links.

• zo,λj,j′(t) - The number of aircraft entering from link j

to j′ with OD pair o and type λ at time t.
• 4fiw - Arrival time uncertainty of fi at waypoint w.

• Ṽs(t), C̃s(t) - Stochastic volume and capacity of sector
s at time t.

• Joj (U), Joj (D) - Set of upstream and downstream links
connected with link j for the OD pair o, respectively.
j → w for waypoint.

3. FLOW BASED ATFM MODEL FORMULATIONS

3.1 Flow dynamic constraints

The constraints in (1) describe the relationship of link
volume with its adjacent link flows i.e., with incoming and
outgoing flows. (∀t ∈ T )(o ∈ Op)(λ ∈ φ)

(∀j ∈ J − JA)zo,λj,in(t) =
∑

j′′∈Jo
j
(U)

zo,λj′′,j(t) (1a)

(∀j ∈ J − Joa(U))zo,λj,out(t) =
∑

j′∈Jo
j
(D)

zo,λj,j′(t) (1b)

Then, the flow at time t+4t can be derived as,

zo,λj (t+4t) = zo,λj (t) +

[
zo,λj,in(t)−zo,λj,out(t)

]
(1c)

3.2 Link capacity constraint

This constraint is used to limit the link volume based
on the link length and the head-tail distance separation
between flights.

(∀t ∈ T )(∀j ∈ J)
∑

o∈Op,λ∈φ

z̃o,λj (t) ≤ Lj
Lmin

(2a)

Let’s take, z̃j(t) =
∑
o∈Op,λ∈φ z̃

o,λ
j (t). Since the link

volume can deviate from the scheduled value due to un-
certainty of demand, the distribution of z̃j(t) is obtained
based on the historical data of flights’ actual link arrival
and exit times and approximated by a normal distribution
such that, z̃j(t) ∼ N(µz̃j

(t), σz̃j
(t)). By applying chance

constraint to ensure that the constraint in (2a) will be
satisfied with a probability of β.

P (z̃j(t) ≤ Cj) ≥ β (2b)
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Where, Cj =
Lj

Lmin
. The above constraint can be re-written

using deterministic and uncertain components of z̃j(t) as,

P (zj(t) +4zj
(t) ≤ Cj) ≥ β (2c)

Converting into a linear constraint using cumulative dis-
tribution function (CDF),

F4zj
(t)(Cj −zj(t)) ≥ β (2d)

Cj −zj(t) ≥ ζ4zj
(t) (2e)

Where, ζ4zj
(t) represents the inverse of F4zj

(t). The CDF

of a normal distribution can be written as in (2f) (For
ζ4zj

(t) ≥ µ4zj
(t)) Linhart (2008).

1

2

(
1 + erf(

ζ4zj
(t) − µ4zj

(t)
√

2σ4zj
(t)

)

)
≥ β (2f)

Thus, the linear interpretation of (2e) can be derived as,

zj(t) ≤ Cj − µ4zj
(t)−

√
2σ4zj

(t)erf−1(2β − 1) (2g)

Note: The distribution of the link flow uncertainty can
be obtained based on the distribution of z̃j(t) and zj(t),
which can be obtained using flights’ scheduled link arrival
and exit times. Hence, 4zj

(t) ∼ N(µ4zj
(t), σ4zj

(t))

with µ4zj
(t) = µz̃j

(t)−zj(t) and σ4zj
(t) = σz̃j

(t).

3.3 Sector capacity constraint

We use this constraint to limit the sector volume by the
sector capacity under uncertain conditions as in (3a).

Ṽs(t) ≤ C̃s(t) (3a)

Applying a chance constraint probability of βS into (3a),

P (Ṽs(t) ≤ C̃s(t)) ≥ βS (3b)

By separating deterministic and uncertain components,

P (Vs(t) +4Vs
(t) ≤ Cs(t) +4Cs

(t)) ≥ βS (3c)

Let, 4Vs,Cs(t) = 4Vs(t)−4Cs(t)

P (4Vs,Cs
(t) ≤ Cs(t)− Vs(t)) ≥ βS (3d)

Applying similar steps in (2d)-(2g), the linear interpreta-
tion of (3d) can be derived as follows.

Vs(t) ≤ Cs(t)− µ4Vs,Cs
(t)−

√
2σ4Vs,Cs

(t)erf−1(2βS − 1)
(3e)

Note: The distribution of the sector volume uncertainty
distribution (4Vs(t)) can be obtained using previous
flight records of sector entry, exit times and approxi-
mated by a normal distribution such that, 4Vs(t) ∼
N(µ4Vs

(t), σ4Vs
(t)). Based on the historical sector capac-

ity data, the best fitted normal distribution of 4Cs
(t) is

obtained with mean and standard deviation of µ4Cs
(t) and

σ4Cs
(t). Then, the distribution of4Vs,Cs

(t) is derived with
mean and standard deviation of µ4Vs,Cs

(t) = µ4Vs
(t) −

µ4Cs
(t) and σ4Vs,Cs

(t) =
√
σ4Vs

(t)2 + σ4Cs
(t)2.

3.4 Waypoint flow rate constraint

We use this constraint to limit the merging flow at way-
points is to be lower than its capacity, which is determined
by the discrete time slot size and the head-tail time separa-
tion. The flow at a waypoint (zw(t)) is the summation of

flows traversing from upstream links to downstream links
through the waypoint.

(∀t ∈ T ) zw(t) =
∑

j′′∈Jo
w(U),j∈Jo

w(D),o∈Op,λ∈φ

zo,λj′′,j(t)

(4a)

By constraining with the waypoint capacity,

(∀t ∈ T )(∀w ∈W ) z̃w(t) ≤ t4
Tmin

(4b)

Applying a chance constraint with a probability of βW ,

P (z̃w(t) ≤ t4
Tmin

) ≥ βW (5)

P (4zw
(t) ≤ t4/Tmin −zw(t)) ≥ βW (6)

Applying similar steps in (2d)-(2g), the linear representa-
tion of (6) can be derived as follows.

zw(t) ≤ t4/Tmin − µ4zw
(t)−

√
2σ4zw

(t)erf−1(2βW − 1)
(7)

Note: The distribution of 4zw
(t) is obtained using previ-

ous records of waypoint arrival time and obtain the values
for µ4zw

(t) and σ4zw
(t).

3.5 Flow shift constraint

Flow shift constraint is used to bound the link traversing
time between their lower and upper bounds, which de-
pends on link length and minimum and maximum cruise
speed. To divide the range into discrete slots, the ceiling
and floor functions are used as follows.⌈

Lj
V̄ λ ∗ t4

⌉
≤ Tλn (j) ≤

⌊
Lj

V λ ∗ t4

⌋
(8a)

where d.e and b.c denotes ceiling and floor functions, re-
spectively. Tλn (j) is an integer representing total traversing
time in discrete points.

When there are short links, the above constraint is applied
for the aggregated links. For long links, they partition into
several links in such a way that there is an unique shift
of time such that, Tλn(j) = T̄λn (j). (let’s take it as n(j)).
This will also ensure that the first entered flow will leave
the link first without allowing flow overtake situations.

Further, the constraint in (8b) ensures that the incoming
flow to a link should exit the link in a subsequent time
step. Moreover, the outgoing flow of the link at t should
not be higher than the volume of the link at t as in (8c).

zo,λi,in(t) = zo,λi,out(t+ n(j)) (8b)

zo,λi,out(t) ≤ zo,λi (t) (8c)

3.6 Flow upper bounds

The constraints in (9a) and (9b) set the upper bounds for
the departure and arrival rates, respectively, in such a way
that they will not exceed the scheduled flow rates.

(o ∈ Op)(λ ∈ φ)
∑
t∈T

zo,λd,out(t) ≤
∑
t∈T

γo,λd,out(t) (9a)

(o ∈ Op)(λ ∈ φ)
∑
t∈T

zo,λa,in(t) ≤
∑
t∈T

γo,λa,in(t) (9b)
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Where, γo,λd,out(t) and γo,λa,in(t) denote the scheduled depar-
ture and arrival flow rates, respectively.

3.7 Objective Function

Our main objective is to dispatch and receive all flows in
their respective time slots. The first term is to penalize
the departure flow deviation, while the second term is
to penalize the arrival flow deviation. According to (10),
flows will always try to dispatch/arrive at their scheduled
time slots or more closer to them, since the deviation adds
higher penalties to the objective function. The coefficients
are gradually decreased with the deviation of the flow from

the scheduled time. to,λd , t̄o,λd are the minimum and maxi-

mum allowable departure time limits and to,λa , t̄o,λa are the
respective values for the arrival time limits. Md and Ma

are two big constants. The third term forces the total flight
flow to be scheduled without incurring any cancellations.

min
∑

d∈JD,o∈Op,λ∈φ

{ ∑
t̃∈Td,t∈td

CD(Md − cd(t̃− t)2)[γo,λ
d,out

(t̃)−

zo,λ
d,out

(t)] +
∑

t̃∈Ta,t∈ta

CA(Ma − ca(t̃− t)2)[γo,λa,in(t̃)−

zo,λa,in(t)]

}
−

∑
a∈JA,o∈Op,λ∈φ

Co,λC

(∑
t∈ta

zo,λa,in(t)−
∑
t∈ta

γo,λa,in(t)

)
(10)

where Td = {t̃ ∈ T |γo,λd,out(t̃) > 0} , Ta = {t̃ ∈ T |γo,λa,in(t̃) >

0} and td = {t̃− to,λd : t̃+ t̄o,λd } , ta = {t̃− to,λa : t̃+ t̄o,λa }.

CD, CA and Co,λC denote the departure, arrival flow rate
coefficients and flow cancellation coefficient, respectively.

The above formulated integer linear programming (ILP)
problem can be summarized as,

min (10) , subject to (1), (2g), (3e), (4a), (7), (8), (9).

By solving the above optimization problem, the results of
flow values are obtained. In the next topic, we will describe
how we transformed them into flights.

3.8 Decomposition of flows into flights

The flow results obtained by solving the above optimiza-
tion problem are decomposed into individual flights Sud-
heera et al. (2019), as described in Algorithm 1. The flow
decomposition process starts from departure and moves
through the intermediate links and finally ends at the
arrival. First, the flows at the departure links are assigned
incrementally to the corresponding flights, if there are no
any canceled flights. In cases where the actual departing
flow is less than the expected outgoing flow, then we
have to cancel a set of flights. Since there are a set of
scenarios to select which flights are canceled, here, we
explore all of such scenarios and select the one with the
minimum expected flight delay. Then, the remaining flights
are assigned incrementally to the departure link at their
corresponding times.

Then, the flights are traced at the intermediate links
assigning respective air routes and time values based on
the flow dynamics and link shift constraints.

Algorithm 1 Flow decomposition into flights

Inputs: zo,λd,out(t), γ
o,λ
d,out(t) for all t, j, o, λ, d

1: for each p ∈ (o, λ) do

2: fpact ←
∑
∀tz

o,λ
d,out(t) . f

p
act- total departed flights

3: fpsch ←
∑
∀t γ

o,λ
d,out(t) . f

p
act- total scheduled flights

4: npc ← fpsch − f
p
act . npc - number of canceled flights

5: Sp ← getAllPermutations(npc , f
p
sch) . Sp

- collection of sets of all flight profiles excluding

cancellations

6: PermDelay ← []
7: for each s ∈ Sp do
8: Tdelay ← 0 . Tdelay- Total delay

9: for t ∈ T do . t - discrete time steps

10: - Assign fk ∈ s departure slot to t unless
fk is already assigned or sum of fk’s at t has already
reached zpd,out(t)

11: tfkdelay ← |t̂fk − t| . scheduled departure time

slot of fk

12: Tdelay ← Tdelay + tfkdelay . calculate total

delay for all fk ∈ s
13: PermDelay ← [PermDelay Tdelay]

14: pmmin ← selectPermutation(PermDelay) . Select

the permutation with the least total delay

15: for t ∈ T do
16: - Schedule fk ∈ pmmin at t unless fk is already

assigned or sum of flights at t has already reached
zpd,out(t)

17: Y fkd ← 1 . fix departure link

18: t0 +(t−1)t4− t4
2 ≤ t

fk
w′ ≤ t0 +(t−1)t4+

t4
2 .

t0 - time offset to match with the initial time slot, w′

- departure fix, t4 - length of a discrete time slot

19: At intermediate stages, the flight trajectory (path and
time) is traced based on the flow dynamic constraints
and link shift constraints.

3.9 Solution mechanism : Greedy strategy with maximum
weighted independent sets (MWIS)

Here, we decompose the overall problem into a set of sub-
problems based on the flow dependency to minimize the
computational complexity. The generated sub-problems
are solved iteratively as described in Algorithm 2 below.

Algorithm 2 Greedy strategy with MWIS

Step 1: Convert the Air Traffic Network into a graph,
G = (V,E). . V - Time spanned sub-flows, E -
Space-time dependency.
Sub-flows are weighted depending on the departure
time priority.

Step 2: Search and obtain all MISs from the graph.
Flow pairs are considered as dependent if any of
their trajectories are overlapped in terms of time. Let
S1, S2, ..Sn denote the independent sets.

Step 3: Initialize set, Fixed = {}. . Empty set, as none
of the flows are routed yet

Step 4: while (Fixed 6= V ) . From S1 to Sn
1: Schedule Si on the network with Fixed sub-flow set
2: As all sub-flows in an independent set, Si, are conflict

free, the solution time is minimal.
3: Fixed ← (Fixed ∪ Si) . Accumulate fixed flows

Step 5: Fixed set contains all the routed and scheduled
sub flows.
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4. EXPERIMENTAL RESULTS

We use two case studies consisting of an example grid
network and the actual ASEAN air traffic network to
evaluate the performance and the real-time applicability
of our model. We use MATLAB as the software platform
with Gurobi solver (Gurobi (2015)) on a PC with an Intel
Core (TM) i5-8250U @1.80GHz CPU and an 8GB of RAM.

4.1 Case Study I - Grid network

In this case study, we used a grid network as shown
in Fig. 1, to test the features of our model and to
validate it. The network consists of 92 air routes, 8
departure airports, 8 arrival airports, 44 waypoints, and
4 sectors with each having 15 links. We considered 24
OD pairs with 3 flights from each, thus, a total of 72
flights with a time horizon of 10 hours. The discrete
time interval is taken as 10 min. To congest the network,
the scheduled departure and arrival flows are tightly set.
Regarding the uncertainty parameters, the stochastic link
flow is taken as, F̃j(t) ∼ N(6, 1.3) and the uncertain
component of the sector volume is taken as 4Vs

(t) ∼
N(0, 4.6). The uncertainty of sector capacity is taken as,
4Cs

(t) ∼ N(0, 1.0), and then, the distribution of4Vs,Cs
(t)

is estimated as, 4Vs,Cs
(t) ∼ N(0, 4.7). The deterministic

sector capacity is set to be 12. Further, the waypoint flow
rate uncertainty is taken as, 4zw

(t) ∼ N(0, 0.3).

En-route violations with respect to the chance constraint
probability:- In this experiment, our intention is to val-
idate the model in terms of the sector capacity violations
and waypoint merging conflict violations with respect to
the chance constraint probability. The sector capacity vio-
lations are represented as the sum of violations in all four
sectors. The merging conflicts are calculated as the number
of flight pairs. The results are illustrated in Fig. 2a.

According to the graph, it clearly highlights that both sec-
tor capacity and merging conflict violations are decreasing
with the increase of the chance constraint probability. For
example, there are 18 and 79 capacity and merging con-
flicts, respectively, when the chance constraint probability

Fig. 1. Simulated grid network - Case Study I

is 0.05, while they have reduced to 5 and 15, respectively,
when the chance constraint probability is increased to 0.95.
Thus, as expected, when the constraints are applied with
a higher percentage, the conflicts have reduced in turn
decreasing the ATC workload and safety risk of the ATN.

Average Delay performances with respect to the chance
constraint probability:- The graph in Fig. 2b illustrates
the departure, arrival delay profiles, and the number of
cancellations with respect to chance constraint probability.
According to the results, the average delays have increased
when the chance constraints are held with a higher per-
centage. The reason behind this variation is that flights
have to stretch over time to keep the required separations
when the constraints are sustained with higher chances.
For example, six flights have been canceled when the
chance constraint probability is 0.95 since they cannot be
scheduled within their bounds. Thus, this induces a trade-
off between flight delay and safety in such a way that it
enhances the safety of ATN in the expense of flight delays.

4.2 Case Study II - ASEAN network

In this case study, we use three flight information re-
gions (FIRs) of the ASEAN air traffic network, which is
composed of Singapore, Kuala Lumpur, and Kota Kin-
abalu FIRs as shown in Fig. 3. The purpose of this
case study is to assess the applicability of the proposed
model in a realistic large scale system. The network con-
sists of 275 air routes, 78 waypoints, 25 airports, and
103 origin-destination (OD) pairs. The flight plan data
were extracted from the Flightradar24 tool (Flightradar24
(2006)). The same FIR boundaries are considered as the
sector boundaries, thus three sectors.

To illustrate the computational feasibility, we tested our
model for two different traffic cases with 695 flights and
1390 flights, which are the normal and the double traffic
of this region. The results are tabulated in Table 1. In
both cases, when solved with the Gurobi solver, without
any modification (referred to as ‘Optimal ’) takes a long
time to generate optimal results. Thus, we set a time limit
of 30 min for both normal and double traffic cases. The
results obtained at these terminated points are not the
global optimal yet very close to the optimal. Moreover, the
problem is decomposed into a set of independent flows and
solved iteratively as depicted in Algorithm I (referred to as
‘MIS’ ). The normal traffic case with 695 flights, takes only
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Fig. 3. ASEAN air traffic network - Case Study II

Table 1. CS II - Normal and double traffic results

Parameters 695 flights 1390 flights

Optimal MIS? Optimal MIS?

Solution time 30min� 3.4min 30min◦ 6.9min
Optimality

gap
difference

1.76% 12.0%

� terminated using time limit and the optimality gap was 0.87%, ◦

- terminated using time limit and the optimality gap was 0.39%, ? -
without matrix generation time.

3.4 min to solve the problem whereas, the double traffic
with 1390 flights takes around 6.9 min. With regards to
the quality of the results, the normal traffic case has an
optimality gap of 1.76%, while for the double traffic case,
it is 12.0% with respect to the results of the Optimal.

Although, we doubled the traffic, the solution time did not
increase drastically. The reason is that in this flow model,
the decision variables do not increase with the increase
of traffic like in a flight-by-flight model. In comparison
to our previous work, Sandamali et al. (Under review),
which uses a flight-by-flight formulation structure and
took 39.8 min to solve a problem with 1390 flights, this
approach is approximately 5 times faster than. Thus, it
clearly emphasizes the scalability of this model and further
highlights the applicability in solving large scale problems,
while preserving the quality of the results.

5. CONCLUSIONS

The proposed ATFM model is a flow-based formulation
for flight routing and scheduling under the consideration of
different uncertainty situations. With the flow-based struc-
ture, it enhances the scalability, while satisfying link ca-
pacity, sector capacity, and waypoint capacity constraints
via a chance constraint probabilistic approach. Further,
it strengthens the safety of the ATN, while reducing
controller workload with competitive flight delays. The
experiment results highlight the improved performance of
the proposed model in terms of safety, conflicts/violations,
scaling capability, and real-time applicability. In future,
we expect to expand this work further by incorporating
detailed flight information to enhance safety while still
retaining the scalability.
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