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Abstract: Resource allocation is a key decision-making process in project management that
assigns resources to activities of a project and determines the timing of the allocation in a cost
and time effective manner. In this research, we address the resource allocation for a project,
where iterations between activities of the project exist and the crashing, a method to shorten
the duration of an activity by incorporating additional resources, is available. Considering
the stochastic nature of project execution, we formulate the resource allocation as a Markov
decision process and seek the best resource allocation policy using a deep reinforcement learning
algorithm. The feasibility and performance of applying the algorithm to the resource allocation
is then investigated by comparison with heuristic rules. c© 2020 IFAC
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1. INTRODUCTION

Choosing the right resources for activities of a project
and allocating the resources to the activities at the right
time are key factors to effective project management
because available resources are typically sparse. Following
the fact, the Resource-Constrained Project Scheduling
Problem (RCPSP) and its variants have been actively
studied since the last couple of decades (Hartmann and
Briskorn, 2010; Lombardi and Milano, 2012; Sitek and
Wikarek, 2016).

In the RCPSP, a project consists of a set of activities,
where an activity consumes a specific set of resources
during its processing time. An activity cannot be started
until all of its preceding activities are completed. Then
given the limited availability of resources, the activities
are scheduled in general to minimize the completion time
of the project.

In this research, we address the RCPSP taking into ac-
count more realistic dynamics of project execution. First,
we consider iterations between activities possibly due to
poor quality of output from an activity or the coupled
nature of the activities. Such iterations are fundamentals
in project execution especially for design related tasks. An
illustrative automative stamping die design project with
such iterations is presented in Fig. 1, reproduced from
Eppinger et al. (1997).

Next, the crashing, a common method in project manage-
ment, which shortens duration of a project by incorpo-
rating additional resources, is considered for the RCPSP
(Eisner, 2008). Importantly, linked with the iteration be-
tween activities, allocating more resources to an activity

Fig. 1. A design project with activity iterations

can also reduce the probability of an unpleasant iteration
occurring, introducing a more complicated trade-off be-
tween resources and time.

Last, we consider the stochastic nature of a project exe-
cution. Given a precedence relationship between activities
of a project, a sequence of activities necessary to complete
a project and activities’ durations are all random follow-
ing known distributions. Note that most studies of the
RCPSP have focused on project scheduling under deter-
ministic environments, where all parameters for the prob-
lem are known and fixed (Hartmann and Briskorn, 2010).
While the RCPSP under stochastic environments has also
been addressed in literature, they have rather focused
on stochastic duration of activities (Brčić et al., 2012;
Herroelen and Leus, 2005) which is often encoutered in
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a variety of environements (Bocewicz et al., 2016; Michna
et al., 2018; Nielsen et al., 2016).

Considering the dynamics of projects as described above
and the sequentiality of the resource allocation during
project execution, the Stochastic RCPSP with Activity
Iterations and Crashing (SRCPSPAIC for short) can be
formulated as a Markov Decision Process (MDP). In an
MDP, an agent performs an action and a state of the
system of interest is updated by the underlying dynamics
of the system, partially being controlled by the action. The
agent then observes the updated state, receiving rewards
(or penalties). The main task in an MDP is to find a
policy, which specifies an action given a state of a system,
such that the expected total rewards by the policy are
maximized.

Recently, reinforcement learning has been well-recognized
as an outperforming solution approach for solving MDPs,
especially in the domains of robotics and control. Rein-
forcement learning has also been tested for resource al-
location decision-makings in project management demon-
strating its performance (Gai and Qiu, 2018; Huang et al.,
2011; Mao et al., 2016).

In reinforcement learning, rather than finding an optimal
policy in an exact manner (this can be done using dynamic
programming), a policy is continuously updated to become
optimal based on the trajectories of a target system, i.e.
a sequence of the tuples 〈state, action, reward〉 sampled
from an environment simulating the system.

The applicability of reinforcement learning has been im-
proved with recent advances in Deep Q-Networks (DQN),
which helps to apply reinforcement learning even to the do-
mains where modeling features for reinforcement learning
are not clear or high-dimensional state spaces are needed.
Following the successes of the DQN, in this paper, we solve
an MDP designed for the SRCPSPAIC using the deep Q-
learning algorithm proposed by Mnih et al. (2015).

The remainder of this paper is constructed as follows.
Section 2 describes the formulation of the MDP for the
target resource allocation decision-making problem. The
deep Q-learning algorithm implemented for the MDP
is described in Section 3. The performance of a policy
obtained by the algorithm is then evaluated by comparison
with heuristic resource allocation rules in Section 4. This
paper is finally concluded in Section 5 with remarks on the
reinforcement learning application to project management.

2. MDP FOR THE SRCPSPAIC

An MDP is a 4-tuple 〈S,A, P,R〉, where:

• S is a finite set of states;
• A is a finite set of available actions;
• P is a probability of being in state s′ given that the

system was in state s and took action a; and,
• R is a reward function, returning the expected imme-

diate reward for taking action a in state s.

In the MDP for the SRCPSPAIC, the state s is a 2-
tuple 〈τ,o〉, where τ is the elapsed time from the start
of a project and o is a bit string specifying an activity
to be started. Specifically, given N activities in a project
indexed from 1 to N , o is a N -sized bit string, where the

ith position of the string corresponds to activity i. Then,
activity i can be identified by a bit string having “1” only
at the ith position of the string. Note that this kind of
data structure is called one-hot encoding and is often used
to represent categorical data in machine learning.

Given state s, a project manager determines an action, i.e.
to determine the number of resources to be assigned to the
activity denoted in the state. We assume that resources are
identical and renewable. The action is then represented as
one-hot bit string r, where the rth position of the string
corresponds to the allocation of r resource units. The cost
of an action consists of two parts; one is the resource usage
cost which immediately occurrs when we assign resources
and the other is associated with the completion time of
the project which occurrs when a project is finished.

Suppose that at state s = 〈τ,oi〉, where activity i is
associated with the state element oi, n number of resources
are assigned to activity i, by an action denoted as rn. The
state transition probability is then computed as:

P (〈τ + δ,oj〉|〈τ,oi〉, rn) = P (δ|oi, rn)× P (oj |oi, rn),

where P (δ|oi, rn) is the probability of completing activity
i in δ time units with n resources and P (oj |oi, rn) is the
probability of getting activity j as a successor of activity
i. Unlike a deterministic precedence relationship, where
successors of an activity are all fixed, we consider a project,
where the successor of the current activity is random.

Fig. 2 describes an example of such a project with five
activities. Nodes and arcs in Fig. 2 represent the activi-
ties and their precedence relationships, respectively. The
number on the arc indicates the likelihood that after com-
pleting the activity at the start node of an arc, the project
continues with starting the activity at the end node of the
arc.

Fig. 2. An example of a project with activity iterations

Suppose that activity 1 is just completed at time 10.
Then, with a 0.75 chance, activity 2 will be started.
The corresponding state to the situation is represented
as s = 〈10, (0, 1, 0, 0, 0)〉. When there are three resources
available for the project, an action, which assigns two
resources to activity 2, is denoted as a = (0, 1, 0). Refer to
Eppinger et al. (1994, 1997) for the activity iteration and
randomness on it.

3. DEEP REINFORCEMENT LEARNING

A policy π = P (a|s) is a function that specifies an action
given a state. The expected return of following policy π
referred to as the action-value function is then written as:

Qπ(s, a) = E[rt + γrt+1 + γ2rt+2 + · · · |st = s, at = a, π],

where γ ∈ [0, 1] is a discount factor and rt is an immediate
reward received by taking action at at state st.
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The main goal of the MDP framework is to find a policy
that maximizes the action-value function. Let us define the
optimal action-value function Q∗(s, a) as the maximum
action-value function over all policies, i.e. Q∗(s, a) =
maxπ E[Qπ(s, a)]. Given that the optimal action-value
function are known, an optimal policy at state s can be
immediately determined, that is to select action a′ =
argmaxaQ

∗(s, a). The optimal action-value function and
in turn the optimal policy can be found by solving the
following Bellman optimality equation:

Q∗(s, a) = Es′ [r + γmax
a′

Q∗(s′, a′)|s, a].

However, the Bellman optimality equation is nonlinear and
there is no closed form of solution for the equation in
general. Therefore, the optimal value function is often esti-
mated by iterative updates. It is proven that the estimated
action-value function at the ith iteration, Qi(s, a), set as
E[r + γmaxa′ [Qi−1(s′, a′)|s, a], converges to the optimal
action-value function as i goes to infinity (Sutton et al.,
1998).

Note that such iterative logic is impractical in reality as
it requires too many iterations to fully update action-
value functions for all states and consumes huge amounts
of memory to store the function values. Instead, it is
now common to estimate the action-value function using
a parameterized approximator. This approach generalizes
the experience (training states used to update the action-
value function) to new and similar situations, and thus
allows to update the action-value function efficiently using
relatively small training state data.

In this research, we use a neural network with weight θ
for the approximator, referred to as a Q-network. A Q-
network can be trained by updating its parameters so
that it approximates the optimal action-value function,
Q(s, a; θ) ≈ Q∗(s, a). Specifically, by substituting the
optimal action-value function with the approximate target
value y = r + γmaxa′ Q(s′, a′; θ), the parameter θ can be
updated by the following equation:

θ′ ← θ − αEs,a,r,s′ [(y −Q(s, a; θ))OθQ(s, a; θ)],

where α is a learning rate.

For the action-value function update using the Q-network,
we implement deep Q-learning algorithm proposed by
Mnih et al. (2015). The deep Q-learning algorithm in Mnih
et al. (2015) has two key features to manage the correlation
between samples and the non-stationarity in target values,
which are all obstacles to make the Q-network converge
to optimal action-value function. In classic Q-learning,
once a transition (s, a, s′) is made given an action, the
action-value function is updated immediately and the next
action is determined by the updated action-value function.
In doing so, the transitions are all correlated and the
target values to update the Q-network is moving at every
iteration.

First, the algorithm uses a replay buffer, i.e a dataset of
state transitions. The algorithm randomly samples a batch
of transactions from the buffer and update a Q-network
based on the samples. Using this technique, samples are no
longer correlated and the variance of the gradient for the
parameter θ update becomes low. Next, the algorithm uses
an additional Q-network for target values. The algorithm

uses 1) action-value function Q to select actions and 2)

target action-value function Q̂ to generate the targets for
Q updates. This modification increases the stability of the
algorithm over that of the classic Q-learning algorithms
(refer to Mnih et al. (2013, 2015) for the details of the
algorithm). The algorithm is described in Algorithm 1,
modified from the algorithm in Mnih et al. (2015) for the
SRCPSPAIC.

Algorithm 1 Deep Q-learning with experience replay and
target network

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
θ

3: Initialize target action-value Q̂ with weights θ− = θ
4: for episode = 1, . . . M do
5: Initialize sequence s1 = {s1}
6: for t = 1, . . . , T do
7: With probability ε, select a random action at
8: Otherwise, select at = argmaxaQ(st, a; θ)
9: Execute action at and observe reward rt and

the next state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample random minibatch of transitions

(sj , aj , rj , sj+1) from D
12: if episode terminates at step j + 1 then
13: yj = rj
14: else
15: yj = rj + γmaxa′ Q̂(sj+1, a

′; θ−).
16: end if
17: Update θ to minimize (yj −Q(sj , aj ; θ))

2

18: Every C steps, reset Q̂ = Q
19: end for
20: end for

4. COMPUTATIONAL RESULTS

We test the performance of the reinforcement learning
algorithm in the SRCPSPAIC on a set of hypothetical
projects. For the test, we vary the number of activities
in a project from 10 to 90 by an increment of 20, resulting
in five projects. For each project, we generate a sequence
of activities as a baseline of a precedence relationship
and randomly add links between non-adjacency activities
including the backward iterations, which is the arc from an
activity to its one of predecessors. The number of available
resources are set as 20 for all projects. The cost of project
execution is composed of two parts. One is a cost for
resource usage ($/resource · time) and the other is a cost
associated with the tardiness of a project completion. The
due date of a project is set arbitrarily.

As benchmark solutions, we implement four heuristic
rules, namely min, mid, max, random. The first three
rules are to allocate the minimum, middle, and maximum
number of available resources, respectively, to an activity
and the last one is to allocate a randomly determined
number of resources to an activity. Due to the randomness
in project execution (e.g. stochastic activity duration
and iterations between activities), given a project, we
sample 100 scenarios (i.e. a possible situation for the
project execution) and evaluate the performance of the
five resource allocation algorithms (reinforcement learning
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+ four heuristic rules) over the scenarios. The experiments
were performed using a machine with 32 Intel Xeon cores
(2.10GHz), an NVIDIA Quadro P600 processor graphics
processor and 2 GB memory.

The test results are summarized in Table 1. The cost
improvement by the reinforcement learning algorithm over
the heuristics (Gap) and the time taken for the reinforce-
ment algorithm to provide better solutions than the heuris-
tics (Time) are presented. Note that during the algorithm
run, at every iteration where an Q-network is updated, we
check if the policy from the current Q-network can provide
a better performance than the heuristics and record the
runtime when the policy outperforms the heuristics. This
measurement is not the total runtime of the reinforcement
learning algorithm, which is the time to train the Q-
network using the given number of episodes.

Table 1. Performance Comparison

Activity
number

Gap †
Time (sec)

Min Mid Max Random

10 4 295 508 284 96
30 506 154 286 137 94
50 856 84 200 89 2,129
70 855 59 126 158 6,666
90 491 50 38 101 17,341

†:100× (Costheuristic − Costproposed)/Costproposed

First, it is observed that the reinforcement learning al-
gorithm outperforms the simple heuristic rules, showing
dramatic cost savings. Unlike the heuristic rules, the re-
source allocation by reinforcement learning determines
the number of resources to allocate, taking into account
situations of a project execution (e.g. how long a project is
executing and how far a project completion is from its due
date), which is critical to minimize the cost of a project’s
execution.

We also observe that for small projects (with 10 and
30 activities), the reinforcement learning algorithm could
train an outperforming policy in a short time, whereas
the algorithm takes a relatively long time to train the
policy to an adequate level for large projects (with 50,
70, and 90 activities). For a large project, considering the
increased number of states necessary to visit during the
reinforcement learning algorithm to train an Q-network,
this result is straightforward.

The training quality of the Q-network over iterations of the
algorithm is shown in Fig. 3. In the figure, the expected
cost of a project execution following the policy obtained
from the Q-network at each iteration is plotted. The
expected costs by the heuristic rules are also presented
as reference points.

From Fig. 3, it is clear that the expected cost by a
policy from the Q-network is decreased over the iterations,
implying that the Q-network is appropriately trained by
the algorithm.

Based on the observations, it is concluded that the pol-
icy trained by the reinforcement learning algorithm can
outperform in the SRCPSPAIC compared with the four
heuristic rules. That said, more advanced heuristics should
be addressed in future research to clearly demonstrate

the performance of the proposed approach in the SRCP-
SPAIC.

5. DISCUSSION AND CONCLUDING REMARKS

In this study, we investigate the feasibility of applying
reinforcement learning for the resource allocation decisions
in a project execution. Specifically, we set the resource
constrained project scheduling problem with iterations
between activities of a project and the crashing of the
activity duration. For resource allocation to such projects,
the deep reinforcement learning algorithm designed in
this study outperforms the heuristic rules with respect to
minimizing the expected cost for project execution.

Based on the demonstrated performance of the algorithm,
we believe that the characteristics of a project and the re-
inforcement learning approach addressed in this study can
even contribute to the industrial 4.0 scenario, where tech-
nologies that can handle uncertainties involved in manu-
facturing and production processes are essential. Imagine a
system where multiple on-line robots are conducting tasks
with stochastic durations (Gola and K losowski, 2019) and
their reliabilities are stochastically decreasing over time
(Gola, 2019), making it difficult to predict the reliability
level of the system. Rule-based or human operator heav-
ily involved control/management systems cannot properly
address the complicated and stochastic dynamics of such
systems.

Let us close this paper by discussing issues in the reinforce-
ment learning implementation for the SRCPSPAIC and
room to further improve the applicability of reinforcement
learning to the problem. First, there are many parameters
to be tuned for the reinforcement learning implementation
(see many parameters in Algorithm 1 including the hidden
parameters of the Q-network construction/initialization).
To set the parameters at appropriate values, and accord-
ingly maximize the performance of the algorithm, running
the algorithm multiple times while adjusting the involved
parameters are inevitable, which is undesirable especially
for on-line resource allocation. Poorly, the parameters
tuned would/should be updated for a different project
setting.

Furthermore, unlike the applications where the dynamics
of a target system are known or available with approxima-
tions (e.g. robot kinematics), it is difficult to predict the
behavior of a project’s execution. Obviously, the perfor-
mance of reinforcement learning is limited by the repre-
sentativeness of samples used for the algorithm training.
Therefore, the historical data and experience on a target
project are critical to build a simulation environment for
reinforcement learning and to improve the performance of
the approach in the project management domain.

Last, it is difficult for a decision-maker or a stakeholder of
a project to understand and interpret the decision-making
logic of the policy obtained from reinforcement learning
and this often decreases their willingness to follow the
policy. To improve the applicability of reinforcement learn-
ing, extra steps such as extracting underlying decision-
making rules or managerial insights from the policy can
be conducted.
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(a) N=10 (b) N=30 (c) N=50

(d) N=70 (e) N=90

Fig. 3. The performance of the reinforcement learning algorithm over the training iterations for projects with different
numbers of activities (N)
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