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Abstract: For signal shaping problems, in contrast to reference following problems, a possibility
is to make use of the signal’s shape as a control objective, described by a difference equation.
In order to do this, a shape class is defined, giving a measure of how close to a specific shape a
signal is. The shape class defines the weighting matrices of the standard quadratic cost function
of a model predictive controller. The optimization problem is solved with constraints using a
standard quadratic program solver. An application example shows the suitability of the approach
for active power filters.

Keywords: Predictive control, optimal control theory, optimal operation and control of power
systems, modeling and simulation of power systems, control system design.

1. INTRODUCTION

Predicting the output of a system by using a model is the
key to model predictive control (MPC). With the increas-
ing computational power, the use of MPC algorithms is
suitable for an increasing number of applications where
specific references are to be followed. If a linear model of
the plant is available and the control goal can be expressed
as a quadratic cost function possibly with linear equality
and inequality constraints, the MPC problem results in
a numerically efficient solvable convex optimization prob-
lem, Maciejowski (2002). This class of problems can be
solved using standard quadratic problem (QP) solvers,
which are available online, e.g. Stellato et al. (2017).

The classical parameter setting for MPC algorithms is
to use only entries on the diagonal of the weighting
matrices and a specific reference over time. The weightings
represent the importance of the defined criteria for a given
point in time within the prediction horizon. The final state
of the controlled system, e.g. the shape of a formation,
a sheet or a voltage, however, might be reached faster
or more accurately on a different path. Thus in some
applications the exact timing is not of interest but a
specific shape needs to be met, e.g. formation control of
multiple robots, the formation needs to be reached but
the individual tracks are not of interest, see Egerstedt and
Hu (2001) or in process engineering wherein sheet forming

? This contribution was partly developed within the project NEW
4.0 (North German Energy Transition 4.0) which is funded by the
German Federal Ministry for Economic Affairs and Energy (BMWI).

only the final shape is of interest, see Lu et al. (2016).
In power electronics and electrical grids, maintaining the
shape of voltages and currents is of special interest for
harmonics suppression which can be done using active
power filters, Kumar and Mishra (2016). Here again, the
path to a harmonic free signal is of no interest but a specific
shape needs to be tracked. In other words, a sinusoidal
shape of a signal has to be forced, but the phase is not of
interest. Of special interest for this application example is
the harmonic shape class, basically giving a measure on
how sinusoidal a signal’s shape is.

In the area of signal processing, problems of this kind
are well known and often referred to as signal shaping,
see e.g. Brandonisio and Kennedy (2014).

The equivalence of signal shaping problems using a rep-
resentation of the desired shape by linear difference equa-
tions in terms of the state variables and standard MPC
problems with quadratic cost functions was shown in Cate-
riano Yáñez et al. (2018). In a recently published applica-
tion paper, a state signal shaping MPC has been compared
to a classical control scheme, showing promising results,
see Weihe et al. (2018).

Even though the controller proposed in Cateriano Yáñez
et al. (2018); Weihe et al. (2018) managed to impose a
sinusoidal shape with the right frequency, the amplitude
was not under control, leading to unstable scenarios.
This contribution extends this approach by including
constraints in the optimization problem to address this
shortcoming.
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This paper is organized as follows: Section 2 introduces the
linear shape class and the harmonic shape class. Section 3
starts with the definition of a state-space model, defines
the constrained MPC problem, and integrates the shape
class into the MPC problem by introducing the pattern
band matrix. In Section 4, an application example in the
field of power quality compensation for renewable energy
grid integration is presented. Finally, section 5 gives a
summary and draws conclusions.

2. SHAPE CLASS

This section introduces the shape class as a tool to
compare an arbitrary discrete-time signal to a given signal
shape.

Considering a discrete-time state signal of a system with n
states, the set

XV=

x(1),x(2), . . .

∣∣∣∣∣∣∣V
x(k + 1)

...
x(k + T )

=0 ∀k=0, 1, . . .

,(1)

is introduced as a shape class, where x ∈ Rn denotes the
state vector and V ∈ Rs×nT denotes the shape matrix
for T consecutive states, with a number of s linear differ-
ence equations that take part in the state shape analysis
as introduced in Cateriano Yáñez et al. (2018). This set
denotes consecutive states, that are mapped to the zero
vector by a linear map, thus it is also referred to as the
kernel of the shape. The goal of a shape analysis is to find
the kernel for a given shape matrix or to find a set in
the neighborhood of the kernel. If the shape analysis, i.e.
the multiplication of the shape matrix with a state vector,
yields a vector different from the zero vector, this vector
is referred to as shape residual. To evaluate how good a
state sequence matches a given signal shape, the Euclidean
norm of the shape residual

‖VX(k) ‖2 (2)

is used, where X(k) = (x(k + 1),x(k + 2), . . . ,x(k + T ))
ᵀ
.

Note that any shape that can be described as a linear
difference equation can be used for shape analysis.

3. LINEAR STATE SIGNAL SHAPING

Using shape classes, not only shape analysis is possible, but
also controlling plant outputs or states to assume a given
shape using MPC. This concept is called linear state signal
shaping (LS3). This section discusses how to incorporate
shape classes into the MPC scheme.

3.1 Constrained Model Predictive Control

Consider a linear discrete-time state space model

x(k + 1) = Ax(k) + Bu(k), (3)

x(0) = x0, (4)

with n states, m inputs and the initial state x0, input
vector u ∈ Rm, where A ∈ Rn×b denotes the system ma-
trix and B ∈ Rn×m denotes the input matrix. The optimal
control action leading the states to the equilibrium can be
obtained by a finite-time linear quadratic regulator (LQR),
which minimizes the cost function

J(x,u) =

N−1∑
k=0

(x(k)ᵀQkx(k) + u(k)ᵀRku(k)) , (5)

where Qk ∈ Rn×n � 0 denotes the state cost weighting
matrix for all states at time step k and R ∈ Rm×m

k � 0
denotes the input cost weighting matrix , for the discrete-
time horizon N . In constrained MPC, the LQR cost
function is minimized by formulating the problem as a
quadratic program (QP)

min
x,u

Hp−1∑
k=0

x(k)
ᵀ
Qkx(k) +

Hu∑
k=1

u(k)
ᵀ
Rku(k)(6a)

subject to x(k + 1) = Ax(k) + Bu(k) (6b)

x(0) = x0 (6c)

x ≤ x(k) ≤ x (6d)

u ≤ u(k) ≤ u , (6e)

where Hp is called prediction horizon and Hu is called
input horizon, x and u denote the lower state and input
bounds, and x and u denote the upper state and input
bounds.

The QP can be solved using standard solvers by defin-
ing a decision variable z =

(
XHp

UHu

)ᵀ ∈ RnHp+mHu

with XHp = ( x(0) x(1) . . . x(Hp − 1) )
ᵀ

as well as
UHu

= ( u(1) u(2) . . . u(Hu) )
ᵀ

and reformulating (6) as

min
z

1

2
zᵀPz (7a)

subject to Fz = c (7b)

z ≤ z ≤ z , (7c)

with appropriate matrices

Q̃ =

Q0 · · · 0
...

. . .
...

0 · · · QHp−1

 , (8)

R̃ =

R1 · · · 0
...

. . .
...

0 · · · RHu

 , (9)

P =

0n×n 0 0

0 Q̃ 0

0 0 R̃

 , (10)

F =
(
Â B̂

)
(11)

with

Â =


−In×n 0 0 0

A −I 0 0
0 A −I 0

0 0 0
. . .

 , B̂ =

(
01×Hp

IHp

)
⊗B ,(12)

and vector

c =


−Ax0

0
0
...

 , (13)

where z and z denote the lower and upper bounds of the
decision variable vector and with the matrix P denot-
ing the Hessian of the optimization problem. Note that
typically the Hessian is a diagonal matrix. Since in this
formulation of the MPC optimization the Hessian is sparse
in nature, this problem formulation is sometimes referred
to as sparse formulation, Jerez et al. (2012).

For some applications, calculating the optimal changes to
the input ∆U = (∆u(k) ∆u(k + 1) . . .∆u(k +Hu)) can
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lead to better closed loop control results in contrast to
calculating the optimal input itself. For this approach, the
future states can be eliminated from the decision variables
of the optimization problem by formulating them as a
function of future inputs and the initial state, Maciejowski
(2002). For this, problem (6) is formulated as

min
∆U

1

2
∆U(k)P∆U(k) + qᵀ∆U(k) (14a)

subject to l ≤ Θ∆U(k) ≤ o , (14b)

where l ∈ RnHp denotes the lower bound of the inequality
and o ∈ RnHp denotes the upper bound of the inequality,
and

Θ =



B 0 0 · · · 0
AB + B B 0 · · · 0

...
...

...
. . .

...
Hp−1∑
j=0

AjB

Hp−2∑
j=0

AjB · · · · · ·
Hp−Hu∑

j=0

AjB

,(15)

Ψ =


A
A2

...
AHp

 , (16)

Υ =



B
AB + B

...
Hp−1∑
j=0

AjB

 , (17)

P = ΘᵀQ̃Θ + R̃, (18)

q = −2ΘᵀQ̃(Ψx(k) + Υu(k − 1)) . (19)

The Hessian (18) does not contain zeros, therefore this
formulation is also referred to as dense or condensed
formulation.

Using the receding horizon (RHC) strategy, only the first
optimal input is applied to the plant, the resulting output
or state is measured and the optimization problem is
solved again with the updated initial state and a shifted
prediction horizon.

3.2 Pattern Band Shape Matrix

While the resemblance of a signal with a shape can be
calculated with (2), it is possible to calculate a state
sequence, which matches a given shape as close as possible
with

min
X

(VX(k))
2

. (20)

This only works for T consecutive states as defined in the
shape class, though it is possible to extend the problem
to longer state sequences by slicing the shape matrix into
parts

Vj = V

0n(j−1)×n

In×n

0n(T−j)×n

 for j = 1, 2, . . . , T , (21)

where each Vj ∈ Rs×n, so that

PV =


V1 V2 · · · VT 0 · · · 0

0 V1 V2 · · · VT
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 V1 V2 · · · VT

 ∈ Rp1×p2 ,(22)

where p1 = s(Hp − T + 1) and p2 = nHp. This allows the
formulation of a minimization problem

min
XHp

(
Xᵀ

Hp
Pᵀ

V PV XHp

)
(23)

for finding a shape-matching state sequence up to the
prediction horizon Hp. By defining QS = Pᵀ

V PV and

replacing Q̃ in the Hessian (10) of the sparse or (18)
and (19) of the dense optimization problem formulation, it
is possible to find an optimal input that drives the states
of a plant towards matching the given shape as close as
possible. With this approach, the Hessian becomes non-
diagonal but as long as it is still positive semidefinite,
the LS3 MPC optimization problem is solvable with stan-
dard QP solvers.

3.3 Stability

A linear MPC can achieve stability by introducing a ter-
minal constraint, Maciejowski (2002). Assuming a feasible
control sequence leading to the state xf (k), for LS3MPC
stability could analogously be achieved when the shape
residual of xf (k + 1) does not increase. Determining a
feasible set for such a terminal constraint is a subject of
current research.

4. APPLICATION EXAMPLE

Harmonics in the electrical grid cause power losses and
they can damage sensitive devices. The ideal shape of
supply currents and voltages is purely sinusoidal, contrary
to what it is observed under scenarios with harmonic
distortion. In order to eliminate harmonics, active power
filters (APF) are used to inject a compensation current
into a point of common coupling (PCC). As shown in Cate-
riano Yáñez et al. (2018), using unconstrained LS3 MPC to
compensate harmonics in the grid leads to sinusoidal cur-
rents and voltages, but with this approach, increasing or
decreasing amplitudes depending on the chosen weighting
factors, were a major drawback. In this section, the control
of an APF based on the constrained LS3 MPC scheme is
shown to provide an application example.

4.1 System Model

As shown in Fig. 1, an equivalent single-phase circuit with
transmission resistance R1 and inductance L1 is used to
model the electric grid, a non-ideal current source ic0 with
internal resistance R3 is used to model an APF with a
coupling resistance R2 and a coupling inductance L2, and a
non-ideal current source il0 with an internal resistance R4

is used as nonlinear load, which introduces harmonics
into the grid. In this example, vs and il act as measured
disturbances to the system and the controller is supposed
to find the optimal compensation current ic0 to bring the
feeder line current if to a sinusoidal shape.

Constraining the feeder line current to a maximum current
helps to reduce transmission losses when the APF is
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R1 L1

if

PCC

ic0

L2

R2

ic
il

il0R4

R3

Fig. 1. Equivalent circuit of the electric grid using current
sources as APF and as nonlinear load.

connected close to the nonlinear load, Fuchs and Masoum
(2015).

Using Kirchhoff’s current and voltage laws, the state space
representation of this equivalent circuit is

dx(t)

dt
= Amx(t) + bmu(t) + Emdm(t) , (24)

with

Am =

−
R1 +R4

L1
−R4

L1

−R4

L2
−R2 +R3 +R4

L2

 , (25)

bm =

 0

R3

L2

 , (26)

Em =


1

L1

R4

L1

0
R4

L2

 , (27)

with the state vector x(t) = (if ic)
ᵀ
, the input u(t) = ic0

and the vector of measured disturbances dm(t) = (vs il0)
ᵀ
.

Since LS3 MPC uses a discrete-time state-space repre-
sentation, this continuous-time model is discretized using
zero-order hold with a fixed sampling time Ts.

4.2 Harmonic Shape Class

Sinusoidal shapes are of particular interest for this exam-
ple, therefore the harmonic a shape class is introduced.
The property of a sine wave can be described by the
differential equation

d2x(t)

dt2
+ ω2x(t) = 0, (28)

where ω denotes the angular frequency of the wave. To
express this differential equation as shape class, it is
approximated as a discrete-time difference equation using
forward numerical differentiation

ẍ(k) ≈ 2x(k)− 5x(k + 1) + 4x(k + 2)− x(k + 3)

T 2
s

,(29)

with a step size Ts, resulting in an accuracy of or-
der O(Ts)

2, Fornberg (1988). Matching the form of (1),
with s = 1, n = 1 and T = 4 the shape matrix

V =
(
2 + (ω2T 2

s ) −5 4 −1
)

(30)

can be used to evaluate, how close any given discrete-time
signal matches the shape of a sinusoidal wave.

4.3 Constrained Active Power Filter Control

It is assumed that in a 50 Hz grid the measured disturbance
of the current period is the same as the measured dis-
turbance of the next period, i.e. harmonic distortion does
not change in between periods. This allows for a periodic
receding horizon strategy, where instead of updating the
initial state and the optimization problem at every sam-
pling step, the optimal input for a whole period is applied
before updating the optimization problem. This allows for
larger computation windows, since the new optimal input
has to be calculated only every 0.02 s instead of every
sampling step.

Using the sinusoidal shape matrix (30), the non-diagonal
Hessian QS can be generated using the pattern band
matrix Pv as shown in (22). Ultimately, the measured
disturbance, that needs to be compensated such that the
target signal assumes a sinusoidal shape, is incorporated
into the dense LS3 MPC optimization problem (7) with

P = ΘᵀQSΘ + R, (31)

q = −2ΘᵀQS (Ψx(k) + Υu(k − 1) + Γdm), (32)

l = xmin − (Ψx(k) + Υu(k − 1) + Γdm), (33)

o = xmax − (Ψx(k) + Υu(k − 1) + Γdm), (34)

with

Γ =


E 0 0 · · · 0

AE E 0 · · · 0
...

...
...

. . .

AHp−1E AHp−2E AHp−3E · · · E

 , (35)

where xmax ∈ Rn denotes the maximum state constraint
vector containing upper limits for each state and xmin ∈ Rn

denotes the minimum state constraint vector containing
lower limits for each state. The targeted state is the
first state if , therefore only constraints for this state will
be applied and the constraints for the second state ic
will be set to ± inf. With this formulation it is also
possible to compute the unconstrained solution by set-
ting xmax = (inf inf)

ᵀ
and xmin = (− inf − inf)

ᵀ
, hence

not constraining the solution space at all.

For the sparse formulation, the disturbance is incorporated
into the problem with

c =


−Ax(k)

−Edm(k −Hp)
−Edm(k −Hp + 1)

· · ·
−Edm(k − 1)

 , (36)

where (dm(k −Hp) dm(k −Hp + 1) · · · dm(k − 1))
ᵀ

cor-
responds to the vector of measured disturbances of the
previous period. The state constraints are simply applied
setting the lower and upper bounds of the decision vari-
able z and z to xmin and xmax appropriately.

4.4 Simulation Setup

Table 1 shows the parameters of the equivalent circuit used
to model the application example.
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Table 1. Parameters for the equivalent circuit
shown in Fig. 1.

Transmission
Compensation

Coupling
Internal

Resistances

R1 L1 R2 L2 R3 R4

1 Ω 10 µH 0.05 Ω 3.5 mH 10 kΩ 10 kΩ

For all simulation runs, diagonal input weighting matri-
ces R̃ are used with a common weighting factor of 10−7.

The amount of harmonics contained in a waveform can be
indicated by the total harmonic distortion (THD), which
is defined as the ratio of the root mean square (RMS) value
of the current harmonics and the fundamental current
expressed in percentage as

THD =

√
∞∑
h=2

(
I(h)

)2
I(1)

· 100 % . (37)

The periodic disturbance signal

il0 = 10 sin(ωf t) + 5 sin(5ωf t) + 3 sin(7ωf t) , (38)

with the angular frequency ωf = 100π rad s−1 is used to
resemble the harmonic current drawn by a rectifier, which
is a typical nonlinear load in the grid. The THD of this
disturbance signal is 58.3 %.

As QP solver, the open-source tool OSQP is used, see Stel-
lato et al. (2017), with a convergence tolerance set
to ε = 10−8. All simulations are computed using Mat-
lab R2018b exclusively. Average computing times are
determined by running the solver for an optimization
problem for N = 100 times and calculating the mean of the
run time for each solution. Numerical tests are executed
on an Intel R© Pentium R© CPU G3260 @ 3.3 GHz, running
Microsoft R© Windows 10TM.

4.5 Simulation Results

Fig. 2 shows the compensated feeder line current if us-
ing the condensed optimization problem formulation with
sampling time Ts = 0.2 s, prediction horizon Hp = 100,
input horizon Hu = 100, and state constraints set to ± inf,
resulting in an unconstrained harmonic current compen-
sation. In the first period, the disturbance is unknown and
thus set to zero, so no compensation is taking place, while
starting from the second period the harmonic current is
being compensated by the controlled current ic0, reaching
a THD of 0.030 %.

Applying state constraints to the same MPC optimization
leads to equally good compensation results while maintain-
ing the upper and lower feeder line current constraints.
This is a benefit over the unconstrained LS3 MPC ap-
proach, where feeder line currents tend to increase or
decrease over time, see Cateriano Yáñez et al. (2018).
Fig. 3 shows feeder line currents, compensated with dif-
ferent state constraints.

Using the sparse optimization problem formulation also
leads to compensated feeder line currents with notably
faster solving times than when using the dense problem
formulation. Faster computation times of the sparse for-
mulations are expected due to the numerically exploitable

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−20

−10

0

10

20

i f
(A

)

compensated if uncompensated if

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−10

−5

0

5

10

Time (s)

i c
0
(A

)

Fig. 2. Simulation of the system controlled with LS3 MPC
using the OSQP solver. No constraints are applied.
The upper plot shows the feeder line current, the lower
plot shows the compensation current.

0 0.02 0.04 0.06 0.08

−8

−4

0

4

8

Time (s)

i f
(A

)

if1 if2 if3

Fig. 3. Feeder line current compensation with differ-
ent state constraints: if1 shows the unconstrained
compensated feeder line current, if2 is constrained
to ±8 A and if3 is constrained to ±4 A.

pattern of the Hessian. With longer prediction horizons
the computational benefit of sparse notations even grows
as shown in table 2.

Table 2. Comparison of harmonic compensa-
tion with both sparse and condensed formu-

lated LS3 MPC optimization problems.

THD with Ts = 0.4 ms
Hp = 50, Hu = 50

THD with Ts = 0.2 ms
Hp = 100, Hu = 100

State limit sparse dense sparse dense

± inf A 0.123 % 0.124 % 0.021 % 0.030 %
±8 A 0.123 % 0.124 % 0.016 % 0.031 %
±6 A 0.122 % 0.101 % 0.005 % 0.031 %
±4 A 0.121 % 0.124 % 0.014 % 0.032 %
±2 A 0.117 % 0.125 % 0.075 % 0.036 %
±1 A 0.109 % 0.125 % 0.035 % 0.042 %

average
solving time

0.17 ms 1.18 ms 0.33 ms 5.24 ms

The difference in THD reduction when comparing both
optimization problem formulations is tied to the structure
of the controller—while the sparse notation directly calcu-
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lates the optimal input, the condensed notation calculates
the optimal input change ∆U as laid out in section 3.
While the overall THD reduction shown in table 2 is simi-
lar when comparing both approaches, when using input
changes the THD takes longer to reach a steady com-
pensation current. Fig. 4 shows the evolution of the THD
measured at the beginning of every period when using the
direct input as well as the input change control approach.
As can be seen, calculating the input ic0 directly decreases
the THD immediately, while using input changes reaches
the same THD reduction after several periods. Further
investigations into the numerical properties for the cause
of this effect is needed.

Using constrained LS3 MPC for harmonic current compen-
sation in the grid proved to be successful in simulations,
but with this approach only lower and upper current
bounds can be set. This strategy is sufficient for a de-
vice like the APF, that needs to maintain a sinusoidal
signal shape while not exceeding certain bounds. When
the control goal is to assume a sinusoidal signal shape
with a specified amplitude magnitude, i.e. to compensate
unbalanced voltages and to maintain a prescribed RMS
voltage, this control method falls short, since there is
no way to incorporate the amplitude magnitude into the
optimization problem in a different way than setting upper
and lower constraints. Formulating the cost function in
such a way, that it includes information about the state
signal RMS, addresses this issue, although this would lead
to a biquadratic optimization problem. An approach to
formulating this optimization problem is given in Cateri-
ano Yáñez et al. (2020). Proving the convexity of this opti-
mization problem and exploring possibilities to efficiently
solve this problem need to be investigated further.

0.4 0.8 1.2 1.6 2.0
10−3

10−2

10−1

100

101

102

Time (s)

T
H
D

(%
)

if1: Using optimal input change if2: Using optimal direct input

Fig. 4. Evolution of the THD for the compensation solution
using condensed and sparse problem formulations.

The successful implementation of this approach relies
heavily on the efficiency of the QP solver. The discussed
approach is expected to be on the edge of the compu-
tational capabilities of today’s high-end microcontrollers,
such that highly efficient programming is needed; or even-
tually, FPGA programming will be necessary.

5. CONCLUSION

Shape classes can be used for linear state signal shaping
MPC, i.e. controlling a plant in such a way, that the states
assume a given shape signal. Contrary to reference track-
ing MPC, where the reference signal is tied to a specific
time or sample step and the tracking error is minimized,

the wanted signal shape is incorporated into the state
weighting matrix and the shape residual is minimized. The
only difference to a regular MPC optimization problem is
the non-diagonal state weighting matrix, thus constraints
and commonly used QP solvers can be used. In an appli-
cation example, this concept is illustrated by a simulated
control of an active power filter. A harmonic shape class is
used to compensate harmonics in an electrical grid and to
provide pure sinusoidal feeder line currents, reducing the
total harmonic distortion to very low amounts.
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