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Abstract: We present a tracking controller for quadrotor UAVs which uses partial state
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robustness against bounded disturbances. We illustrate the performance of the controller by
means of several numerical examples, including a complex looping maneuver.
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1. INTRODUCTION

In this paper we consider the problem of constructing a
controller-observer combination for the tracking control
of quadrotor UAVs, without the use of linear velocity
measurements. As state measurements contain noise, one
would like to attenuate those using a filter/observer,
and since for nonlinear systems the certainty equivalence
principle does not hold, controller-observer combinations
need to be carefully codesigned.

Starting with the work of Caccavale and Villani (1999),
output feedback laws that solve the tracking problem
for only the attitude dynamics have been developed. In
Asl and Yoon (2015) an output feedback for only the
translational dynamics are given, where it is assumed that
the inner loop for the attitude dynamics is fast enough.
However, no stability proof for the resulting overall system
has been given in that paper. Also, the authors used Euler
angles to represent the attitude, resulting in singularities
due to the so called “gimbal lock”, making their approach
fail for complex trajectories with large angular movements,
such as the looping maneuver considered in this paper.

The stabilization problem has been studied in Bertrand
et al. (2011). To the best knowledge of the authors only
three (groups of) authors consider an output-feedback
tracking problem: Abdessameud and Tayebi (2010), Zou
(2016), and Shao et al. (2018). Those papers, as well as
ours, use a similar approach. First, a virtual controller is
designed for controlling the translational dynamics. This
determines the total thrust and subsequently an attitude
controller is designed to achieve the required attitude. For
specifying the desired attitude, a non-zero virtual control
action is required for the virtual controller. In Shao et al.
(2018) this is not guaranteed by the proposed controller

1 The research leading to these results has received funding from the
Swedish Science Foundation (SSF) project “Semantic mapping and
visual navigation for smart robots” (RIT15-0038) and the ELLIIT
Excellence Center at Lund University.

for the translational dynamics, therefore resulting in a
local stability result for their controller. In Abdessameud
and Tayebi (2010) and Zou (2016) the non-zero virtual
control action is guaranteed by saturating a proportional
and differential control action separately. In this paper we
saturate only the combined proportional and differential
control action. Furthermore, in those two papers stability
proofs are finalized using Barbălat’s Lemma, showing only
asymptotic stability, not uniform asymptotic stability as
we do in this paper. Only the latter guarantees robustness
against bounded perturbations, cf. Panteley et al. (1999)
and (Khalil, 2002, Lemma 9.3). Also, in Zou (2016) time-
derivatives of the virtual control action are used in the
attitude controller, introducing the need for measuring
translational velocities (and even translational accelera-
tions). In Abdessameud and Tayebi (2010) the design of
the attitude controller has been done in quaternions. As
both the quaternions q and −q represent the same atti-
tude, the resulting attitude controller may exhibit the so
called dynamical unwinding behavior, see Bhat and Bern-
stein (2000). Finally, all of the above controllers use state
measurements directly in the controller, i.e., unfiltered.

To the best knowledge of the authors we are the first
to present an output feedback for the tracking control
problem of quadrotor UAVs for which:

• only filtered signals are used in the control action (the
measurement noise is thereby attenuated),

• uniform almost global asymptotic stability results
are derived (implying robustness against bounded
disturbances),

• proportional and derivative actions of the transla-
tional controller are saturated together, not sepa-
rately (which is beneficial if they have opposite signs).

Furthermore, we consider the attitude on SO(3) instead
of using Euler angles (which have singularities in repre-
sentation) or quaternions (which might lead to ambiguous
control actions due to the phenomenon of unwinding).
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This paper is outlined as follows. In Section 2 we introduce
some notation and preliminaries that are used through-
out the paper. The problem formulation is presented in
Section 3, after which a virtual filtered controller for the
translational dynamics is presented in Section 4. A filtered
controller for the attitude dynamics is presented in Sec-
tion 5, after which stability of the combined result is shown
in Section 6. The theoretical results are illustrated by a set
of simulation examples in Section 7, where the propositions
in each of the above sections are demonstrated separately.
A final example is given with filtered output feedback
control of a UAV in a looping manoeuvre on the surface of
a torus, and Section 8 finally closes the paper. An extended
version of the paper can be found in Lefeber et al. (2020).

2. PRELIMINARIES

In this section we introduce the notation, definitions and
theorems used in the remainder of this paper.

Let ei for i ∈ {1, 2, 3} denote the standard unit vector, and
let xi denote the ith element of a vector x. For definitions
of uniform global (or local) asymptotic (or exponential)
stability (UGAS/UGES/ULES), refer to Khalil (2002).

Definition 1. The origin of (2) is uniformly almost globally
asymptotically stable (UaGAS) if it is UGAS, except for
initial conditions in a set of measure zero.

We consider rotations R ∈ SO(3) = {R ∈ R3×3 | R>R =
I, detR = 1}, and define the skew-symmetric map

S(a) = −S(a)> =

[
0 −a3 a2
a3 0 −a1
−a2 a1 0

]
∈ so(3). (1)

To compare elements of SO(3), we define a measure by its
associated logarithmic map log : SO(3)→ so(3), as

d(R1, R2) = ‖ log(R1R
>
2 )‖ ∈ [0, π].

Using the fact that the cross product a × b = S(a)b we
have the following useful properties for the map S:

x>S(a)x = 0 ∀a, x ∈ R3,

S(a)b = −S(b)a ∀a, b ∈ R3,

RS(a) = S(Ra)R ∀R ∈ SO(3),∀a ∈ R3,

a>S(b)c = c>S(a)b = b>S(c)a ∀a, b, c ∈ R3.

In the remainder, let σ : Rn → Rn denote a vector-
function σ(x) = s( 1

2x
>x)x, where s : R+ → R+ is a twice

continuously differentiable function satisfying s(0) > 0 and
for which the associated Lyapunov function

Vσ(x) =

∫ 1
2x

>x

0

s(τ)dτ,

is positive definite and radially unbounded. Possible candi-
dates are σ(x) = k0x and σ(x) = (k2∞+k20x

>x)−1/2k0k∞x
with k0 > 0 and k∞ > 0, where the latter is bounded.

Definition 2. A function σ as considered above for which
‖σ(x)‖ ≤ γ for all x ∈ Rn is called a saturation function.

Theorem 1. (Corollary of Loŕıa et al. (2005, Theorem 1)).
Consider the dynamical system

ẋ = f(t, x) x(t0) = x0 f(t, 0) = 0, (2)

with f : R+ × Rn → Rn locally bounded, continuous and
locally uniformly continuous in t.

If there exist j differentiable functions Vi : R+ ×Rn → R,
bounded in t, and continuous functions Yi : Rn → R for
i ∈ {1, 2, . . . j} such that

• V1 is positive definite and radially unbounded,
• V̇i(t, x) ≤ Yi(x), for all i ∈ {1, 2, . . . , j},
• Yi(x) = 0 for i ∈ {1, 2, . . . , k − 1} implies Yk(x) ≤ 0,

for all k ∈ {1, 2, . . . , j},
• Yi(x) = 0 for all i ∈ {1, 2, . . . , j} implies x = 0,

then the origin x = 0 of (2) is uniformly globally asymp-
totically stable (UGAS).

Theorem 2. (cf. Panteley and Loŕıa (1998)). Let the sys-
tem (2) be written as

ẋ1 = f1(t, x1) + g(t, x1, x2)x2 (3a)

ẋ2 = f2(t, x2), (3b)

where x1 ∈ Rn, x2 ∈ Rm, f1(t, x1) is continuously differ-
entiable in (t, x1) and f2(t, x2), g(t, x1, x2) are continuous
in their arguments, and locally Lipschitz in x2 and (x1, x2)
respectively. This system is a cascade of the systems

ẋ1 = f1(t, x1), (4)

and (3b). If the origins of the systems (4) and (3b) are
UGAS and solutions of (3) remain bounded, then the
origin of the system (3) is UGAS. In addition, if the
systems (4) and (3b) are ULES, then (3) is also ULES.

Lemma 1. (cf. Mahony et al. (2008)). Let ki > 0 and vi ∈
R3 be such that M =

∑n
i=1 kiviv

>
i = UΛU> with

Λ a diagonal matrix with distinct eigenvalues λi where
U ∈ SO(3). Then

∑n
i=1 kiS(vi)Rvi = 0 implies that

U>RU ∈ {I,D1, D2, D3}, where D1 = diag(1,−1,−1),
D2 = diag(−1, 1,−1), D3 = diag(−1,−1, 1).

3. PROBLEM FORMULATION

Let ρ ∈ R3 denote the position of the centre of mass
relative to a North-East-Down (NED) inertial frame. Let
R ∈ SO(3) denote the rotation matrix from the body-fixed
frame to the inertial frame. Furthermore, let ν ∈ R3 and
ω ∈ R3 denote the body-fixed linear and angular velocities.
In this context, the SE(3)-configured UAV dynamics (com-
prehensively derived in Lee et al. (2017)) can be written

ρ̇ = Rν (5a)

ν̇ = −S(ω)ν + gR>e3 − (f/m)e3 (5b)

Ṙ = RS(ω) (5c)

Jω̇ = S(Jω)ω + τ, (5d)

where m denotes the total mass, J = J> > 0 the inertia
matrix with respect to the body-fixed frame, the matrix S
is given by (1), and f ∈ R and τ ∈ R3 denote respectively
the total thrust magnitude and the total moment vector in
the body-fixed frame, which are assumed to be the inputs.

Assume that we are given a feasible continuous reference
trajectory (ρr, Rr, νr, ωr, τr, fr, ḟr, f̈r), satisfying

ρ̇r = Rrνr (6a)

ν̇r = −S(ωr)νr + gR>r e3 − (fr/m)e3 (6b)

Ṙr = RrS(ωr) (6c)

Jω̇r = S(Jωr)ωr + τr, (6d)

where 0 < fmin
r ≤ fr(t).
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Define the following error coordinates on SE(3):

ρ̄ = R>r (ρ− ρr) R̄ = R>r R

ν̄ = −R̄>S(ωr)ρ̄+ ν − R̄>νr ω̄ = ω − R̄>ωr
with corresponding error measure:

ε(ρ̄, R̄, ν̄, ω̄) = ‖ρ̄‖+ ‖ log R̄‖+ ‖ν̄‖+ ‖ω̄‖.
Then we can define the filtered tracking control problem.

Problem 1. For (ρr, Rr, νr, ωr, τr, fr, ḟr, f̈r) being a given
feasible reference trajectory, find appropriate control laws

f = f(ζ, ρr, Rr, νr, ωr) (7a)

τ = τ(ζ, ρr, Rr, νr, ωr) (7b)

ζ̇ = ζ(ρ,R, ω, z, ρr, Rr, νr, ωr), (7c)

where ζ denotes the memory of the filter, such that for the
resulting closed-loop system (5), (6), (7)

lim
t→∞

ε
(
ρ̄(t), R̄(t), ν̄(t), ω̄(t)

)
= 0.

4. FILTERED POSITION TRACKING CONTROL

Following Lefeber et al. (2017) we separate the design of
the tracking controller into two parts. In this section we
consider the derivation of a position tracking controller
under the assumption that we can use the body-fixed linear
accelerations as (virtual) input. In subsequent sections we
consider the problem of realizing this virtual input by
means of the actual inputs. First, we define the tracking
error in the body-fixed frame of the reference:[

ρe
νe

]
=

[
R>r (ρr − ρ)
νr −R>r Rν

]
.

Using this definition the tracking error dynamics become

ρ̇e = −S(ωr)ρe + νe

ν̇e = −S(ωr)νe + (f/m)R>r Re3 − (fr/m)e3.

For stabilizing these time-varying tracking error dynamics
we take u = (f/m)R>r Re3−(fr/m)e3 to be a virtual input
which we want to achieve by controlling the thrust mag-
nitude and the attitude, leading to the first proposition.

Proposition 1. The dynamics

ρ̇e = −S(ωr)ρe + νe (8a)

ν̇e = −S(ωr)νe + u, (8b)

in closed-loop with the dynamic output feedback

u = −σ(kρρ̂e + kν ν̂e) (9a)

˙̂ρe = −S(ωr)ρ̂e + ν̂e + L1z (9b)

˙̂νe = −S(ωr)ν̂e + u+ L2z (9c)

ż = −S(ωr)z − (L1 + L3)z + (L1 + L3)ρ̃e, (9d)

with kρ > 0 and kν > 0, L1 > 0, L2 > 0, and L3 > 2L2/L1

is UGAS and ULES.

Proof. Define the errors ρ̃e = ρe − ρ̂e, ν̃e = νe − ν̂e,
z̃ = z − ρ̃e, and also ê = kρρ̂e + kν ν̂e. Then we obtain

˙̂e = −S(ωr)ê+ kρν̂e + kνu+ (kρL1 + kνL2)z (10a)

˙̃ρe = −S(ωr)ρ̃e + ν̃e − L1z (10b)

˙̃νe = −S(ωr)ν̃e − L2z (10c)

˙̃z = −S(ωr)z̃ − L3z̃ + L1ρ̃e − ν̃e, (10d)

Consider the Lyapunov function candidate

V1(ρe, νe, ρ̃e, ν̃e, z̃) = Vσ(ê) +
1

2
kρν
>
e νe+

+
α

2
(ρ̃e − βν̃e)>(ρ̃e − βν̃e) +

αγ

2
ν̃>e ν̃e +

α

6
z̃>z̃, (11)

with β = 2L1

3L2
, γ =

2L2
1

9L2
2

+ 1
L2

, and α sufficiently large:

α >
max

(
(kρL1 + kνL2)2, k2ρ

)
kν min

(
1
3L1,

2L1+L2L3−
√

4L2
1+16L2

2−4L1L2L3+L2
2L

2
3

6L2

) .
Differentiating (11) along (8), (9), (10) results in

V̇1(ρe, νe, ρ̃e, ν̃e, z̃) = −kνσ(ê)>σ(ê)− kρσ(ê)>ν̃>e +

+ (kρL1 + kνL2)σ(ê)>ρ̃e + (kρL1 + kνL2)σ(ê)>z̃

− α
[1

3
L1ρ̃

>
e ρ̃e +

2L1

3L2
ν̃>e ν̃e +

4

3
ν̃>e z̃ +

1

3
L3z̃

>z̃
]
, (12)

which is negative semi-definite function in its arguments,
but notably negative definite in σ(ê), ρ̃e, ν̃e, and z̃.

Differentiating V2 = −ν̃>e z along (8), (9), (10) results in

V̇2 = −L2z
>z − σ(ê)>z + (L1 + L3)ν̃>e (z − ρ̃e) = Y2.

Differentiating V3 = −ê>ν̂e along (8), (9), (10) yields

V̇3 = −kρν̂>e ν̂e − σ(ê)>(kν ν̂e + ê)−
− z>[(kρL1 + kνL2)ν̂e + L2ê] = Y3.

Applying Theorem 1 completes the proof of UGAS. ULES
follows from a linearization at the stable equilibrium. 2

Remark 1. Here, it is useful to note that

d

dt
σ(x) =

d

dt
s( 1

2x
>x)x = s′( 1

2x
>x)x>ẋx+ s( 1

2x
>x)ẋ

d2

dt2
σ(x) = s′′( 1

2x
>x)(x>ẋ)2x+ s′( 1

2x
>x)

[
ẋ>ẋx+ x>ẍx+

+ 2x>ẋẋ
]

+ s( 1
2x
>x)ẍ,

and

¨̂e =−S(ω̇r)ê−S(ωr) ˙̂e+ kρ ˙̂νe + kν
dσ(ê)

dt
+(kρL1+kνL2)ż.

Therefore, u̇ and ü can be expressed as continuous func-
tions of signals that are available from measurements.

5. FILTERED ATTITUDE CONTROL

In Section 6 we want to achieve the input derived in the
previous section by means of filtered attitude control, but
before we can do so, we first need to construct a filtered
attitude controller for tracking reference dynamics.

Proposition 2. Consider the dynamics

Ṙ = RS(ω) Ṙr = RrS(ωr) (13a)

Jω̇ = S(Jω)ω + τ Jω̇r = S(Jωr)ωr + τr. (13b)

Define the errors Re = RrR
>, R̃ = R̂R>, ωe = ωr − ω,

and ω̃ = ω̂ − ω, and let ω̂e = ωr − ω̂. Then the input

τ = τr+S(Jω̂e)ωr+Kωω̂e+

n∑
i=1

kiS(R>r vi)R̂
>vi (14a)

˙̂
R = R̂S(ω + δR) (14b)

J ˙̂ω = S(Jω)ω + τ + δω, (14c)

where the innovation terms δR and δω are given by
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δR = −cR
n∑
i=1

kiS(R̂>vi)(R
>
r vi +R>vi) (14d)

δω = −cωJS(ωr)ωe − cωKωωe − Cωω̃, (14e)

with Kω = K>ω > 0, Cω = C>ω > 0, cR > 0,
cω > 0, and ki > 0 such that M =

∑n
i=1 kiviv

>
i

has distinct eigenvalues, renders the equilibrium point
(Re, R̃, ωe, ω̃) = (I, I, 0, 0) UaGAS and ULES. That is,
let Ec = {I, UD1U

>, UD2U
>, UD3U

>} with U ∈ SO(3)
such that M = UΛU> with Λ being a diagonal matrix.
Then Re and R̃ converge to Ec, and ωe and ω̃ converge to
zero. The equilibria where Re ∈ Ec \ {I} or R̃ ∈ Ec \ {I}
are unstable and the set of all initial conditions converging
to these equilibria form a lower-dimensional manifold.

Proof. The closed-loop dynamics (13), (14) is given by

Ṙe = S(Rrωe)Re (15a)

Jω̇e = S(Jω)ωe + S(Jω̃)ωr −Kωω̃e −
n∑
i=1

kiS(R>r vi)R̂
>vi

˙̃R = S(R̂δR)R̃ (15b)

J ˙̃ω = δω (15c)

Differentiating the Lyapunov function candidate

V1 =

n∑
i=1

ki
2

(ReR̃
>vi − vi)>(ReR̃

>vi − vi) +
1

2
ω>e Jωe

+

n∑
i=1

ki
2

(R̃vi − vi)>(R̃vi − vi) +
1

2cω
ω̃>Jω̃,

along solutions of (15) results in

V̇1 = −[ωe − δR]>
n∑
i=1

kiS(R̂>vi)R
>
r vi + ω>e Jω̇e

+ δ>R

n∑
i=1

kiS(R̂>vi)R
>vi +

1

cω
ω̃>J ˙̃ω

=−cR

∥∥∥∥∥
n∑
i=1

kiS(R̂>vi)(R
>
rvi+R

>vi)

∥∥∥∥∥
2

2

−ω>eKωωe−ω̃>
Cω
cω
ω̃,

Differentiating V2 = ω>e
∑n
i=1 kiS(R>r vi)R̂

>vi along (15),

V̇2 ≤ −

∥∥∥∥∥
n∑
i=1

kiS(R>rvi)R̂
>vi

∥∥∥∥∥
2

2

+M1

∥∥∥∥[ω̃eω̃
]∥∥∥∥+M2

∥∥∥∥[ω̃eω̃
]∥∥∥∥2,

where we used boundedness of ωr, and boundedness of ω̃
and ω̃e resulting from V̇1 ≤ 0.

Applying Theorem 1 shows UGAS towards
n∑
i=1

kiS(R>vi)R̂
>vi = 0 ωe = 0

n∑
i=1

kiS(R>r vi)R̂
>vi = 0 ω̃ = 0,

which along the lines of the proof in Mahony et al. (2008)
implies UaGAS towards

Re = I ωe = 0 R̃ = I ω̃ = 0.

Considering V1 + εV2, ULES can be shown along the lines
of the work of Wu and Lee (2016). 2

6. COMBINED CONTROL/CASCADE ANALYSIS

In section 4 we derived a filtered controller for the transla-
tional dynamics by using a virtual input u. Subsequently,
in section 5 we derived a filtered controller for the attitude
dynamics. In this section we combine the results yielding a
controller that solves Problem 1, using only filtered signals
without the need for linear velocity measurements.

Following the approach in Lefeber et al. (2017), we need
fR>r Re3 to converge to mu+ fre3. To this end, define

fd =

[
fd1
fd2
fd3

]
=

fre3 +mu

‖fre3 +mu‖
(16a)

as the desired thrust direction, satisfying fd3 > 0, provided
that ‖u‖ ≤ fmin

r /m. We let

Rd =


1− f2d1

1 + fd3
− fd1fd2

1 + fd3
fd1

− fd1fd2
1 + fd3

1− f2d2
1 + fd3

fd2

−fd1 −fd2 fd3

 ∈ SO(3) (16b)

denote the rotation matrix which rotates the desired thrust
vector to the thrust vector of the reference (i.e., e3) in the
plane containing both vectors. This also gives

ωd =



−ḟd2 +
fd2ḟd3
1 + fd3

ḟd1 −
fd1ḟd3
1 + fd3

fd2ḟd1 − fd1ḟd2
1 + fd3


. (16c)

Using f = ‖fre3 + mu‖ and (16b), we can write fre3 +
mu = fRde3, so our goal to determine τ which makes
fR>r Re3 converge to fre3 + mu can be replaced by the
goal to determine τ which makes R>r R converge to Rd,
or equivalently R to RrRd. The latter we can achieve by
means of the filtered attitude controller of the previous
section, where this time Re = RrRdR

>, and ωe = R>d ωr+
ωd − ω, since we need R to converge to RrRd.

Proposition 3. Consider the dynamics (5) in closed-loop
with the controller (14), f = ‖fre3 + mu‖, where Re =
RrRdR

>, ωe = R>d ωr + ωd − ω, ω̂e = R>d ωr + ωd − ω̂, Rd
and ωd are given by (16) and u given by (9).

If σ is a saturation function satisfying ‖σ(x)‖ ≤ γ =
fmin
r /m, kρ > 0, kν > 0, L1 > 0, L2 > 0, L3 > 2L2/L1,
Kω = K>ω > 0, Cω = C>ω > 0, cR > 0, cω > 0, and ki > 0
such that M =

∑n
i=1 kiviv

>
i has distinct eigenvalues,

then the equilibrium point (ρe, νe, ρ̃e, ν̃e, z̃, Re, ω̃, R̃, ωe) =
(0, 0, 0, 0, 0, I, 0, I, 0) is UaGAS and ULES. That is, let
Ec = {I, UD1U

>, UD2U
>, UD3U

>} with U ∈ SO(3) such
that M = UΛU> with Λ being a diagonal matrix. Then
Re and R̃ converge to Ec and all other variables converge
to zero. The equilibria where Re ∈ Ec\{I} or R̃ ∈ Ec\{I}
are unstable and the set of all initial conditions converging
to these equilibria form a lower dimensional manifold.

Proof. The resulting overall closed-loop dynamics can be
written as (3) with
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x1 = [ρe, νe, ρ̃e, ν̃e, z̃]
>

x2 =

[
n∑
i=1

kiS(vi)Revi, ωe,

n∑
i=1

kiS(vi)R̃vi, ω̃

]>
g(t, x1, x2)x2 = [0 1 0 1 0]

> ‖fre3 +mu‖
m

R>r (I−Re)Re3,

where ẋ1 = f(t, x1) follows from (8), (9), (10) and is UGAS
according to Proposition 1 and ẋ2 = f2(t, x2) follows from
(15) which is UGAS and ULES by Proposition 2.

Differentiating V1 as defined in (11) along (3a) results in

V̇1 = c1
√
V ‖I −Re‖

for some constant c1. Since (3b) is ULES we have√
V1(t)−

√
V (t0) ≤ c2(x2(t0))

and therefore boundedness of solutions of (3). Applying
Theorem 2 enables us to conclude that the cascaded
system is UGAS and ULES. Therefore, the equilibrium
point (ρe, νe, ρ̃e, ν̃e, z̃, Re, ω̃, R̃, ωe) = (0, 0, 0, 0, 0, I, 0, I, 0)
is UaGAS and ULES. 2

Remark 1. The above mentioned controller also solves
Problem 1, as ρe → 0 implies ρ̄ → 0, Re → I implies
R̄→ I, and both together with νe → 0 and ωe → 0 result
in ν̄ → 0 and ω̄ → 0.

7. SIMULATION STUDIES

In this section, the stability and robustness of the pre-
sented controllers are illustrated in a set of simulations.
We first demonstrate the filtered and saturated output
feedback in Proposition 1, followed by an example of the
attitude feedback in Proposition 2. Using these two propo-
sitions, the main result in Proposition 3 is demonstrated
in a looping manoeuvre on the surface of a torus.

For the translational feedback, we define the saturation
function in terms of the hyperbolic tangent function, with
σ(x) = γ tanh(‖x‖2/γ)‖x‖−12 x for some constant γ > 0.

Furthermore, in all subsequent examples, we use the initial
conditions in Table 1 and parameter definitions in Table 2,
where N (µ,Σ) denotes a multivariate Gaussian distribu-
tion with mean µ and covariance Σ, and U(D) denotes a
uniform distribution over a domain D. Any deviation from
these parameters are stated explicitly in the examples.

Table 1. Initial conditions in the simulations.

Initial condition Distribution Description

ρ(t0), ρ̂(t0), z(t0) N (0, I) Position (m)
ν(t0), ν̂(t0) N (0, I) Velocity (m/s)

R(t0), R̂(t0) U(SO(3)) Attitude (·)
ω(t0), ω̂(t0) N (0, I) Attitude rate (rad/s)

7.1 Saturated translational output feedback

In this first example, we consider the non-autonomous
system in (8), for which the feedback loop is closed as de-
scribed in Proposition 1. Here we only assume knowledge
of the positional states, and take a time-varying ωr(t), as

ω̇r(t) = [sin(t+ 1) sin(2t+ 2) sin(3t+ 3)]
>
.

We then generate three simulations from the same initial
conditions, using the nominal parameters in Table 2 but

Table 2. Parameters used in the simulations.

Parameter Value Description

(kρ, kν) (2, 2) Translational control gains
(L1, L2, L3) (4, 4, 4) Translational filter gains

γ 2 Sat. bound (‖u(t)‖2 ≤ γ)
(k1, k2, k3,Kω) (10, 20, 30, 15I) Attitude control gains

(cR, cω , Cω) (1, 10, 15I) Attitude filtering gains

v1
[
0 0 −1

]>
Direction (gravity)

v2
[
0.98 0.17 0

]>
Direction (magnetic field)

v3 v1 × v2 Virtual meas. direction

J 1
100

[
5.2 2.2 2.2
2.2 7.0 1.7
2.2 1.7 5.3

]
Inertia tensor (kg ·m2)

m 0.1 Mass (kg)
g 9.81 Gravitational acc. (m/s2)

changing the value of the saturation bound γ in each
simulation. In the first, γ = 1 (red), in the second γ = 1.5
(blue), and in the third γ = 2 (black). The resulting system
responses for these three cases are shown in Fig. 1, where
the virtual input is clearly bounded at the corresponding
γ-value at all times. The error states converge to zero, and
the Lyapunov function (shown in the logarithm) decays
exponentially in time, demonstrating the local exponential
stability of the translational subsystem in Proposition 1.
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Fig. 1. From top to bottom: (i) tracking error and (ii)
estimate error in position, (iii) tracking error and (iv)
estimate error in velocity, (v) filter memory, (vi) Lya-
punov function V1(ρe, νe, ρ̃e, ν̃e, z̃) in the logarithm,
and (vii) the norm of the virtual controls ‖u(t)‖2 for
γ = 1 (red), γ = 1.5 (blue), γ = 2 (black).

7.2 Attitude output feedback

In this example, we illustrate the proposed filtered attitude
output feedback in Proposition 2. The resulting closed
loop system is UaGAS and ULES, and to show this in a
simulation example, we consider a realization of the initial
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conditions and parameters in Tables 1 and 2, where the
system is set to track a reference trajectory defined by
the initial conditions Rr(t0) ∼ U(SO(3)) and ωr(t0) ∼
N (0, I), and integrated in time with a reference torque

τr(t) = [sin(2t+ 1) sin2(4t+ 2) sin(6t+ 3)] . (17)

To illustrate the distance of two elements R1, R2 ∈ SO(3),
we consider the metric d(R1, R2) defined in Section 2.
With the resulting system response depicted in Fig. 2,
it is clear that both the tracking error and the estimate
error in the closed loop dynamics converge to the identity
element, with d(Re, I)→ 0 and d(R̃, I)→ 0. This despite
an initialization which is close to as far from the stable
equilibrium point as possible.
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Fig. 2. From top left to bottom right; (i) attitude esti-

mate error as d(R̃, I); (ii) attitude tracking error as
d(Re, I); (iii) the attitude rate estimate error; (iv) the
attitude rate control error; (v) the Lyapunov function

V1(Re, R̃, ωe, ω̃) in the natural logarithm; (vi) the
torque control signals τ(t); which clearly converge the
defined reference trajectory τr(t) as defined in (17).

7.3 Full output feedback with aggressive maneuvering

We now consider the main result, combining the two
output feedback controllers using the cascade theorem as
outlined in Section 6. For this numerical example, we will
attempt to track a highly volatile state-trajectory, defined
as a looping maneuver on the surface of a torus. To facili-
tate such a demanding maneuver, we make use of the dif-
ferential flatness of the quadrotor UAV, as derived in Greiff
(2017) but here in the NED case. This permits the evalua-

tion of a reference trajectory (ρr, νr, Rr, ωr, fr, ḟr, f̈r, τr) ∈
R15 × SO(3) satisfying (6) from a set of flat outputs
γ = (γ1, γ2, γ3, γ4)> ∈ R4 without integration, provided
the trajectory γ(t) is sufficiently smooth. Refer to Sira-

Ramirez and Agrawal (2004) for a review of flatness. We
parameterize the motion of (6) by a flat output trajectory

γ1(t) := pr1(t) = (6 + 2cos(ωvt))cos(ωut)

γ2(t) := pr2(t) = (6 + 2cos(ωvt))sin(ωut)

γ3(t) := pr3(t) = 2sin(ωvt)

γ4(t) := ψ(t) = ωut+ π,

where the first three flat output dimensions are taken to be
the position of the UAV in the global frame of reference,
and the fourth output is chosen as the yaw angle in a ZYX
Tait-Bryan representation, i.e., the rotation of the system
about the e3 direction in the global reference frame.

The trajectory is defined by constant angular rates ωu =
0.2π (rad/s) and ωv = 1.2π (rad/s), over t ∈ [0, 70/6] (s),
and just as in the previous examples, the initial conditions
of the system are randomized according to Table 1. In
Fig. 3, the resulting system response is shown in terms of
the system configurations in time, plotted over the torus
on whose surface the UAV is looping. In Fig. 4 the tracking
error is shown over the expanded reference trajectory.

Despite the large initial errors, the system quickly con-
verges to the reference trajectory, implying that the es-
timator errors converge to zero, and it is clear that
(ρe, νe, ρ̃e, ν̃e, z̃, Re, ω̃, R̃, ωe)→ (0, 0, 0, 0, 0, I, 0, I, 0).

Fig. 3. Configurations while tracking the looping trajec-
tory from a large initial control and estimate error.
The initial position is close to the center of the torus.

8. CONCLUSION

In this paper, we present a novel output feedback controller
for the problem of trajectory tracking with a quadrotor
UAV using partial state-information, as defined in Sec-
tion 3. The proposed control system comes with four main
advantages when considering practical implementations.
Firstly, the translational control is saturated, permitting
the bounding of the virtual control signal u(t) so as to
comply with actuator constraints. Secondly, the controller
filters the acquired measurements, thereby attenuating
the effect of measurement noise in the control signals
and states. Thirdly, the controller only uses information
which is ubiquitous in modern UAV applications, including
positional, gyroscopic, accelerometer and magnetometer
measurements. It does not rely on full state information,
as many UAV controllers do, but rather readily available
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Fig. 4. From top to bottom: (i) positional reference tra-
jectory (black) and response (red,green,blue); (ii)
Velocity reference trajectory (black) and response
(red,green,blue); (iii) distance to unstable (blue) and
stable (black) equilibrium points in the attitude
tracking error; (iv) attitude rate reference trajec-
tory (black) and response (red,green,blue); (v) virtual
control signal in the two-norm; (vi) actuating force
(black); and (vii) actuating torques (red, blue, green).

measurements. Fourthly, to the best knowledge of the
authors, this is the first filtered output feedback controller
with proven uniform local exponential stability, which
comes with benefits in terms of robustness to disturbances.

We conclude that the proposed controller has great practi-
cal utility, and its performance will be evaluated in a real-
time implementation in our future work. Furthermore, we
will investigate the possibility of removing the gyroscopic
measurements to make the approach even more general.
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