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Abstract: A distributed fault detection scheme is presented in this work to deal with the senor
failures in a nonlinear process system. Firstly, a residual generator is derived, in which the fault
signal is generated by introducing a residual signal. Then, a distributed extended Kalman Filter
(EKF) is designed to estimate the unmeasurable system states. Finally, the proposed distributed
EKF is used for the fault detection and isolation in a distributed framework. By applying the
distributed fault detection scheme to a completely stirred tank reactor process, it is shown that
the proposed scheme has ability to monitor the sensor faults automatically.

Keywords: Distributed fault detection, Distributed extended Kalman Filter, Sensor faults,
Completely stirred tank reactor.

1. INTRODUCTION

In practical applications, from the perspective of large-
scale systems framework has become one of hot topics
for research and engineering Chen et al. (2016); Song
et al. (2017); Tang et al. (2018). In virtue of the rapid
developments in computer science and hardware/software
technology, the large-scale systems framework can bring
a lot of benefits to the society, and the environment in
different applications. A large-scale industrial process is a
system composed of many components which may interact
with each other with physical connections. It is not easy
to estimate/monitor the states with a centralized structure
due to the computational burden Zhang et al. (2019b,a).
Recently, there has been increasing interest in distributed
state estimation and control, whose analyses of feasibility,
optimality and stability have been widely investigated
Taşçıkaraoglu et al. (2015).

Fault tolerance control has become an important topic in
modern control system and practical application Zhang
and Jiang (2008). Modern control systems are required to
meet high control performance and safety requirements.
For a complex system, there may exist failures in sen-
sors Xu et al. (2017), actuators Ye and Yang (2006) or
other system components Patan (2014). To deal with the
possible faults, many fault tolerance control approaches
have been investigated to maintain the desirable stability
and performance requirements Zarch et al. (2018). These
approaches are known as fault tolerant control systems,
which can handle the effects of faults automatically while
ensuring the required control performance. The fault tol-
erance control system are general divided into two types
Gao et al. (2015). One is known as passive fault toler-
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ant control, in which controller are robustly designed to
deal with the presumed faults Patwardhan et al. (2006).
Another one is the active fault tolerant control, which
can reconfigure control inputs to maintain the acceptable
control performance. In this approach, the fault tolerance
control performance greatly depends on the most recent
system information Patwardhan and Shah (2005).

In the last decades, many attentions have been paid
to the fault detection and isolation schemes. However,
little attention has been attracted to the distributed fault
tolerance control. The distributed fault tolerance control
scheme is derived in this paper to deal with the senor
failures of nonlinear systems. The approach is designed by
utilizing the advantages of the distributed estimator. The
system states are estimated by a Distributed EKF in a
distributed framework. Such a distributed fault detection
an isolation structure has the ability to monitor the effects
of faults automatically.

The outline of this paper is: in Section II, problem for-
mulations of this work are introduced. The fault detection
scheme is derived under the distributed EKF framework
in Section III. The proposed method is applied to a CSTR
process in Section IV to show the effectiveness. Finally,
Section V draws the conclusion of this paper.

2. PROBLEM FORMULATIONS

The following nonlinear system is considered:

ẋ(t) = f(x(t), u(t), w(t)) (1a)

y(t) = h(x(t), v(t)) (1b)

where the vector x ∈ Rn denotes the system state, y ∈
Rm denotes the measured outputs, w(t) denotes random
process noise/disturbances, v denotes a measurement noise
vector, f and h are respectively refer to the dynamics of
the nonlinear system and the output relation, respectively.
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Table 1. Nomenclatures

Variable Description

xi, ui, yi state, input and output of subsystem i, i = 1, · · · ,M
uj(tk) input received from subsystem j, j = 1, · · · ,M, j ̸= i
xl(tk) estimators of the subsystem l, l = 1, · · · ,M
xp
i (tk) predicted future state based on p-th sensor
ri(tk) residual signal of subsystem i, i = 1, · · · ,M
AT the transpose of A

(xs, us) the operation-point

To design a distributed fault tolerance control scheme,
the system (2) is required to be divided into subsystems.
Specifically, the model of i-th subsystem is represented as:

ẋi(t) = fi(xi(t), ui(t), x̄i(t), ūi(t), wi(t)) (2a)

yi(t) = hi(xi(t), vi(t)) (2b)

where xi ∈ Rni is the state of the i-th subsystem, yi ∈ Rmi

is the output of the i-th subsystem, x̄i is a vector of the
neighbor subsystems of subsystem i directly, i = 1, · · · ,M ,
with M being the number of the total subsystems, ūi is a
vector of neighbor subsystems of subsystem i directly. wi

denotes the process noise and vi denotes the measurement
noise of subsystem i.

The observability are checked by linearizing the nonlinear
model (2) at different points. The linearized model of the
system at (xs, us) is described in the form of:

ẋi(t) = Aixi(t) +Biui(t)+
M∑

j=1,j ̸=i

(Ajxj(t) +Bjuj(t)) (3a)

yi(t) = Cixi(t) + vi(t) (3b)

where the system matrices are obtained by taking the
Jacobian of (2) at (xs, us), respectively, as:

Aii =
[
∂fi
∂xi

]
(xs,us)

, Bii =
[
∂fi
∂ui

]
(xs,us)

, Ci =
[
∂hi

∂xi

]
(xs,us)

,

Aij =
[
∂fi
∂xj

]
(xs,us)

, Bij =
[
∂fi
∂uj

]
(xs,us)

.

It should be noted that the linearization of the nonlinear
system at (xs, us) is given by ∆x = x− xs, ∆u = u− us,
∆y = x − xs. Specifically, a new coordinates ∆x, ∆u
and ∆y represent the variations of x, u and y from their
equilibrium values xs, us and ys. The sign ‘∆’ is simplified
here. Then, for subsystem i, its observability is checked
based on the pair (Aii, Ci). More specifically, the full rank
conditions are required with rank(Oi,c) = ni, where Oi,c

represents the observability matrix.

Sensor faults mean that some system-operating informa-
tion are not available for the system control and state
estimation. The control performance can be degraded or
even lead to the instability of the system due to the
possible sensor faults. The sensor output yf (t) ∈ Rny with
possible faults at time k is expressed equivalently by:

yf (t) = Fy(t)y(k) = (I + γ(t))y(k) (4)

where γ(t) = diag{γ1(t), · · · , γM (t)}, Fy(t) = diag{Iny1
+

γ1(t), · · · , InyM
+ γM (t)}. Then, the sensor fault for the

subsystem i is denoted as

yi,f (t) = Fi,f (t)y(t) = (Inyi
+ γi(t))yi(t) (5)
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Fig. 1. Diagram of the distributed fault diagnosis

where γi ∈ [−1, 0], i = 1, · · · ,M are sensor effectiveness
factors. The fault-free and the complete sensor failure are
are represented as γi = 0 and γi = −1 respectively.

In this work, we consider the sensor failures that are
significant to the system safety and control performance.
To deal with the possible failures to the important sensors,
it is assumed that there are two sets of identical sensors to
measure the outputs. The l-th measurement in subsystem
i from the p-th sensor set is denoted by ypi,l.

3. MAIN RESULTS

The diagram of the distributed fault diagnosis is given
as Fig. 1. The main components of this control structure
include the distributed state estimation, the FDI modules
and fault tolerance. The distributed fault detection and
diagnosis module is derived by proposing residual genera-
tor, in which the fault signal is generated by introducing
a residual signal. The fault compensating strategy is de-
veloped by proposing a distributed EKF for estimating
of the unmeasurable states. The possible sensor faults
are detected and isolated by a local FDI modules. Two
estimated states are independently obtained by applying
the distributed estimators with the measured outputs. The
sensor faults will be dealt by the two distributed estima-
tors. Specifically, the backup of the sensor measurement
can provide a reliable state estimated states of the system
even if the sensor fails. Also, the potential sensor faults
can be diagnosed.

3.1 Distributed state estimation

The EKFs are discrete time filters by successive linearizing
the nonlinear system Zeng et al. (2016). In this section, the
distributed EKFs are designed for the nonlinear system (2)
to provide the full states for the state feedback control.
There are two steps for EKF, i.e., prediction step and
update step. Each subsystem is associated with a local
EKF at each time tk. Specifically, the local filter for
subsystem i at tk is:

1) Prediction step:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2579



x̂(i)(tk|tk−1) =x̂(i)(tk−1)+∫ tk

tk−1

f(i)(x(i)(t), X̄(i)(tk−1))dt (6a)

Pi(tk|tk−1) =Φi(tk, tk−1)Pi(tk−1|tk−1)Φi(tk, tk−1)
T

+

∫ tk

tk−1

Φi(s, tk−1)QiΦi(s, tk−1)
T ds (6b)

2) Update step:

Ki(tk) =Pi(tk|tk−1)Hi(tk)
T×[

Hi(tk)Pi(tk|tk−1)Hi(tk)
T +Ri

]−1
(7a)

x̂(i)(tk|tk) =x̂(i)(tk|tk−1) +Ki(tk)×[
y(i)(tk)− h(i)

(
x̂(i)(tk|tk−1)

)]
(7b)

Pi(tk|tk) = [I −Ki(tk)Hi(tk)]Pi(tk|tk−1) (7c)

where x̂(i)(tk|tk−1) is the state prediction at tk, the
error covariance matrix of x(i)(tk−1) is denoted by
Pi(tk−1|tk−1) and the predicted error covariance ma-
trix for time tk is denoted by Pi(tk|tk−1). The ma-
trices Qi and Ri are the covariances of process noise
and measurement of subsystem i, respectively; Φi(s, tk−1)
is the state transition matrix, which can be expressed
as Φi(s, tk−1) = eFi(tk−1)·(s−tk−1), Fi(tk−1) is the Ja-
cobian of f(i) with respect to x(i) at time tk−1, giv-

en by Fi(tk−1) =
[
∂f(i)(x(i)(t),X̄(i)(tk−1))

∂x(i)

]
x(i)=x̂(i)(tk−1|tk−1)

,

Hi(tk) =
[
∂h(i)(x(i)(t))

∂x(i)

]
x(i)=x̂(i)(tk|tk)

, and Ki(tk) is the

filter gain at tk. X̄(i)(tk−1) denotes the latest subsystem
estimate information of X(i)(t) for time t ∈ [tk−1, tk]
available to filter i.

To perform the distributed EKF for the subsystem i,
the states of neighbor subsystems are necessary. Thus,
an iterative algorithm is used for the distributed state
estimators to coordinate with the neighbor subsystems.
The subsystems communicate with each other for every n
sampling periods. That is, the communication interval is
n∆. The distributed EKF algorithm is implemented with
following steps:

Step 1: At t0 = 0, given x(i)(0), Pi(t0|t0), i = 1, . . . , p.
Step 2: For tk > 0, each local EKF i gets the measure-

ment of the subsystem i, i.e., y(i)(tk).
Step 3: If mod(k, n) = 0, each estimator receives the

state estimates (i.e., X̄(i)(tk−1) = X̂(i)(tk−1)) of
the neighbor subsystems at the time tk−1.

Step 4: With X̄(i)(tk−1), each estimator i calculates the
x̂(i)(tk), i = 1, · · · , p. The estimated state of the

global system is x̂(tk) =
[
x̂(1)(tk)

T . . . x̂(p)(tk)
T
]T

.
Step 5: At k = k + 1, go to Step 2.

The system input information is treated as known to the
distributed EKFs. The computation burden will increase
with iteration increases. Hence, there is a trade-off between
the computation burden and the estimation performance.
The xj(t) for t ∈ [tk − 1, tk) in (6) is approximated by the
prediction step of EKF i at tk, x̂j(tk − 1).

3.2 Distributed Fault Detection and Diagnosis

In many practical systems, the sensors may experience
abrupt faults. This section deals with the possible sensor
failures by using the distributed state estimation Section
3.1. It is necessary to derive a fault detection and diagnosis
module to detect and isolate the sensor faults. To deal
with the possible failures to the important sensors, it is
assumed that there are two sets of identical sensors to
measure the outputs, named as 1 and 2 respectively. The
l-th measurement in subsystem i from the p-th sensor set
is denoted by ypi,l, p = 1, 2, l = 1, · · · , ni.
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Fig. 2. The procedure for the fault diagnosis

Assume there is only one sensor failure in the system at one
time. Accordingly, a distributed fault detection module is
derived to deal with the abrupt sensor faults by taking
the advantages of the distributed EKF. A fault detection
module is proposed for each subsystem, and each module
is composed by several key components: a local EKF, and
a residual generator. Fig. 2 presents the structure of the
local fault detection module for subsystem i.

The state predictor is used to provide a reference state
trajectory for the residual generator. The state predictor
for each subsystem i, i = 1, · · · ,M , is developed based on
the nominal model:

ẋp
i (t) = fi(x

p
i (t), ui(t), x̄i(t), ūi(t), 0) (8)

where xp
i (t) is the open-loop prediction of the state of the

subsystem i, i = 1, · · · ,M , p denotes the copy of the state
prediction, p = 1, 2.

In each fault detection module for subsystem i, i =
1, · · · ,M , the residual generator calculates the differences
of prediction xp

i (t) and state estimate x̂p
i (t):

rpi (tk) = xp
i (t)− x̂p

i (t) (9)

where p = 1, 2.

Then, for the ni states in subsystem i, the residual
sequence is rpi (tk) = [rpi,1(tk), · · · , r

p
i,ni

(tk)]
T . It is assumed

that there exist rp,max
i,l , l = 1, · · · , ni such that rpi,l ≤

rp,max
i,l , l = 1, · · · , ni if the is no sensor fault. Then, the
residual generator generates a residual signal sequence for
each subsystem i, i = 1, · · · ,M :

rpi (tk) =

√√√√(rpi,1(tk)

rp,max
i,1

)2

+ · · ·+

(
rpi,ni

(tk)

rp,max
i,ni

)2

(10)

If there is no sensor fault, each residual will stay below
a certain threshold, i.e., θi for rpi (tk), i = 1, · · · ,M .
When any of the residual signals exceed the corresponding
thresholds, it indicates that there is a sensor fault.

The steps for the fault diagnosis mechanism in this work
is presented as:

1) For tk ≥ 0, the each fault diagnosis module i, i =
1, · · · ,M receives rpi,l, p = 1, 2, l = 1, · · · , ni.
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2) Check the conditions rpi (tk) > θi, i = 1, · · · ,M, p =
1, 2 hold or not. A sensor fault has occurred if any of
the residual signals exceeds its threshold.

3) Mark the fault agent as cf -th copy, where cf ∈ {1, 2}.
The fault is in one of the measurements y

cf
i , i =

1, · · · ,M . The copy without fault is marked as the
cn-th copy.

4) Calculate y
cf
i − ycni and compare it with a threshold

ρi > 0, i = 1, · · · ,M . If |ycfi − ycni | > ρi, then y
cf
i is

the faulty sensor.

In Step 3), a prescribed scalar ρi, i = 1, · · · ,M is derived
for the sensor fault isolation. Since the measurement noise
vi(t) is bounded, |ycfi − ycni | is always bounded without
sensor faults. A same upper bound on |ycfi − ycni | can be
defined as ρi, i = 1, · · · ,M . If |ycfi − ycni | > ρl, it means
that there must be a fault for either y

cf
i or ycni . According

to step 2), the fault must be the y
cf
i , i = 1, · · · ,M .

4. APPLICATION TO THE CSTR PROCESS

A three-vessel process Liu et al. (2009) with two CSTRs
and a flash tank separator are investigated (see Fig. 3).
The first vessel contains the reactant J with a feed stream
F10 and then is transformed to outcomeK. Then, outcome
K is converted to outcome L.

The dynamic system is given as follows Liu et al. (2009):

ẋA1 =
F10

V1
(xA10 − xA1) +

Fr

V1
(xAr − xA1)− k1e

−E1
RT1 xA1

(11a)

ẋB1 =
F10

V1
(xB10 − xB1) +

Fr

V1
(xBr − xB1)+

k1e
−E1
RT1 xA1 − k2e

−E2
RT1 xB1 (11b)

Ṫ1 =
F10

V1
(T10 − T1) +

Fr

V1
(T3 − T1)−

∆H1

Cp
k1e

−E1
RT1 xA1

− ∆H2

Cp
k2e

−E2
RT1 xB1 +

Q1

ρCpV1
(11c)

ẋA2 =
F1

V2
(xA1 − xA2) +

F20

V2
(xA20 − xA2)− k1e

−E1
RT2 xA2

(11d)

ẋB2 =
F1

V2
(xB1 − xB2) +

F20

V2
(xB20 − xB2)+

k1e
−E1
RT2 xA2 − k2e

−E2
RT2 xB2 (11e)

Ṫ2 =
F1

V2
(T1 − T2) +

F20

V2
(T20 − T2)−

∆H1

Cp
k1e

−E1
RT2 xA2

− ∆H2

Cp
k2e

−E2
RT2 xB2 +

Q2

ρCpV2
(11f)

ẋA3 =
F2

V3
(xA2 − xA3)−

Fr + Fp

V3
(xAr − xA3) (11g)

ẋB3 =
F2

V3
(xB2 − xB3)−

Fr + Fp

V3
(xBr − xB3) (11h)

Ṫ3 =
F2

V3
(T2 − T3) +

Q3

ρCpV3
(11i)

where xAi, xBi respectively are the mass fractions of J,K
in the vessel i, i = 1, 2, 3; xC3 are the mass fractions of L
in vessel 3; Ti are temperatures in the vessel i; T10, T20 are
the temperatures of the feed stream to vessels 1 and 2; F1,

Table 2. Model parameters.

Variables Value Variables Value

T10, T20 300 K αA 3.5

F10, F20 5.04 m3/h αB 1

Fr 50.4 m3/h αC 0.5

E1 50 KJ/mol ∆H1 -240 KJ/mol

E2 60 KJ/mol ∆H2 -280 KJ/mol

k1 9.972 ×106 h−1 R 8.314

k2 9.36 ×106 h−1 xA10 1

∆Hv1 -3.53 ×104 kJ/kmol xB10 1

∆Hv2 -1.57 ×104 kJ/kmol xA20 0

∆Hv3 -4.068 ×104 kJ/kmol xB20 0

Fp 0.504 m3/h Cp 4.2 ×103

ρ 1000 kg/m3 Q1 2900 MJ/h

Q2 1000 MJ/h Q3 2900 MJ/h

V1 1 m3 V2 0.5 m3

V3 1 m3

Table 3. Decompositions for the CSTR process

Subsystem state variable measurement Inputs

1 xA1, xB1, T1 T1 Q1

2 xA2, xB2, T1 T2 Q2

3 xA3, xB3, T3 T3 Q3

F2 are the effluent flow rate from vessels 1 and 2; F10, F20

are the steady-state feed stream flow rates to vessels 1 and
2; Fr, Fp are the Flow rates of the recycle and purge; Vi are
Volumes of vessel i; E1 and E2 are the activation energy
for reactions 1 and 2; k1 and k2 are the pre-exponential
values for reactions 1 and 2; ∆H1 and ∆H2 are the heats of
reaction for reactions 1 and 2; αA, αB, αC are the relative
volatilities of J,K,L, Q1, Q2, Q3 are the heat inputs into
vessel i; Cp is the heat capacity; R is the gas constant and
ρ is the solution density.

To deal with the possible sensor faults for the process, a
distributed fault detection scheme is developed. Firstly,
the fault signal is generated by introducing a residual
signal; Then, the distributed EKF is used to estimate
the unmeasurable system states; Finally, the proposed
DEKF is presented for fault tolerant detection problem
in a distributed framework.

J-->K--> L J-->K-->L

Fig. 3. Reactor-separator process
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The composition of the overhead stream relative to the
composition of the liquid holdup in the flash tank is
formulated with:

xAr =
αAxA3

αAxA3 + αBxB3 + αCxC3
(12a)

xBr =
αBxB3

αAxA3 + αBxB3 + αCxC3
(12b)

xCr =
αCxC3

αAxA3 + αBxB3 + αCxC3
(12c)

Process noise was added to the process of Eq. (11) to test
the disturbances/noises. As shown in Table (3), the global
plant is divided into three subsystems according to the
relations of the three vessels. Then, distributed EKFs are
designed to estimate the system states xAi, xBi, Ti with
the measurements T1, T2, T3.
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Fig. 4. The estimation performance for both fault-free and
sensor fault reactor-separator process under central-
ized EKF and distributed EKF
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Fig. 5. The estimation performance for both fault-free
and sensor fault reactor-separator process with fault
detection scheme

As shown in Figure 4, the fault-free case and sensor
fault case are respectively considered under centralized
Kalman filter and distributed Kalman filter. It is shown
that, without sensor faults, the EKF and distributed EKF

both can achieve good estimation performance for the
CSTR process. However, when there is a sensor fault for
T2 after t > 0.5 hour, the performance of estimation
becomes unacceptable (see green dash-dot line in Figure
4). Thus, it is crucial to derive the fault detection for the
process. As shown in Figure 5, the fault is detected at time
and the measurement is switched to the backup sensor.
Then, the distributed EKF can achieve a good estimation
performance.

5. CONCLUSION

To deal with the senor failures in a nonlinear process
system, a distributed fault detection structure is presented
in this work. A distributed fault detection and diagnosis
module is derived by proposing residual generator; Then,
the fault compensating strategy is developed by proposing
a distributed EKF to estimate the unmeasurable system
states; Finally, the proposed DEKF is presented for fault
detection and isolation in a distributed framework.
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