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Abstract: In this paper an optimal control approach based on a combination of inversion-
based control and internal model control (IMC) is designed to keep the controlled states of
a minimum-phase input-affine MIMO system within predefined tubes while respecting input
constraints. This contribution extends recently presented results for the SISO case to nonlinear
input-affine MIMO systems. The developed approach uses ideas developed in the design of
inversion-based IMC controllers for setpoint tracking and extends them to ’tube tracking’.
It shows the interesting result that for input-affine systems the control task of maintaining
each controlled state within a tube while minimizing energy consumption and respecting input
constraints can be expressed as a convex quadratic optimization problem. This concept allows to
handle dynamic systems where the number of control inputs differs from the number of controlled
outputs are not equal. The control approach is illustrated by three simulation examples.
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1. INTRODUCTION

In many control applications where high performance
trajectory tracking is not required, it is desired to keep
the controlled state within some predefined interval. A
classical example for ’tube control’ or ’band control’ arises
from the building sector, where the comfort requirements
are usually given in terms of an upper and lower bound of
the comfort range (Brelih, 2013). An aerospace application
of ’tube control’ is given by satellites’ path control where
the desired satellite’s path is delimited by two orbits. The
control task of remaining within some predefined band can
be achieved by the perfect tracking of any trajectory lying
in the band. However, to address the growing energy saving
demand the question arises about developing an optimal
control approach to achieve a robust tube control with
minimal energy consumption.

In comparison to the broad spectrum of controllers for
trajectory tracking, band control has been exclusively
treated by model predictive control (MPC). By transform-
ing the control task into a sequence of dynamic optimiza-
tion problems, band control can be easily addressed by
incorporating state constraints for the controlled variable.
However, the major drawback of MPC lies in the related
computational load. An application of an MPC approach
in bulidings’ automation can be a challenging task due
to the limited computational power offered by the stan-
dard processing hardware. Therefore, the computational

feasibility is considered as an important aspect during the
design of control strategies for systems with low processing
power.

Aside from the predictive aspect, IMC and MPC have in
some sort similar properties. Both control concepts rely
upon a mathematical model of the process to calculate
the suitable input leading to the desired output. While
MPC uses the model for dynamic optimization to predict
the suitable control input, IMC employs an inverse system
model to produce a stabilizing control law. Due to its
straightforward design, strong robustness properties and
low computational cost, IMC is considered as an attractive
model-based control strategy in many industrial applica-
tions. However, the conventional IMC structure is exclu-
sively designed for setpoint tracking and lacks the ability
to incorporate a control interval despite the knowledge
of the system dynamics disposed in the IMC approach
through the model.

This paper proposes an extension of the conventional de-
sign of inversion-based IMC controllers for setpoint track-
ing into tube tracking. It shows that for input-affine sys-
tems the control task of keeping the control outputs within
predefined intervals while respecting input constraints and
minimizing energy consumption can be achieved by solving
a convex optimization problem. The basic idea of the
approach consists in considering the references for the
control outputs as constrained optimization variables in
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the calculation of the optimal control inputs. The tubes in
which the controlled variables should be kept are expressed
in terms of box constraints for the variable references.
The proposed approach shows the interesting ability to
handle systems with unequal numbers of control inputs
and control outputs. Thus, systems showing a high degree
freedom with more control inputs than control outputs as
well as systems with conflicted control outputs where the
number of control inputs is reduced can be handled by this
approach.

This paper is structured as follows: In Section 2, previously
developed ideas in the design of inversion-based IMC
controllers for setpoint tracking are presented. Section 3
presents the main contribution of this paper: an extension
of the inversion-based IMC approach for setpoint tracking
to cover tube tracking. An illustrative example of the
developed approach is given in Section 4, while Section
5 concludes the paper.

2. INVERSION-BASED INTERNAL MODEL
CONTROL FOR SETPOINT TRACKING

This section gives a survey on the IMC concept and
previously developed ideas in the design of inversion-based
IMC controllers for setpoint tracking.

2.1 IMC structure

Q Σ

Σ̃

u

ỹ

-

-
w w̃ y

d

Fig. 1. IMC structure for setpoint tracking

Fig. 1 illustrates the IMC structure, where Q is the IMC

controller, Σ is the plant and Σ̃ is the plant model (Morari
and Zafiriou, 1989). Two major differences distinguish
the IMC structure from the standard control loop. First,
the plant model constitutes an explicit component of
the control scheme in the IMC structure. Second, the
information routed back within the feedback signal in the
two control schemes are not identical. In the standard
control loop, the feedback represents the output of the
plant. In the IMC structure the difference between the
plant output y and the model output ỹ is routed back and
the feedback expresses therefore the mismatch between the
plant and the model. The IMC strategy can be explained
as follows: assuming a perfect match between plant and
model and that no disturbances occur, plant and model
have the same output and the feedback signal vanishes. In
this ideal case, the IMC controller acts as a feedforward
controller. In the presence of process-model mismatch or
disturbances, the IMC controller tries to attenuate the
occuring uncertainties. Thus, for systems with small model
uncertainties the IMC controller is usually designed as a
feedforward controller.

2.2 Definition of an input-affine system

Consider the nonlinear input-affine plant model

Σ̃ : ẋ = f(x) +

q∑
j=1

gj(x)uj , x(0) = x0 (1a)

ỹ1 = h1(x) (1b)

... (1c)

ỹp = hp(x) (1d)

with time t ∈ R, state x ∈ Rn, input u ∈ Rq and p
outputs ỹi ∈ R, i = 1, ..., p. The vector fields f : Rn → Rn,
gj : Rn → R and the functions hi : Rn → R are assumed
to be sufficiently smooth. The components of the input u
are constrained by

U = {u ∈ Rq|uj ∈ [u−j , u
+
j ], j = 1, ..., q}. (2)

These conditions account for the fact that in many ap-
plications certain input constraints have to be taken into
account, e.g. limited cooling/heating power for air con-
dioning systems or maximal speed of a fan in a ventilation
system. The model is assumed to be stable and not to
contain a time-delay.

2.3 Input-output normal form

The inversion-based control design used in this work is
based on the input-output normal form of the considered
system (Isidori, 1995). The prerequisite for the input-
output representation of the MIMO system (1) is the
definition of the vector relative degree {r1, ..., rp}.
Definition 1: The nonlinear MIMO system (1) has a well-
defined vector relative degree {r1, ..., rp} at x = x if for
all x in a neighbourhood of x and all admissible inputs
u = (u1, ..., uq) the following two conditions are fulfilled:

• LgiL
k
fhj(x) = 0,∀i ∈ {1, ..q},∀j ∈ {1, ..p},∀k ∈

{1, ..., rj − 2}
• LgiL

rj−1
f hj(x) 6= 0 for at least one i ∈ {1, ..q},∀j ∈

{1, ..p}
The operators Lf and Lgi represent the Lie derivatives
along the vector fields f and gi respectively. Literally,
the element rk of the vector relative degree {r1, ..., rp}
denotes the number of times the k-th output ỹk has to be
differentiated until at least one component ui, k = 1, ..., q
of the input vector u appears explicitly. In the following,
it is assumed that the relative degree {r1, ..., rp} is well-
defined at least locally in the neighborhood of x.

The time derivatives ỹ
(ri)
i , i = 1, ..., p are given by

ỹ
(r1)
1
...

ỹ
(rp−1)
p−1

ỹ
(rp)
p

 =


Lr1
f h1(x)

...
L
rp−1

f hp−1(x)

L
rp
f hp(x)


︸ ︷︷ ︸

b(x)

+D(x)


u1
...

uq−1
uq


︸ ︷︷ ︸

u

(3)

with the (p× q)-decoupling matrix
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D(x) =


Lg1L

r1−1
f h1 Lg2L

r1−1
f h1 . . . LgqL

r1−1
f h1

Lg1L
r2−1
f h2 Lg2L

r2−1
f h2 . . . LgqL

r2−1
f h2

...
...

. . .
...

Lg1L
rp−1
f hp Lg2L

rp−1
f hp . . . LgqL

rp−1
f hp

 (4)

With the diffeomorphism

z =

z1...
zn

 =

[
ξ
η

]
=



ξ1,1
ξ1,2

...
ξ1,r1

...
ξp,1

...
ξp,rp

φr+1(x)
...

φn(x)



= Φ(x) =



h1(x)
Lfh1(x)

...
Lr1−1
f h1(x)

...
hp(x)

...

L
rp−1
f hp(x)
φr+1(x)

...
φn(x)


(5)

the system (1) is transformed into the following Byrnes-
Isidori normal form

Σ̃1 =



ξ̇1,1 = ξ1,2
ξ̇1,2 = ξ1,3

...

ξ̇1,r1 = b̃1(ξ, η) +
∑q

j=1 D̃1,j(ξ, η)uj
...

ξ̇p,1 = ξp,2
ξ̇p,2 = ξp,3

...

ξ̇p,rp = b̃p(ξ, η) +
∑q

j=1 D̃p,j(ξ, η)uj

.

Σ̃2 =


η̇1 = q1(ξ, η) +

∑q
j=1 P1,j(ξ, η)uj

...
η̇n−r = qn−r(ξ, η) +

∑q
j=1 Pn−r,j(ξ, η)uj

.

where

b̃j(ξ, η) =bj(Φ
−1(ξ, η)) = L

rj
f hj(Φ

−1(ξ, η)), j = 1, ..., p ,

(6a)

D̃l,j(ξ, η) = Dl,j(Φ
−1(ξ, η)) = LgjL

rl−1
f hl(Φ

−1(ξ, η)),

j = 1, ..., q, l = 1, ..., p
(6b)

qi(ξ, η) =Lfφr+i(Φ
−1(ξ, η)), i = 1, ..., n− r , (6c)

Pi,j(ξ, η) =Lgjφr+i(Φ
−1(ξ, η)), i = 1, ..., n− r, j = 1, ..., q,

(6d)

r =

p∑
i=1

ri (6e)

In this representation, the system Σ̃1 describes the input-

output dynamics and the system Σ̃2 represents the internal
dynamics. In this work, we assume that the internal dy-

namics Σ̃2 is stable, thus only minimum phase systems are

covered.

For the purpose of the developed control approach, we
define the function γi describing the ri-th derivative of the
i-th output. The function γi, i = 1, ..., p, is given by

γi(u, ξ, η) = ỹ
(ri)
i (7a)

= b̃i(ξ, η) +

q∑
j=1

D̃i,j(ξ, η)uj (7b)

2.4 Trajectory generation

In this section, the generation of the desired outputs
ỹd,i, i = 1, ..., p, is discussed. This step is performed
through a filtering process (Schwarzmann et al., 2006).
For this purpose, a linear IMC filter Fi is designed for each
output ỹi that filters the reference signal w̃i such that the
filter output ỹd,i can be realized by the model output ỹi .
Additionaly, this filter will give the ri derivatives of ỹd,i,

namely ỹ
(k)
d,i , k = 0, ..., ri (Nitsche et al., 2007). The filter

Fi is designed with the following transfer function

Fi(s) =
Ỹd,i(s)

W̃i(s)
=

1

ki,ris
ri + ki,ri−1

sri−1 + · · ·+ 1
(8)

with w̃i = wi− (yi− ỹi). Defining the vectors ki and ξdi as

ki = [1/kri ki,1/ki,ri · · · ki,ri−1/ki,ri ] , (9)

ξdi =
[
ỹd,i ˙̃yd,i · · · ỹ

(ri−1)
d,i

]T
, (10)

leads to the following setup function γdi for the ri-th
derivative of the desired trajectory

ỹ
(ri)
d,i = γdi (wi, yi, ỹi, ξ

d
i ) (11a)

=
1

ki,ri
(wi − (yi − ỹi))− kiξdi . (11b)

The desired trajectories generated by the p IMC filters
are concatenated together to produce the overall desired
trajectory vector ξd given by

ξd =
[
ξd,T1 ξd,T2 · · · ξd,Tp

]T
. (12)

2.5 Inversion-based IMC as optimization problem

Since the control input u acts firstly on ỹ
(ri)
i , achieving

the desired trajectory ỹd,i begins with achieving its ri-

th derivative ỹ
(ri)
d,i . Thus, the distance between ỹ

(ri)
d,i and

ỹ
(ri)
i ought to be minimized while respecting the input

constraints (Kotman, 2018). In mathematical terms, the
task at hand can be stated as the constrained optimization
problem

min
u∈U

d(ỹ
(ri)
d,i , ỹ

(ri)
i ) (13)

The distance measure d(x, y) has to fulfill the conditions
of a semi-metric, i.e d(x, y) ≥ 0withd(x, y) = 0 if and
only if x = y, and d(x, y) = d(y, x). These conditions
are fulfilled by the square of the L2-norm-induced metric,

i.e. d(x, y) = (x − y)2. Substituing ỹ
(ri)
d,i and ỹ

(ri)
i in (14)

by their analytical descriptions γdi and γi given in (7)
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and (11) respectively , leads to the following constrained
optimization problem

min
u∈U

(γdi (wi, yi, ỹi, ξ
d
i )− γi(u, ξd, η))2 (14)

Note that the vector ξ in the function γi has been sub-
stituted by the desired trajectory vector ξd. The vector
η of the internal dynamics needed by the function γi
can be calculated by an online simulation of the internal
dynamics (Fig.3) or by using a state observer along with
the diffeomorphism Φ(x) (Fig.4).

Solving the optimization problem (14) enables to achieve
the desired trajectory ỹd,i for the i-th output while respect-
ing the input constraints. In order to take all control states
into account, problem (14) ought to be expanded to cover
all the control outputs. For this purpose, the following
optimization problem is proposed

min
u∈U

p∑
i=1

αi(γ
d
i (wi, yi, ỹi, ξ

d
i )− γi(u, ξd, η))2 (15)

where αi > 0, i = 1, ..., p represents the scale factor
related to the output ỹi. The structure and the solution of
the optimization problem (15) is discussed in detail later
on. The inversion-based IMC control scheme for setpoint
tracking described as an optimization problem is shown as
a block diagram in Fig.2.

opt. prob (15)

y1, ..., yp

ỹ1, ..., ỹp

w1, ..., wp

u∗

γ1(u∗, ξd, η)

γp(u∗, ξd, η)

1
sr1−1

1
srp−1

⊕

ỹ
(r1)
d,1

ỹ
(rp)
d,p

...

ξd1

ξdp

ξd

Q

Fig. 2. Optimization-based IMC controller for setpoint
tracking

As it can be seen in Fig.2, solving the optimization
problem (15) enables to calculate the control input u∗

allowing to achieve the ri-th derivatives of the desired
trajectories ỹd,i. The vector ξd is then calculated through
simple chains of integrators.

Σ̃2

u∗

ξd
η

Fig. 3. Online simulation of the internal dynamics

State Observer

u∗

y1, ..., yq
Φ(x̂)

ηx̂

Fig. 4. State observer

3. OPTIMAL INVERSIONS-BASED INTERNAL
MODEL CONTROL FOR TUBE TRACKING

This section introduces the main idea of this contribution,
namely using the inversion-based feedforward IMC con-
troller to push the controlled variables to remain within
predefined intervals or ’tubes’ with the minimal energy
consumption.As it turns out, that this task can be stated
as a convex optimization problem that can be solved easily
with an analytical approach.

3.1 Reference as Optimization Variable

The optimization problem (15) is a multivariable opti-
mization problem, where the optimization variables are
the control inputs ui, i = 1, ..., q. Solving this optimization
problem enables to calculate the control input allowing to
achieve well-defined references wi for each output ỹi, i =
1, ..., p. In the following steps, the references wi are con-
sidered as additional optimization variables of the problem
(15) and are subject to the following box constraints

W = {w ∈ Rp|wi ∈ [w−i , w
+
i ], i = 1, ..., p}. (16)

The values w−i and w+
i define the lower and upper bound of

the tube in which the controlled variable ỹi should remain.
Moreover, an energetic term expressed by

∑q
i=1 εiu

2
i is

added to the cost function (15) in order to establish a
trade-off between tracking performance and energy con-
sumption. The resulting optimization problem is given by

min
w∈W,u∈U

p∑
i=1

αi(γ
d
i (wi, yi, ỹi, ξ

d
i )− γi(u, ξd, η))2 +

q∑
i=1

εiu
2
i

(17)
where γd and γ are defined according to equations (11)
and (7) respectively. The vectorization of the above men-
tioned optimization problem leads to the following matrix
representation

min
w∈W,u∈U

[w u]A

[
w
u

]
+BT

[
w
u

]
+ c2 (18)

with A =

(
XTαX XTαZ

(XTαZ)T ZTαZ + ε

)
, BT = [2c̃αX 2c̃αZ],

c =
√
c̃Tαc

where X =


1

k1,r1
. . . 0

...
. . .

...
0 . . . 1

kp,rp

, α =

α1 . . . 0
...

. . .
...

0 . . . αp

,

Z = −D̃(ξd, η), c̃ = [c̃1 · · · c̃q]
T

,

and c̃i = −
(

1
ki,ri

(yi − ỹi)− kiξdi − b̃i(ξd)
)
.

Problem (18) is a convex quadratic optimization problem
with box constraints. The convexity of problem (18) is due
to the positive definiteness of the matrix A. The optimality
conditions of convex quadratic optimization problems with
box constraints are discussed in detail by Deangelis and
Toraldo (2009).

In the following we discuss the uniqueness of the solution
of problem (18). If the matrix A is positive definite, the
cost function of problem (18) ist strictly convex and the
problem admits a unique solution. The positive definite-
ness of the matrix A can be investigated using Schur’s
theorem as stated below:
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Proposition 1: For any symmetric matrix M of the

form M =

(
M11 M12

MT
12 M22

)
, with M11 having full rank, the

following properties hold:

• M > 0 iff M11 > 0 and M22 −M12M
−1
11 M

T
12 > 0.

• If M11 > 0, then M ≥ 0 iff M22 −M12M
−1
11 M

T
12 ≥ 0.

According to Proposition 1 , since the left upper block
XTαX of A is invertible and positive definite , the matrix
A is positive definite, i.e. A ∈ Sn

+, if and only if ZTαZ +

ε− (XTαZ)(XTαX)−1(XTαZ)T > 0, which is equivalent
to ε > 0. The matrix A is positive definite, if and only if
εi > 0,∀i = 1, ..., q. In the case that at least one εi is equal
to zero, the matrix A is positive semidefinite and the cost
function is not strictly convex. In this case, the uniqueness
of the solution of problem (18) ist not guaranteed.

3.2 Suboptimal tube control

In this section, the case where εi > 0,∀i = 1, ..., q, is
discussed. Due to the existence of the energetic term∑q

i=1 εiu
2
i in the cost function, the desired trajectories

planned within W are not tracked perfectly. However, the
balance between energy consumption and tube tracking
performance can be fine-tuned with the parameters εi.
A large weighting factor εi emphasizes the importance of
energy reduction regarding the control input ui and leads
therefore to a reduced tube tracking performance. On the
other hand, very small positives values for εi allow for a
more accurate tracking of the desired trajectory.

When the weights εi, i = 1, ..., q, are strictly positive, the
cost function of problem (18) is strictly convex. In this
case, problem (18) admits a unique solution. A geometric
interpretation of the problem for the case p = q = 1 is
given by (Ben Jemaa et al., 2019). The Karush-Kuhn-
Tucker (KKT) conditions are therefore not only neces-
sary but also sufficient to determine the optimal solution
(w∗, u∗) (Boyd and Vandenberghe, 2009). The KKT con-
ditions of problem (18) are given by

2A

[
w∗

u∗

]
+B +

[
λu+ − λu−
λw+ − λw−

]
= 0 (19a)

λu+(u∗ − u+) = 0 (19b)

λu−(−u∗ + u−) = 0 (19c)

λw+(w∗ − w+) = 0 (19d)

λw−(−w∗ + w−) = 0 (19e)

u∗ − u+ ≤ 0 (19f)

− u∗ + u− ≤ 0 (19g)

w∗ − w+ ≤ 0 (19h)

− w∗ + w− ≤ 0 (19i)

λu+ ≥ 0, λu− ≥ 0 (19j)

λw+ ≥ 0, λw− ≥ 0 (19k)

where λu+ , λu− , λw+ and λw− are the Lagrange multi-
pliers associated with the box constraints where u+ =
[u+1 , ..., u

+
q ], u− = [u−1 , ..., u

−
q ], w+ = [w+

1 , ..., w
+
p ] and

w− = [w−1 , ..., w
−
p ] respectively.

The optimal solution can be found through iterating the
cases in which the box constraints are active or inactive.
Since the box constraints are given by q inequality con-

ditions for the inputs and q inequality conditions for the
outputs and each inequality condition can be either active
or inactive, 2p+q cases can be distinguished. For SISO
systems (p = q = 1) following cases can be distinguished:

• Case 1: u∗ /∈ [u−, u+], w∗ /∈ [w−, w+]
• Case 2: u∗ ∈ [u−, u+], w∗ ∈ [w−, w+]
• Case 3: u∗ /∈ [u−, u+], w∗ ∈ [w−, w+]
• Case 4: u∗ ∈ [u−, u+], w∗ /∈ [w−, w+]

For instance, the optimal solution (w∗, u∗) in Case 1 is
equal to −BA−1 if the box constraints are maintained.
Similarly, w∗, u∗ and the Lagrange multipliers are calcu-
lated in the remaining cases and the box constraints and
the positive definiteness of the Lagrange multipliers are
checked afterwards to ensure the feasibility of the solution.
For MIMO systems, an analytical solution based on the
KKT optimality conditions can have as much computa-
tional load as a pure numerical solution due to the high
number of cases (2p+q) that should be distinguished.

Whether problem (18) is solved analytically or numeri-
cally, the inversion-based IMC control scheme for tube
tracking can be described wih the block diagram in Fig.5.

Opt. Prob (18)

y1, ..., yq

ỹ1, ..., ỹq u∗

γ1(u∗, ξd, η)

γp(u∗, ξd, η)

1
sr1−1

1
srp−1

⊕

ỹ
(r1)
d,1

ỹ
(rp)
d,p

...

ξd1

ξdq

ξd

Q

Fig. 5. Optimization-based IMC controller for tube track-
ing

As can be seen in Fig. 5, the calculation of the optimal
setpoints w∗ and the optimal control input u∗ is done
within the same optimization step. Therefore, there is no
need to use the optimal setpoints w∗ as input for the
conventional IMC controller for setpoint tracking.

3.3 Optimal tube control

Now we discuss another formulation of the optimization
problem leading to a better tube tracking performance
while minimizing the energy consumption. A better tube
tracking performance can be achieved by setting the en-
ergetic term in the cost function of problem (18) to
zero. This can be achieved by setting all the parameters
εi, i = 1, ..., q to zero. In this case the energetic term
vanishes in the cost function and only tube tracking is
taken into account through the minimization of the term∑p

i=1 αi(γ
d
i (wi, yi, ỹi, ξ

d
i )− γi(u, ξd, η))2.

However, when at least one εi = 0, the cost function of
problem (18) is not strictly convex, thus uniqueness of the
solution of problem (18) is not guaranteed. A geometric
interpretation of the SISO case with ε = 0 is given in
(Ben Jemaa et al., 2019). In order to ensure uniqueness
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of the solution and energetic optimality, the following
optimization problem is proposed

min
u

q∑
i=1

εiu
2
i (20a)

s.t.

p∑
i=1

αi(γ
d
i (wi) − γi(u))2 = arg min

w′∈W,u′∈U

p∑
i=1

αi(γ
d
i (w′

i) − γi(u
′))2

(20b)

where εi > 0,∀i ∈ 1, ..., q. The above mentioned opti-
mization problem (20) can be interpreted as follows. Tube
tracking is addressed by the equality constraint (20b).
With this strict formulation, it is ensured that the differ-
ence between the desired trajectories and the fulfilled tra-
jectories is minimal. The second optimization level in this
problem consists in minimizing the energy consumption
through the minimization of the cost function

∑q
i=1 εiu

2.
In mathematical terms, the feasible set of problem (20) is
given by

F = {(u,w)|u ∈ U , w ∈ W,
p∑

i=1

αi(γ
d
i (w′

i) − γi(u))2 = arg min
w′∈W,u′∈U

p∑
i=1

αi(γ
d
i (w′

i) − γi(u
′))2}

(21)

Due to the convexity of the function
∑p

i=1 αi(γ
d
i (wi) −

γi(u))2 the feasible set F is a convex set. Problem (20)
consists therefore in minimizing a strictly convex cost
function over a convex set. Therefore problem (20) is
also a convex optimization problem and admits a unique
solution.

4. EXAMPLES

In this section three different simulation examples are
shown. In the first example, the case where the number of
control inputs and the number of control outputs are equal
i.e. p = q is dicussed. In the second example the case of
conflicted control outputs where q < p is investigated. In
the last example the case where more control inputs than
control outputs are available i.e. q > p is discussed.

4.1 Example 1: Control of temperature and CO2-concentration
(p = q = 2)

Consider the plant model

dTZ
dt

=
1

CZ
(ṁINcp(TIN − TZ) + Q̇dist) (22a)

dXZ

dt
=

1

mZ
(ṁIN (XIN −XZ) + ṁZ,CO2

) (22b)

where TZ is the temperature in a room Z, CZ is the
heact capacity of the room, ṁIN is the incoming air mass
flow through a ventilation system, cp is the specific heat
capacity of the air, TIN is the temperature of the incoming
air and Q̇dist is the disturbing heat signal resulting from
occupany, solar radiation and heat exchange with the
walls. XZ represents the CO2-concentration in the room,
mZ is the total mass of the air in the room, XIN is the
CO2-concentration of the incoming fresh air and ṁZ,CO2

is the CO2 mass flow exhaled by the occupants in the
the room. The control task consists in maintaining the
temperature and the CO2-concentration in a predefined
comfort zone determined by an upper and lower bound

for each controlled state. Defining the control inputs as
u1 = ṁINcpTIN and u2 = ṁIN leads to the following
system formulation

dx1
dt

=
1

a1
(u1 − b1u2x1 + d1) (23a)

dx2
dt

=
1

a2
(u2(b2 − x2) + d2) (23b)

ỹ1 = x1 (23c)

ỹ2 = x2 (23d)

The vector relative degree is [1,1]. Fig. 6 shows the re-
sponse of the controlled system for a1 = a2 = b1 = b2 = 1,
u1 ∈ [1, 2], u2 ∈ [1, 2], w1 ∈ W1 = [1.5, 2.5], w2 ∈ W2 =
[1, 1.5],

d1(t) = 0.5sin
(
(2π/30)t

)
+ 1.5

and
d2(t) = 0.5sin

(
(2π/30)t+ π

)
+ 0.5.

The trade-off between tube tracking performance and en-
ergy consumption can be seen in the case of the suboptimal
control for the different values of εi. As the parameters ε1
and ε2 increase, the violation of the tubes W1 and W2

increases. In the case of optimal tube control no violation
of the comfort zone occurs.

Fig. 6. Simulation results for example 1

4.2 Example 2: Control of humidity and CO2-concentration
(p = 2, q = 1)

Consider the plant model

dXZ

dt
=

1

mZ
(ṁIN (XIN −XZ) + ṁZ,CO2

) (24a)

dHZ

dt
=

1

mZ
(ṁIN (HIN −HZ) + ṁZ,H2O) (24b)

(24c)

where HZ is the absolute humidity of the air in the room
Z, HIN is the absolute humidity of the incoming fresh
air and ṁZ,H2O is the water amount stemming from the
occupancy. In this example we assume that ṁIN is the
unique control input. The control of CO2-concentration
and the control of humidity could be conflicted control
task. For example, if the outside fresh air is too humid, the
ventilation rate should be minimized which can affect the
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CO2-concentration in the room. The system formulation
takes the following form

dx1
dt

=
1

a1
(u(b1 − x1) + d1) (25a)

dx2
dt

=
1

a2
(u(b2 − x2) + d2) (25b)

ỹ1 = x1 (25c)

ỹ2 = x2 (25d)

The vector relative degree is {1,1}. Fig. 7 shows the re-
sponse of the controlled system for a1 = a2 = b1 = b2 = 1,
u ∈ [1, 2], w1 ∈ W1 = [1.5, 2.5], w2 ∈ W2 = [1, 1.5],

d1(t) = 0.5sin
(
(2π/30)t

)
+ 1.5

and
d2(t) = 0.5sin

(
(2π/30)t+ π

)
+ 0.5.

Fig. 7. Simulation results for example 2

The simulation results show the ability of the control
strategy to prioritize a control output over an other.
For α1 = 1 and α2 = 0, only the CO2-concentration
is regulated while α1 = 0 and α2 = 1 correspond to
humidity-only control. Choosing α1 = 1 and α2 = 1
enables to handle both control outputs simultaneously.

4.3 Example 3: Water-based heating vs. ventilation-based
heating (p = 1, q = 2)

Consider the plant model

dTZ
dt

=
1

CZ
(ṁINcp(TIN − TZ) + Q̇Rad + Q̇dist) (26)

where Q̇Rad denotes the heat flow of the radiators. We
assume that the system has two control inputs: u1 =
ṁIN and u2 = Q̇Rad. Thus, the zone can be heated
through ventilation or by using the radiators. The system
formulation is given by

dx

dt
=

1

a1
(u1b1(b2 − x) + u2 + d1) (27a)

ỹ = x (27b)

Fig. 8 shows the response of the controlled system for a1 =
b1 = 1, b2 = 3, u1 ∈ [1, 2], u2 ∈ [1, 2], w ∈ W = [1.5, 2.5],

d1(t) = 0.5sin
(
(2π/30)t

)
+ 1.5

The simulation results show the ability of the control
approach to prioritize the less expensive control input in
achieving the control task of remaining within the tubeW.
For example, for ε1 = 1 and ε2 = 10 the control input u2 is
10 times more expensive than u1. Therefore, the input u2
is kept at its minimum value over the whole time interval.

Fig. 8. Simulation results for example 3

5. CONCLUSION

An optimal control approach for keeping the outputs of a
minimum-phase input-affine MIMO system in predefined
tubes is presented in this paper. The proposed approach
is an extension of the conventional inversion-based IMC
controller for setpoint control to tube control. The paper
shows that the control task of tube tracking under input
constraints while minimizing the energy consumption can
be stated as a convex quadratic optimization problem with
box constraints. Within the control strategy, the calcu-
lation of the optimal setpoints and the optimal control
inputs is performed simultaneously within the same op-
timization step. The proposed control strategy shows the
interesting ability to handle systems with different number
of control inputs and control outputs.
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