
On Gaussian Process Based Koopman
Operators

Yingzhao Lian ∗ Colin N. Jones ∗

∗Automatic Laboratory, Ecole Polytechnique Féderale de Lausanne,
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Abstract: Enabling analysis of non-linear systems in linear form, the Koopman operator has
been shown to be a powerful tool for system identification and controller design. However,
current data-driven methods cannot provide quantification of model uncertainty given the learnt
model. This work proposes a probabilistic Koopman operator model based on Gaussian processes
which extends the author’s previous results and gives a quantification of model uncertainty. The
proposed probabilistic model enables efficient propagation of uncertainty in feature space which
allows efficient stochastic/robust controller design. The proposed probabilistic model is tested by
learning stable nonlinear dynamics generating hand-written characters and by robust controller
design of a bilinear DC motor.
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1. INTRODUCTION

The Koopman operator captures the behaviours of non-
linear systems via linear dynamics, albeit of an infinite
dimension. It has been widely used for the analysis of
complex dynamics in the fields of molecular physics (e.g.
(Wu et al., 2017)) and fluid dynamics (e.g. (Rowley et al.,
2009)). In recent years, it has been adopted as a nonlinear
controller design method with linear controller design tools
(e.g. (Korda and Mezić, 2018a; Surana and Banaszuk,
2016; Peitz and Klus, 2019)).

In the trend of machine learning, the “dynamics mode
decomposition” and its extensions play a central role in
finding a finite dimensional approximation of a Koopman
operator in a data-driven way. These methods produce
deterministic models which evolve nonlinear dynamics lin-
early by mapping states to a feature space with lifting
functions. In order to accommodate more complex dynam-
ics with a Koopman operator, model capacity is increased
either by expanding the feature function space with more
basis functions or by approximating lifting functions with
more sophisticated structures, such as neural networks
((Takeishi et al., 2017)). However, larger model capacity
comes along with a higher risk of overfitting.

This work aims at quantifying model uncertainty while
retaining the representative power of a Koopman oper-
ator by incorporating Gaussian processes (GP) into the
model. Unlike the common concept of uncertainty/noise
encountered in control science, the model uncertainty in
this paper is caused by our limited knowledge of an un-
known system and by the use of a finite amount of data,
even though the system can be described by deterministic
dynamic equations. Problems in the same vein are broadly
investigated in Bayesian learning ((Robert, 2007)), and

? This work has received support from the Swiss National Science
Foundation under the RISK project (Risk Aware Data Driven
Demand Response, grant number 200021 175627)

find various applications in control science such as safe
learning (e.g. (Akametalu et al., 2014)).

In the following sections, we will first introduce the Gaus-
sian process based Koopman operator in Section 2. Its
numerical realization is then elaborated in Section 3, in
which the model will be compared against the probabilistic
model directly established by the Gaussian process. The
proposed probabilistic model is then used for closed-loop
robust model predictive control in Section 4. Finally, vali-
dation tests are run by modelling hand-written characters
and controlling a bilinear DC motor in Section 5.

The major contributions of this work are summarized as
follows:

• Establish a probabilistic Koopman operator model
and its numerical realization.

• Elaborate the differences and connections between
the proposed GP-based Koopman operator model
and a direct Gaussian process model.

• The proposed data-driven model allows an efficient
robust/stochastic model predictive controller design
for nonlinear systems.

2. GAUSSIAN PROCESS BASED KOOPMAN
OPERATOR

For the sake of clarity, we will first introduce Koopman
operator theory for autonomous systems. Control inputs
are incorporated in Section 4.

2.1 Koopman Operator

Given an autonomous, continuous-time dynamical system

ẋ = F (x), (1)

where F : M → M is the system update equation and
M ⊆ Rn is the state space. Our goal in this section is to
demonstrate how the Koopman operator represents the
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state evolution of this system with infinite-dimensional
linear dynamics.

Given the function space F consisting of all functions
mapping M → R, called ‘observables’, the Koopman op-
erator ((Koopman, 1931; Koopman and Neumann, 1932))
applied to the observable f ∈ F is defined as

Ktf = f ◦ ρ(x, t),

where ρ(x, t) denotes the flow at time t starting from x
at time 0. The Koopman operator therefore defines a new
dynamical system in the function space F that governs the
evolution of the observables.

As the Koopman operator is an operator on a function
space, K is in general infinite-dimensional, but critically
it is linear even when the dynamics F are non-linear and
as such, we call an observable φ ∈ F an eigenfunction
associated with the eigenvalue λ ∈ C if Ktφ = eλtφ,

which also means dφ(·)
dt = λφ(·). From this we can see

that the eigenfunctions (or linear combinations of the
eigenfunctions) evolve linearly along the trajectories of our
nonlinear system (1)

φ(x(t)) = φ(ρ(x, t)) = Ktφ(x) = eλtφ(x) . (2)

Instead of tracking the state x of our system, we track
the evolution of a set of observables f along the state
trajectories. Specifically, given an observable in the span
of the eigenfunctions f =

∑
vk(f)φk, where the weights

vk(f) are called the Koopman modes of f , we notice that
the evaluation of the observable at the current f(x) is a
linear function of the Koopman eigenfunctions evaluated
at the current state

f(x) =
∑

ck(f)φk(x),

and therefore

f(x(t)) =
∑

ck(f)φk(x(t)) =
∑

ck(f)eλktφk(x) .

In the rest of this paper, we call evaluation of an observable
at x a lifting and the space of observables the feature space.

Remark 1. We note that the discrete-time Koopman op-
erator can be defined accordingly with a fixed sampling
time Ts and x+ = Fd(x), such that

K̃f = f ◦ Fd,

2.2 Gaussian Process

A Gaussian Process GP(µ, k) is an infinite-dimensional
distribution over the space of smooth real-valued func-
tions f : RN → R, specialized by a priori mean µ :
RN → R and covariance functions k : RN×N → R ((Ras-
mussen, 2004)), which is also called the kernel function.
By definition, function values at a finite set of inputs
[x1, x2, x3 . . . , xn] follows a multi-variate Gaussian distri-
bution N (µX ,KXX), where µX = [µ(x1), . . . , µ(xn)]T

and KXX = [k(xi, xj)]
n
i,j=1. In general, KA,B denotes

the cross-covariance between set A and B. If the mea-
surement is contaminated by Gaussian observation noise,
p(y(x)|f(x)) ∼ N (f(x), σ2) with σ2 as measurement noise
variance, then the predictive distribution at any point
x∗ ∈ RN given data D = {xi, yi}ni=1 is

p(f(x∗)|D) ∼ GP(µf |D(x∗), kf |D(x∗, x∗))

µf |D(x∗) = µ(x∗) +Kx∗XK̂
−1
XXy

kf |D(x∗, x∗) = Kx∗x∗ −Kx∗XK̂
−1
XXK

T
x∗X

(3)

where K̂XX = KXX + σ2I and y = [y1, y2, . . . , yn]T .
This defines a scalar-valued regression, for vector-valued
regression, various methods have been proposed, such as in
(Álvarez and Lawrence, 2011; Bonilla et al., 2008; Micchelli
and Pontil, 2005). For simplicity, we will do vector-valued
regression via a scalar-valued regression in each dimension.

2.3 Koopman Operator over Gaussian Process

In this section, we will establish the theory in which a
Koopman operator evolves a distribution of observables
instead of a specific observable. We first make the same
assumption as in (Korda and Mezić, 2018b).

Assumption 1. The state space M ⊂ Rn is compact and
the Koopman operator is therefore also compact.

Similar to other GP based methods, we further assume
that

Assumption 2. The underlying dynamics F is determinis-
tic.

Following the Bayesian learning procedure, we assume an
observable has an a priori distribution f ∼ GP(µ, k).

Proposition 1. If an observable f ∼ GP(µ, k), then the
Koopman operator applied to f is also a Gaussian process
such that Ktf = GP(Ktµ,Ktk(·,·))

Before showing the proof, we mention the following theo-
rem.

Theorem 2. ((Steinwart and Christmann, 2008)) Let X
and X̃ be sets, and define a map A : X → X̃ . Define the
kernel k on X̃ . Then the kernel k(A(x);A(x)) is a kernel
on X .

Proof. (Proposition 1)
The Koopman operator is a linear operator. As a Gaussian
processes is closed under linear operators ((Rasmussen,
2004; Papoulis and Pillai, 2002)), Ktf is a Gaussian process.
Since a Gaussian process is fully characterized by its
second order statistics ((Bishop, 2006)), its mean and
kernel functions can be calculated as follows:

E(Ktf (x)) = Ef (f(ρ(x, t)))

=

∫ +∞

−∞
f(ρ(x, t))p(f(ρ(x, t)) = ξ))dξ

= µ(ρ(x, t)) = Ktµ(x), (4)

E((Ktf (x)− E(Ktf (x)))(Ktf (y)− E(Ktf (y))))

= Ef ((f(ρ(x, t))− µ(ρ(x, t)))(f(ρ(y, t))− µ(ρ(y, t))))

= k(ρ(x, t), ρ(y, t)) = Ktk(x,y), (5)

where Ef denotes expectation with respect to f . The first
equality in Equation 4 and 5 follows Assumption 2. For
the sake of completeness, Theorem 2 ensures that Ktk(·,·)
is a kernel function.

Proposition 1 leads to the following corollary

Corollary 3. If an observable f ∼ GP(µ, k), then the
trajectory of this observable {f(ρ(x, t))} is a Gaussian
process.
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The proof of Corollary 3 is trivial because {f(ρ(x, t)} fulfils
the definition of a Gaussian process. More specifically,
any finite snapshots of a GP observable trajectory forms
a Gaussian random vector. In the rest of this paper, we
denote f(ρ(x, t)) as f(t) and ρ(x, t) as x(t) for the sake of
compactness. We refer to f ∼ GP(µ, k) as a GP observable
and {f(t)} as the trajectory of the GP observable

3. DATA-DRIVEN MODELLING OF GP BASED
KOOPMAN OPERATOR

In this section, we will formulate a numerical method to
learn the posterior distribution of the observable f ∼
GP(µ, k) and its corresponding finite approximation of a
Koopman operator given a dataset of measurements. In
practice, the data is measured with some sampling time Ts,
the dataset is therefore denoted as D = {x(Ti), y(Ti)}ni=1,
with y(Ti) = f(x(iTs)) = f(x(Ti)). In the rest of this
paper, we use capital letters to denote a random variable
and their corresponding lower case to denote a realization
of this random variable.

3.1 Finite approximation of GP observable

Assumption 3. The trajectory of a GP observable is sta-
tionary.

Define the Hankel matrix of measurement {y(Ti)} matrix
Ym ∈ Rm×n−m+1 as

Ym =


y(T1) y(T2) . . . y(Tn−m+1)
y(T2) y(T3) . . . y(Tn−m+2)

...
...

. . .
...

y(Tm) y(Tm+1) . . . y(Tn)

 .
We first conclude the algorithm with the following lemma.

Lemma 4. Given the singular value decomposition (SVD)
of Ym = UΛV with columns of U and rows of V ordered
by decreasing singular value, the optimal finite order
approximation of the Koopman operator K of order j ∈
[1,m] in the mean-square-error sense is 1

K = U [1 : end−1, 1 : j]†U [2 : end, 1 : j]

The a posteriori distribution of f is

f = U [1, 1 : j] [z1 z2 . . . zj ]
T
,

where zi ∼ GP(µ, k|{zi(x(Tp)) = Zlift[i, p]}n−m−1p=1 ) and
Zlift = ΛV

Before showing the proof of Lemma 4, we mention the
Karhunen–Loève theorem. It is reasonable to assume that
the time interval is bounded, dubbed t ∈ [0, Te], then the
Karhunen–Loève theorem admits a decomposition of the
trajectory of a GP observable.

Theorem 5. (Karhunen–Loève theorem ((Stark and
Woods, 1986)))
A centered 2 stochastic process {St}t∈[0,Te] admits a de-
composition

St =
+∞∑
k=0

Zkek(t),

1 † denotes pseudo inverse and the index follows the Matlab
standard
2 Meaning that the process is zero-mean.

where Zk are pairwise uncorrelated random variables and
ek(·) are continuous real-valued orthonormal basis func-
tions in L2[0, Te]. In the case of a zero-mean Gaussian
process, Zk are independent centered Gaussian random
variables.

Due to Assumption 1, the system evolves linearly in
infinite dimensional feature space within a compact set,
zeros and centered limit cycles are therefore the only
possible equilibrium points. Hence, a GP observable is
centered and Theorem 5 is applicable to the trajectory
of a GP observable. In the following, we show the proof of
Lemma 4.

Proof. Lemma 4
According to Corollary 3, we first apply Theorem 5 to a
trajectory of a GP observable

Y (t) =

∞∑
k=0

Zkek(t). (6)

Since X are the states of the system, X is the full statistic
of the system dynamics. Hence, Z is σ(X)-measurable, and
there exists a Lebesgue measurable function mapping X
to Z ((Jacod and Protter, 2012)). We rewrite Equation (6)
as

Y (t) =

∞∑
k=0

Zk(X(0))ek(t).

Following Assumption 3, we get

Y (t) =

∞∑
k=0

Zk(X)ek(t) = f(X(t)) ∼ GP(µ, k) .

From Proposition 1, there exists Zk(X) that is a Gaussian
process 3 . Applying the Koopman operator to Z, we get

Y (t) =

∞∑
k=0

Zk(X)ek(t)

=

∞∑
k=0

KtZk
(X)ek(0)

=

∞∑
k=0

Zk(X)K∗tek(0), (7)

the second equality comes with the fact that there exists
an adjoint operator of K due to Assumption 1 ((Eisner
et al., 2015)) 4 . Substitute sampling time to Equation 7,
we get

y(Ti) =

∞∑
k=0

zk(xi)ek(Ti) (8)

=

∞∑
k=0

zk(xi)K∗Ti

ek(0)
. (9)

3 One can prove that the subprocesses Zk(X) must be Gaussian
processes, however, the proof is non-trivial, please refer to (Feldman
and Graczyk, 2000; Skitovitch, 1953) for more details.
4 The duality is established on the measure of function
〈Kg(x), g′(x)〉 =

∫
g′ ◦ f ′(x)

∫
(g ◦ f(x)p(f, f ′)dν(f))dν(f ′) =

∫
g ◦

f(x)
∫

(g′ ◦ f ′(x)p(f, f ′)dν(f ′))dν(f) = 〈g,K∗g′〉, with g, g′ as map-
pings from function space F → F and p as transition density function
of the system dynamics. In this case, the mapping between Gaussian
process must be linear operator, therefore, its conjugate acts on ek.
ek is considered as the measure of function Zk(·), hence the adjoint
operator evolves the measure/weighting of each Zk.
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For the sake of clarity, we define the power of discrete-time
Koopman operator as

K̃nf = f(Fd ◦ Fd · · · ◦ Fd︸ ︷︷ ︸
n

),

The Hankel matrix of measurements can be rewritten as
a discrete-time system regarding Assumption 3,

Ym =

+∞∑
k=0

zk(x(T1))ek(0) . . .

+∞∑
k=0

zk(x(Tn−m+1))ek(0)

+∞∑
k=0

zk(x(T1))ek(Ts) . . .

+∞∑
k=0

zk(x(Tn−m+1))ek(Ts)

...
. . .

...
+∞∑
k=0

zk(x(T1))ek(mTs − Ts) . . .

+∞∑
k=0

zk(x(Tn−m+1))ek(mTs − Ts)



=



+∞∑
k=0

zk(x(T1))ek(T1) . . .

+∞∑
k=0

zk(x(Tn−m+1))ek(0)

+∞∑
k=0

zk(x(T1))K̃
∗
ek(0) . . .

+∞∑
k=0

zk(x(Tn−m+1))K̃
∗
ek(0)

+∞∑
k=0

zk(x(T1))K̃
∗2
ek(0) . . .

+∞∑
k=1

zk(x(Tn−m+1))K̃
∗2
ek(0)

...
. . .

...
+∞∑
k=0

zkK̃
∗m−1
ek(0)

. . .

+∞∑
k=0

zk(x(Tn−m+1))K̃
∗m−1
ek(0)



=


e1(0) e2(0) . . .

K∗e1(0) K∗e2(0) . . .

...
...

...
K∗me1(T−1) K

∗m
ee(T−1) . . .


︸ ︷︷ ︸

E

z1(x(T1)) . . . z1(x(Tn−m+1))

z2(x(T1)) . . . z2(x(Tn−m+1))

...
...

...


︸ ︷︷ ︸

Zlift

.

(Gerbrands, 1981) showed that the numerical finite real-
ization of Karhunen–Loève decomposition is equivalent to
the singular value decomposition (SVD), Ym = UΛV ,
with E = U and Zlift = ΛV . Meanwhile, if U and V
is ordered by decreasing singular value, then the optimal
approximation in the mean-square-error sense up to order
j is spanned by the first j dominant singular values and
their columns/rows in U/V . Therefore, the correspond-
ing finite order approximation of Koopman operator is
K = U [1 : end − 1, 1 : j]†U [2 : end, 1 : j]. From Equation
7, the a posteriori distribution follows Lemma 4.

To interpret the proposed algorithm in a more intuitive
way, we denote the ith column of U as Ui. U1 captures
the most dominant dynamics presented in the column
space of Ym. In control science language, U1 is the most
observable mode in the extended observability matrix.
However, due to the limited available trajectories, the
lifting Z1 which maps state X to this mode U1 cannot
be captured completely. An a priori Gaussian process
is therefore used to model a distribution of this lifting.
In particular, Zlift[i, j] is the realizations of all the ith

most dominant GP observable in the jth GP observable
trajectory. The a priori Gaussian process is then refined
to its a posteriori distribution, which is still a Gaussian
process. We conclude the algorithm as follows:

Algorithm 1. GP Koopman operator Identification
Inputs: D = {x(Ti), y(Ti)}ni=1, approximation order j;
Ouputs: A posteriori distribution of GP-observable,
Koopman operator K;

(1) Solve SVD OF Ym = UΛV = UZlift;
(2) K = U [1 : end−1, 1 : j]†U [2 : end, 1 : j];
(3) For i = 1 : j:

Calculate a posteriori distribution of Zi with data
{zi(x(Tp)) = Zlift[i, p]}n−m−1p=1 following Equation
3;

(4) a posteriori distribution f = U [1, 1 : j] [z1 z2 . . . zj ]
T

For an autonomous system, the proposed algorithm has
the same form as what we proposed in (Lian and Jones,
2019), which decomposes the modelling of a Koopman
operator into a subspace identification problem and a
supervised learning problem. The subspace identification
problem recovers the Koopman mode and the Koopman
operator, while the supervised learning problem learns the
lifting from state space to feature space. In an autonomous
system, the subspace identification algorithm executes
an SVD to find a finite dimensional approximation. If
the supervised learning problem is solved with Gaussian
process regression, then the algorithm is the same as what
we proposed in this paper. Following this heuristic, we
suggest that the algorithm proposed in this paper gives
a statistical interpretation of the algorithm we proposed
before.

Remark 2. Notice that the Karhunen–Loève decomposi-
tion does not necessarily admit the eigenfunctions of the
Koopman operator.

3.2 Discussion

Gaussian processes are widely used for modelling dynam-
ical systems (e.g. (Klenske et al., 2015; Kocijan et al.,
2004)), where system dynamics F or Fd is modelled by a
Gaussian process GP(µF , kF ). In this paper, we call these
methods direct GP modelling. Most direct GP models
follows the same Assumption 2.

Under Assumption 2, the same state x will evolve into
the same x+ in noiseless case. Therefore, the uncertainty
captured by both a direct GP model and a GP based
Koopman operator is caused by the information loss. If the
state spaceM is sampled densely 5 , the model uncertainty
will vanish with only measurement noise left. In GP-based
Koopman operator, the proposed algorithm finds the most
dominant dynamics. However, due to the limited amount
of data, the corresponding lifting Zi has uncertainty, which
quantifies the same uncertainty we discussed in Section 1.

In the rest of this section, we will show the difference
between the GP based Koopman operator and the direct
GP model. If the one-step forward prediction Fd(x) is
modelled in general linear estimator form ((Bishop, 2006))
as x+ =

∑
i wiψi(x), where ψi are some basis functions.

As shown in (Rasmussen, 2004), if wi are i.i.d Gaussian
variables, then the linear estimator model produces a di-
rect GP model. Instead, the GP based Koopman operator
assumes a distribution over ψi(·). In conclusion, the direct
GP model assumes a prior knowledge over the dynamics

5 Meaning that the samples are dense in the state space M
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in the feature space with a deterministic initial state while
the GP based Koopman operator assumes deterministic
dynamics in the feature space with a stochastic initial
state in the feature space. Different Bayesian computa-
tion methods find the corresponding posterior distribu-
tion over the presumed a prior knowledge with respect
to the data ((Robert, 2007)). This difference endows the
GP-based Koopman operator a computational merit over
the direct GP model. As shown in (McHutchon et al.,
2015), the distribution of the multi-step forward prediction
does not admit a closed form representation, which there-
fore requires approximation such as moment-matching in
(Girard et al., 2003). However, the proposed GP-based
Koopman operator evolves linearly in the feature space,
therefore, the distribution of multi-step forward predic-
tion is still Gaussian. This benefit allows computationally
efficient stochastic/robust controller design, which will be
discussed in next section.

4. GP-BASED KOOPMAN ROBUST MODEL
PREDICTIVE CONTROL

As discussed in Section 3, this work gives a statistical
interpretation of our previous work in (Lian and Jones,
2019). We therefore incorporate the control inputs in an
affine form as what we did in (Lian and Jones, 2019), which
is a heuristic proven to be effective in (Korda and Mezić,
2018a). For the sake of compactness, please refer to (Lian
and Jones, 2019) for more details 6 . The final model is

z0 = GP(µf |D(x), kf |D(x)) state space to observables

zk+1 = Kzk +Buk observables dynamics

yk = Czk +Duk observables to measurements.

As z follows a Gaussian distribution, dubbed z ∼ N (z̄, σ2
z),

it can be reparametrized as z = z̄+σzw with w ∼ N (0, I).
A robust model predictive control (MPC) is formulated
as in (Houska and Villanueva, 2019),

min
u

max
w

H∑
i=1

yTi Qyi + uTi−1Rui−1

s.t.

z̄0 = µ(x0|D), σz = k(x0, x0|D)

z0 = z̄0 + w,w ∈ [−3σz, 3σz]

zk+1 = Kzk +Buk
yk = Czk +Duk
yi ∈ Y, ui ∈ U , i = 0, 1 . . . H,

where Q and R are penalty matrices for measurements and
control inputs, H is the prediction horizon. U ,Y denotes
the feasible sets for control inputs and measurements
separately. As w lies in feature space and cannot be
measured, we design the following feedback control law
to reduce conservatism,

u0
u1
...

uH−1

 =


0 0 0 . . . 0
G11 0 0 . . . 0
G21 G22 0 . . . 0

...
...

. . .
...

GH1 GH2 GH3 . . . 0

 (


y1
y2
...

yH−1

−


ȳ1
ȳ2
...

ȳH−1

),

6 Technical note on:http://infoscience.epfl.ch/record/272580?
&ln=fr

where ȳi represents the nominal trajectory without uncer-
tainty, it is evolved as:

z̄0 = µ(x0|D)

z̄k+1 = Kz̄k +Buk
ȳk = Cz̄k +Duk

This feedback control law only uses the available informa-
tion up to step i to regulate the control inputs and has a
similar form of tube-based robust MPC in (Limon et al.,
2010). However, only u0 is applied and the estimation of
z will update once new measurement arrives.

5. VALIDATION

In this section, we will validate the proposed method in
both an autonomous system and a system with control
inputs, in particular, we will deploy the closed-loop robust
MPC formulation shown in Section 4.

5.1 Learning Hand-written Character Dynamics

Learning by demonstration enables robots to imitate
human-level control by providing demonstrations (Billard
et al. (2008)). A popular method is proposed in Khansari-
Zadeh and Billard (2011), which is based on Gaussian
mixture models (GMM). This method ensures global
stability by enforcing a Lyapunov condition. However,
this approach is not scalable with respect either to the
dimension of the state space or to the amount of data.
The proposed method in this paper can also ensure global
stability by enforcing stability in the feature space as
shown in Lian and Jones (2019), while it has much higher
scalability.

In this validation test, the algorithm is applied to learn
the dynamics of hand-written characters. We assume
that drawing a character is governed by an autonomous,
discrete-time dynamical system such that the location of
the pen tip x evolves according to xk+1 = F (xk). We
apply the proposed method to learn these dynamics. The
effectiveness of the algorithm is shown in Figure.1 and
Figure.2, whose data comes from Khansari-Zadeh and
Billard (2011) with 3 times demonstrations shown in the
corresponding figures. All the sample curves start from the
same initial point but with different initial states sampling
in the feature space. We notice that in both cases, the
uncertainty becomes larger when the curves turn which is
aligned with our intuition.

5.2 Model and Control of Bilinear Motor

In this section, we apply the proposed method to identify
and control a bilinear model of a DC motor Daniel-Berhe
and Unbehauen (1998).

ẋ1 = −(Ra/La)x1 + (km/La)x2u+ ua/La
ẋ2 = −(B/J)x2 + (km/J)x1u− τl/J
y = x2

where x1 is the rotor current, x2 is the angular velocity and
the control input u is the stator current. The parameters
are La = 0.314, Ra = 12.345, km = 0.253, J = 0.00441,
B = 0.00732, τl = 1.47, and ua = 60. In this experiment,
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Estimated vector field

Demonstration

Samples

Mean

Fig. 1. Learned 18th order dynamics of the character ‘r’

Estimated vector field

Demonstration

Samples

Mean

Fig. 2. Learned 22th order dynamics of the character ‘w’

only angular velocity x2 and stator current u is measured
and used for modelling.

The effectiveness of the model is shown in Figure.3, in
which a local linearized model and an EDMD model
from Korda and Mezić (2018a) is shown for performance
comparison 7 . It is noted that the mean of the proposed
method can properly track the real output while its
uncertainty evolves properly with real outputs always
included. The closed-loop robust controller proposed in
Section 4 is deployed to control the angular velocity x2.
The prediction horizon H is set to 10, Q and R are set
to 1 and 0 respectively. The constraints are u ∈ [−1, 1]
and y ∈ [−1, 1], where y is the angular velocity. The
experiments are shown in Figure 4 and 5.

6. CONCLUSION

In this paper, we proposed a probabilistic model of a Koop-
man operator based on Gaussian process. Based on the
proposed framework, we proposed an algorithm to model

7 For EDMD and the proposed algorithm, we use the same dataset
of 2000 datapoints, which is generated by random control inputs
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Fig. 3. Comparison of the open-loop prediction given
Koopman operator and the real state evolution
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Fig. 4. Angular velocity of the controlled motor

the system and showed its application in both system iden-
tification and controller design. The effectiveness of the
proposed model, algorithms and robust MPC controller is
validated by two examples.
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