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Introduction

Quantitative mathematical models have become impor-
tant tools for understanding and unraveling the mech-
anisms underlying biological signaling processing [Klipp
et al., 2005]. However, the parameters of these models are
in general unknown a priori and need to be inferred from
experimental data [Raue et al., 2013].

Most measurement techniques, e.g. Western blotting and
fluorescence microscopy, only provide relative information
about the absolute molecular state. To establish a proper
statistical link between experimental data and a compu-
tational model, scaling parameters and noise parameters
need to be introduced [Loos et al., 2018] hence increasing
the dimensionality of the estimation problem.

In previous studies, hierarchical optimisation approaches
for parameter estimation [Weber et al., 2011, Loos et al.,
2018, Schmiester et al., 2019] have been developed. These
approaches exploit that the scaling and noise parameters
can be computed analytically for a given set of model
parameters. These approaches have shown a substantial
benefit in the optimisation convergence for many opti-
misation methods and improved the conditioning of the
optimisation problem. However, these concepts cannot be
used for rigorous Bayesian uncertainty analysis.

In this study, we build on the idea of hierarchical optimi-
sation and determine an analytical marginalization of the
posterior with respect to the scaling and noise parame-
ters. This yields a lower dimensional posterior which can
more easily be explored using Markov Chain Monte Carlo
(MCMC) sampling or related approaches.

Parameter estimation problem
We consider the ordinary differential equation (ODE)
model
dz(t,0)
- = t,0),0
S0~ f(alt,0).0)

y(t,0,s) =s-h(x(t,0),0)
with state vector x and scalar observable y, depending
in the vector field f and the observation function h. The

parameter vector influencing the state variables is denoted
by 6, and the scalar scaling factor is denoted by s.

z(to,0) = xo(0)
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For this model, we consider measurement data D with

normally distributed measurement noise with variance o2,

Uk = y(t, 0,8) + e, € ~N(0,0%)

with indices k = 1,..., N for the time points. The kinetic
parameters 6, the scaling factors s and the noise variance
02 are unknown and need to be estimated from the

experimental data D.

Following Bayes’ theorem, the posterior distribution is
p(D10, s, 0)p(0)p(s)p(c?)
p(D)

A representative sample from p(, s, 02| D) can be obtained
using MCMC sampling.

p(0,s,0°|D) =

Analytical evaluation of marginal likelihood

For a mechanistic understanding of the biological processes
only the parameter vector 6 is required, but not the
scaling and noise parameters. Therefore, we consider the
marginalization of the posterior p(6, s, 02| D) with respect
to s and o2, yielding

_ p(D[0)p(0)
with

sl = [~ [ o050 plelpto? dsdo

In this study, we consider the simplified case uniform
priors, p(s) = p(0?) = 1. These priors are improper,
however, for sampling this is not problematic as it holds
that

p(0|D, s,0%) < p(DI6,s,0%)p(0)p(s)p(c?)
o p(DI6, s,0?)p(6).

The likelihood of D given 6 for hy := h(z(t,0),0) is

N
p(DI0,s,0%) = T[N (9k |5 - b, 0?) =
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yielding
e 1
Dlo) = —_—
w00 = [

/Ooe {_li@k'z}ddZ (1)
i XPp 22 = sdo”.

o0

The integral (*) over the scaling parameter can be refor-
mulated to
N

ubfim{ > m

k=1

1 & 1 &
7; Yrhy — U2Zﬂk2}d8

This Gaussian integral [Owen, 1980] takes the value

N 2
2mo? 1 N (Zkzl Yk hk)

()= | e el 5 | Sow - ey
Zk:l hi 20 k=1 Zk:l h2

Substitution of( ) in (1) yields

p(DI0) = / NI 2exp{ 2}d
/Zk w2 (270 ( )/ o
with
R N N 2 N -1
ooy (e (Swn) ) ()
k=1 k=1 k=1 k=1

Using the transformation 02 = w/v we finally get
wN=-3)/2 1

o) (N—=1)/2 N
(2m) SN2

></ AW exp {7} dny.
0

p(D[f) =

As it holds that
/ PV exp {—t} dt = T(b)

0
we obtain
wN=3)/2 1

@r ("I o

p(D]f) =

The substitution of w yields

1
p(D|0) = or(N—1)/2
N N 2\ —(N=3)/2
2 —
e (San))
k= k=1 k=1

N (N—4)/2 N
X h? F(_) :

Sampling of marginal posterior distribution
The marginal likelihood (2) provides the likelihood of the
data D for a parameter vector 6, given the uncertainty

in the unknown scaling parameter s and the unknown
noise variance 2. Hence, the analytical marginalization
enables the estimation of # without knowledge about s
and o2. The posterior distribution of # can be sampled
using, e.g. adaptive Metropolis [Haario et al., 2001] and
parallel tempering [Lacki and Miasojedow, 2015]. These
methods will simply use the analytical marginal likelihood
(2) to sample the marginal posterior p(6|D) — instead of
the full posterior p(6, s, a%| D).

Discussion

We presented an analytical marginalization of the like-
lihood function for estimating the parameters of ODE
models from relative data. As the marginalization en-
ables parameter sampling in a reduced space, we expect
improved mixing and convergence compared to standard
approach. Initial results on increasingly complex models
in an established benchmark collection [Hass et al., 2019]
confirm these results.

We presented the approach for ODE models, but concep-
tually it is also applicable for other modelling approaches.
Furthermore, as many experimental techniques provide
relative measurements, the approach is applicable to a
broad spectrum of problems in systems biology, engineer-
ing and physics. In a next step, we plan to extend it to
proper priors, e.g. normal distributions for p(s) and p(c?).
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