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Abstract: The paper deals with a method of identification of kinematic and elastostatic parameters of 

multilink industrial manipulators. This method does not require complex and expensive equipment for 

high-precision external measurements of position and orientation of the working tool in the Cartesian 

coordinate system. The method gives simple and cheap means to parameters identification and their 

implementation allows significantly increase the dynamic accuracy of the movement of working tools of 

serial manipulators along spatial trajectories during the performance of various technological operations 

of real production. The simulation is considered. 
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1. INTRODUCTION 

Currently, industrial manipulators (IM) are used not only to 

perform simple transport operations, but also as a basis for 

the creation of robotic machining centers. In this case the 

accuracy of the positioning of the working tool (WT) in the 

Cartesian (base) coordinate system has great importance. 

The real accuracy of the IM WT positioning in base 

coordinate system is determined mainly by the accuracy of a 

kinematic model of the IM, since its controller determines the 

position of the WT by means only this model and the IM 

joints angles. At the same time the real model of the IM can 

differ from the model used by the controller, due to 

inaccuracies in the manufacture and assembly of the 

mechanics of the IM. Therefore, one way to increase the 

accuracy of the IM WT movement is to define more precisely 

the kinematic parameters of the IM model. 

Today, there are many methods for calibrating the IM 

kinematic parameters. These methods are based on using of 

external high-precision measuring devices that measure the 

Cartesian coordinates and orientation of the IM flange, see, 

for example, Alici el al. (2005), Dumas et al. (2011) and so 

on. 

Also, the optical measuring systems that measure the relative 

displacements of the IM flange can be used for its calibration, 

see Kolyubin et al. (2015) and Luo et al. (2018). In some 

cases, special calibration devices (calibration plates) or 

calibrated IM of the same model can be used for some IM 

models, see Soe-Knudsen et al. (2017). 

Therewith heavy WT, such as milling spindles, which 

installed on the IM and used to perform machining 

operations, can cause sufficiently large external forces and 

torques applied to the IM flange. In this case elastostatic 

effects, which are caused by the low stiffness of the IM links 

and their actuators, begin to appear. Presence of these effects 

leads to additional WT deviations. These deviations cannot 

be determined on basis of measuring the angles of rotation of 

the IM joints. Therefore, it is necessary to take into account 

both the IM kinematic model and the model of its elastostatic 

to ensure the accuracy of the IM WT movement. Methods for 

determining the parameters of the IM elastostatic model are 

presented in Klimchik el al. (2014, 2017). These methods are 

based on using of external measuring devices to determine 

small deviations of the IM flange when known force and 

torque values are applied to it.  

The requirement to use expensive external measuring devices 

and a rather complicated procedure for calculating these 

parameters are the main disadvantages of existing methods 

for calibrating the parameters of the IM models. The method 

for identifying the IM kinematic parameters was proposed in 

Gubankov et al. (2018). This method does not require the use 

of any specialized equipment. Only the data from the angle 

sensors of the actuators of all degrees of mobility are used to 

tune the parameters of the IM kinematic model. Moreover, 

these angles are measured when the IM WT approaches to 

the same spatial point with different orientations of the WT. 

However, this method does not take into account the 

elastostatic effects of the IM. Therefore, in this work the 

specified method will be modified to allow simultaneous 

identification of the kinematic and elastostatic parameters of 

the IM. 

2. PROBLEM STATEMENT 

In the paper we will consider series IM. Kinematic model of 

such IM with consideration of elastostatic effects described 

by the following expression, Klimchik el al. (2014): 
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where  
44

10









 R

ff
f

XR
T  is a homogeneous 

transformation describing the position and orientation of the 

manipulator end link (flange) in the base coordinate system; 
33 RR f  is a matrix of orientation of flange in base frame;  

13 RX f  is a position vector of flange in base frame;  

T],...,[ 61 Φ , ],,,[ iiiii da   , )6,1(i  is a matrix of 

transformation parameters of Denavit-Hartenberg 

convention; i is a joint number;   Q = (q1,…,q6)T is a vector of 

IM generalized coordinates (rotation angels of  actuators);  
T),...,( 61 ζ  is vector of generalized coordinates 

increments, due to the presence of elastostatic effects; iT  is a 

Denavit-Hartenberg matrix. 

The model of IM elastostatic described by the following 

expressions, Dumas et al. (2011): 

FJ
T

Kζ  ,      
ζ

ζQΦt






),,(
J ,                                 (3) 

where  TCBAzyxt  ,,,,, is a vector of flange 

Cartesian coordinates and orientations increments due to the 

presence of elastostatic effects; 
66

61 ),,(  Rkkdiag  K  is a diagonal matrix of 

compliance coefficients; F is a vector of external forces and 

torques applied to IM flange. 

IM motion control traditionally based on its kinematic model 

only, excluding additives defined by elastostatic model (3). 

Matrix Φ
~

is consist of manipulators kinematic parameters, 

which corresponds to their nominal geometric parameters 

given in the technical documentation. 

However, exact kinematic parameters Φ of a particular IM 

may vary from its nominal parametersΦ
~

 due to inaccuracy 

in the manufacture and connection of its mechanical elements 

by a small values:  

Φ = Φ
~

+Δ.                                    (4) 

The IM kinematic parameters are used not only to calculate 

current flange position and orientation, but also to evaluate 

reference joints angles vector Q* that provides WT location in 

desired position with given orientation. Using Φ
~

 will lead to 

the evaluation of *~
Q  and then deviation of flange from a 

given reference position. The same effect will be observed if 

elastostatic effects will not be taken into account. That is, the 

deviation of the parameters of the kinematic model used by 

the controller from the real IM parameters and neglecting 

elastostatic effects leads to flange positioning errors when 

using heavy WT. This is especially important for cases when 

IM trajectory is generated automatically based on information 

from various vision systems (laser or optical scanners, 

cameras, etc.). 

The enhance of the kinematic and elastostatic parameters can 

be done with the help of special measuring systems, which 

allow to determine linear and angular coordinates of robot 

tools with high accuracy. However, the use of such systems is 

often impossible due to their extremely high cost. Moreover, 

IM already has a high-precision joint angles measuring 

system which can be used to calculate its parameters. 

Thus, in this paper the following problem will be solved. 

Consider PUMA-type IM with kinematic and elastostatic 

parameters described by Ф and K , respectively. The robot 

controller solves direct and inverse kinematic problems using 

the matrix of nominal parameters Φ
~

 and neglecting K . 

This will cause an error of IM flange positioning in 

Cartesian coordinate system. To reduce this error, it is 

necessary to develop a method for estimating IM parameters 

based on a series of its generalized coordinates 

measurements. 

3. METHOD OF ESTIMATION OF KINEMATIC AND ELASTOSTATIC 

PARAMETERS OF INDUSTRIAL MANIPULATOR 

To estimate IM parameters, we will modify the method 

proposed in Gubankov et al. (2018). The procedure of 

reference data obtaining is similar to tool center point (TCP) 

calculation for typical IM: Cartesian position is fixed and all 

degrees of freedom are used to change the configuration 

(joint) of robot. That is there will be n series of measurement 

of vectors Q. Each i-th series of measurements consists of mi 

vectors Q, which correspond to the position of the TCP at the 

same point of space Xi with different orientation in base 

frame. The coordinates of Xi are unknown. As a rule, for such 

measurements a sharp probe is used (see Fig. 1). 

As a result of measurements, a data array is formed: 
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For each vector    i
i
j mjni ,1,,1, Q  one can assign  
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Fig.1. Measurement data obtaining 

vector
i

jtX ,
ˆ  of coordinate of TCP in the base system Oxyz 

(see Fig. 1). This vector is calculated based on (1) and (2) 

using the matrix Φ̂ of estimation of kinematic parameters 

and diagonal matrix K̂ of compliances coefficients 

estimations. The expression to calculate 
i

jtX ,
ˆ  will be as 

follows: 
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k

k
i

jkk
i

jk

i
jt

i
jfi

j
i
j TqT

XR
ˆ))ˆ,,ˆ((

10

ˆˆ
)ˆ,,ˆ(

6

1

,,
,, 















 ζQΦT ,(6) 

where 









10

ˆ
ˆ TCP
TCP

XI
T , 33RI  is an identity matrix;  

TCPX̂  is a estimation of vector of coordinates of the TCP in 

the flange coordinate system Of xf yf zf.  

The coordinates of the points 
i

jtX ,
ˆ  evaluated according to (6) 

will differ from the real TCP position due to the differs of IM 

parameters from their real values. However, since the WT in 

each series of measurements is located in the same point Xi 

with unknown coordinates, the real coordinates of the TCP in 

one series of measurements will be the same. This fact can be 

used to identify the parameters of the manipulator.     

The estimation of matrix Φ̂ of kinematic parameters and 

matrix K̂ of compliance coefficients can be done by 

choosing the specified parameters so that the 
i

jtX ,
ˆ , evaluated 

according to (6) with help of Φ̂ and K̂ ,  for a separate 

series of measurements become closer to the minimum 

distance. That is, the measure of the quality of parameters 

identification can be made according to the following 

criterion: 

  
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As one can see, expression (7) does not contain the real 

coordinates of points iX , so it not needs the high accuracy 

measurement systems for estimation of manipulator 

parameters. Therefore, the task of manipulator parameters 

estimation is formulated as follows:    

)ˆ,ˆ,(minargˆ,ˆ
,

 KΦΞKΦ
ζKΦ
 .                              (8) 

The numerical optimization method of Levenberg-Marquardt 

will be used for estimation of manipulator parameters. For 

this purpose, the initial measurement data needs to be 

presented in following view: 
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Criteria (7) considering (9) can be rewritten as follows: 

PP
T .                                                (10) 

Therewith the matrix Φ of manipulator parameters and 

matrix K  of compliance coefficients can be presented as 

follows: 

   TTCP

T

TCPXkk    ,,,,, 61,61  . (11) 

From (11) one can see that 33 manipulator parameters will be 

estimated: 24 parameters describe manipulator kinematic, 6 

parameters describe compliance coefficients and 3 

parameters describe position of TCP in flange coordinate 

system.   

Also from (9) the proposed method of forming the criterion 

(10) allows to increase the amount of data for identification 

with a limited number of measurements. For example, when 

the probe is moved to one point 20 times with different 

orientations, 190 different pairs of measurements are 

obtained to use in (10). 

Before starting identification, the parameter vector   must 

be initialized with initial values. For this purpose one can use 

the following values: 

0ˆ,
~ˆ

00  KΦΦ .                               (12) 

Initial estimates of the vector TCPX̂ can be obtained using the 

built-in IM software or using the method described in 

Gubankov (2018), which allows for the evaluation of this 

vector to use all the measurements obtained for the 

identification procedure. 

To carry out the identification procedure using the 

Levenberg-Marquardt method, it is necessary to calculate the 

derivative of the matrix P from the identifiable parameters of 

the IM: 
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For evaluating G model (6), considering (1), should be 

rewritten as follows:  

 TCP
i
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i
jf

i
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i
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i
jt XRXX ˆ),ˆ,ˆ(),ˆ,ˆ(ˆ

,,, QKΦQKΦ   ,           (14) 

where 
13

,
 RX i

jf  and 
33

,
RR i

jf  are coordinate vector 

and orientation matrix of the flange in base coordinate 

system, which calculated based on 
i
jQ . 

Based on the smallness of ζ  due to the elastostatic effects of 

IM and considering (3), the first term of expression (14) can 

be written as: 
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and the second term as: 
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where 
iKin

jfX ,
, , 

iKin
jfR ,

,  are position and orientation matrix of 

flange in base system, obtained without taking into account 

the elastostatic effects. 

Using (14)-(16), we write the expression for  i
jtX , . In 

this case, we assume that the expressions describing the 

elastostatic effects depend on the initial values of the 

kinematic parameters Φ
~

. This is true because of the small 

differences between the real kinematic parameters of the IM 

from their nominal values. 

For parameters describing the kinematic model of the 

manipulator, one can write: 

)24,1(,ˆ
),ˆ(),ˆ(

,

,
,

,

,

,

,















kX

RXX
TCP

k

i
j

iKin
jf

k

i
j

i
jf

k

i
jt

ΦΦΦ

QΦQΦ


.   




























24,

,

1,

,,

ΦΦΦ 

i
jt

i
jt

i
jt XXX

  .          (17) 

For elastostatic parameters one can write: 
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where 
i

kjI ,,Q , 
i

kjJ ,,Q , 
i

kjK ,,Q  are the k-th columns of 

matrixes Q i
jI , Q i

jJ  и Q i
jK , respectively; 

i
kjF ,,  

is the k-th entry of vector FJ i
j )

~
,( ΦQ . 

For parameters describing the coordinate vector of the TCP, 

one can write: 
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Thus, considering (17)-(19) one finally can right: 
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 The expression (20) is used to tune the parameter vector   

using the method of Levenberg-Marquardt as follows: 
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where ER3333 is the unity diagonal matrix; (k) is the step 

of parameter tuning; 0<<1 is the coefficient of step 

changing.      

Herewith on each iteration the vector P is updated on the base 

of (7) with using of current estimation of vector )(ˆ k .    
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As shown in Gubankov (2018) the proposed method does not 

allow to identify the parameters d1 and 1. Therewith for 

identification of parameter 1k  it is necessary to form the 

lateral force applied to a flange. 

As the result of algorithm (21) working the estimation of 

vector ̂  is formed. This estimation provides the attraction of 

points 
i

jtX ,
ˆ to minimal distance between each other in i-th 

measurement set. Using of calculated kinematic and 

elastostatic parameters in manipulator controller allow to 

increase accuracy of manipulator tool positioning in 

Cartesian coordinate system.   

4. RESULTS OF MATHEMATICAL SIMULATION 

To verify the efficiency of the proposed method of 

identifying the parameters of the IM, mathematical 

simulation in MATLAB was carried out. In this simulation 

IM Kuka KR60 was considered, which nominal kinematic 

parameters are: 
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To test the proposed method, a data array  was generated. 

This array contains 3 series of 18 measurements each 

correspond to the working tool T
TCPX ]150,0,100[ location 

with different orientation to the points with coordinates 

]900,1300,50[1 X , ]1200,1500,300[2 X , 

]1450,700,1400[3 X . Thus, it was considered that 

parameters of IM differed from nominal on size : 
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and compliance coefficients of IM have following values: 

  18 )(105.12.12.10.17.00.1  Nmk . 

For generating the array  for each measurement, the inverse 

kinematics problem was solved based on the model (1). The 

result of it solving are vectors 
i
jQ  which provide the location 

of the TCP to the corresponding point iX  with a given 

orientation of the IM flange, which was set randomly.   

 

Fig. 2. The deviation of tool form point iX  

Also during the generation of the array, the error of coming 

the tool in point iX  was simulated. The value of this error 

for each measurement is shown in Fig.2. 

As a result of identification of the parameters of the IM 

model the following results were obtained. The value   

changed from 2146 to 3.29 in 499 iterations. 

The deviations of estimated parameters from their true values 

were as follows (Φ is known only in simulation case): 
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the estimates of the compliance coefficients are: k̂  = [0.0  

0.72  1.04  1.15  1.28  1.79]10-8, and TCPX̂  = [100.24  0.076 

149.36]T. 

From the presented results one can see the errors in 

determining the linear kinematic parameters of IM do not 

exceed 0.025 mm, angular 0.006 and the error in 

determining the values of the compliance coefficients 

generally does not exceed 5% (the exception is the coefficient 

6k , the error of estimation of which is 20%). It can be seen 

that the coefficients d2 and d3 are estimated together and the 

initial deviation in the parameter d2 is distributed between 

these parameters. This means that their sum is important, but 

not the terms values. It is also should be noted that the 

parameters of the last link are estimated together with TCPX̂ , 

which leads to deviations of these parameters from their true 

values, but allows one to accurately determine the position of 

the TCP in Cartesian space. Also, should be noted that the 

identification of the parameter 1k  is possible only if you 

provide the action of a known external force that creates a 

torque along the z axis of the base frame. However, in the 

proposed method of identification, it is technically difficult to 

do this. Therefore, the development of such method for 
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identifying this coefficient is a separate task that requires 

further solutions. 

To verify the accuracy of the IM with using the obtained 

parameters an array of 60,1j  Q vectors was formed, 

which do not coincide with the data used for this 

identification. These vectors were used to calculate the 

position of the working point of the IM tool using the initial 

(nominal) kinematic model, model (1) with identified 

parameters and model (1) with exact parameter values. 

Errors in determining the coordinates of the working point of 

the tool with using the nominal kinematic model IM and the 

identified parameters are presented in Fig. 3. 

As can be seen from the Fig. 3, the use of nominal parameters 

and non-accounting of elastostatic effects leads to large errors 

in determining the coordinates of the working point of the 

tool. This error is particularly large in z, due to the action of 

an external force directed down the z axis. The resulting 

parameters allow to determine the working point position 

with an error not exceeding 0.06 mm, for the individual 

coordinates that is sufficient to run most manufacturing 

operations, such as Filaretov et al. (2015, 2019). At the same 

time, increasing accuracy of the tool moving to the specified 

point at the first step of proposed method (for generating 

array ), will increase accuracy of parameter identification. 

CONCLUSIONS 

Proposed method includes two stages. On the first stage the  

 

Fig. 3. Errors of determining of tool working point position 

with using nominal (a) and identified (b) IM parameters 

(error at x-coordinate is a dotted line, y-coordinate is a gray 

line, z-coordinate is a black solid line correspondingly)  

operator manually moves the manipulator tool with different 

orientation to same fixed point and save data about rotation 

angle of manipulator joints. On the second stage the 

estimation is made by means of Levenberg-Marquardt 

method. This estimation is made to provide decreasing the 

distance between position of manipulator tool calculated by 

means of model (6). The simulation results confirmed the 

efficiency of the proposed method and the possibility of 

simultaneous identification of the parameters of the kinematic 

model of IM and compliance coefficients without the use of 

external measuring devices. 
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