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Abstract: Moving towards comprehensive digitalization of production facilities, it is critical to
know the location of work pieces, charges, or other objects of interest that change location over
time during production. For the case of a limited traceability of these objects, we first present
a theoretical approach that performs a recursive Bayesian estimation of the object’s location
over time based on typical passage measurements in production (e. g. light barriers or RFID
systems). The probabilistic method is based on a directed acyclic graph modeling the transfer
and sojourn of the objects in the production network. Subsequently, the method is validated on
simulated data while varying both size and measurement conditions of the process.
The results show the benefit of the proposed method against a single estimation and demonstrate
its potential for the application in real time scenarios.
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1. INTRODUCTION

In modern industrial production processes, the tracking
of individual work pieces or intermediate products over
time is essential to optimize process flows and monitor
process quality and stability. For storage and processing
of the tracking information, a data warehouse can be
set up, which enables the usage of advanced methods of
data mining (see Tao et al. (2018)). These methods imply
process monitoring (as recently shown by Maurer et al.
(2017)), regression and forecasting of relevant information,
like energy consumption by Shrouf and Miragliotta (2015),
or the data-based control of either single sub-processes or
high-level process control as proposed by Răileanu et al.
(2018).
Common solutions for the purpose of object recognition
and tracking use both hardware sensors (like QR-Codes
or wireless RFID-Chips, see Liewald et al. (2018) and
Rahmati et al. (2007) respectively) and the mostly de-
terministic plant control logic to match the information
about location and time with the individual tracked object
of interest.
In the case that this combined information is not fully
available (due to e. g. economical or technical reasons),
there is the option of estimating the unobserved events
of transition, where transition in this case means the
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entrance, exit, or passage of an object with respect to a
certain location or state in the process.
In this paper, we present a novel approach of estimating
the transition time of production units like work pieces,
charges of fluids, or bulk material from one production
state to another by a recursive Bayesian estimation under
consideration of a process model. As a result, we receive
probability distributions of the sojourn of each unit for
every discrete location over time.
First, we introduce the chosen mathematical represen-
tation of an arbitrary production process in section 2.
Following this, a recursive Bayesian update derived from
propagated measurements is applied to the problem in
section 3. The validation of the method itself and analysis
of the process parameter’s impact will be presented in
section 4.

2. STOCHASTIC PROCESS MODELING

Directed graphs have established themselves as a suitable
mathematical structure for describing temporal or logical
processes of arbitrary structure. Petri nets are a well-
known application of directed graphs and are used in
manufacturing, e. g. by Qiao et al. (2015) to analyze the
cycle-time in a wafer production process. But also in the
area of modeling with uncertainties, stochastic extensions
of Petri nets are applied, e. g. by Ammour et al. (2016) for
fault prediction in discrete systems.
In automaton theory there are also approaches on proba-
bilistic methods using directed acyclic graphs (DAG), as
Niggemann et al. (2012) present a learning algorithm to
identify a probabilistic automaton from the control signals
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of a mechatronic process. Whereas the latter publication
focuses on the detection of anomalies from a process
perspective, in this paper the tracking of objects in a
production process over time is pursued.

2.1 Stochastic Sojourn Time Graph

The DAG’s structure regarding the probabilistic model-
ing of pathway decision as well as the sojourn time by
Niggemann et al. (2012) has recently been adopted for the
temporal simulation of the work piece flow in production
facilities, see Zumsande et al. (2019).
Similar to the latter, the graph’s vertices in this paper
represent a certain location with temporary stay like trans-
portation, machining, storage or manual manipulation of
the traced object (in the following called token). The
outgoing directed edges of a vertex describe all possible
transitions a token may take from its current vertex and
determine also the conditions like the sojourn time and
transition probability. In the following, t ∈ R is used in the
domain of the real process time while τ ∈ R+

0 to denote the
inherently positive sojourn time. Based on this, we define
a stochastic sojourn time graph (SSTG) as follows:

Definition (stochastic sojourn time graph). A SSTG is a
tupel S = (G,T, s, p,∆, c), where:

• G = (V,E) is a connected directed acyclic graph. V
is an finite set of vertices and E ⊆ V × V is a set of
ordered pairs (i, j), called edges of vertices i, j ∈ V ,
where i 6= j (i. e. G is simple). G may contain multiple
sources (vertices without predecessors)

Vso = {v ∈ V |N−(v) = ∅} (1)
and sinks (vertices without successors)

Vsi = {v ∈ V |N+(v) = ∅} (2)
with the set of predecessors N−(v) and the set of
successors N+(v) of v.

• T is a set of tokens and s : Vso → [0, 1] maps
a probability to each source, specifying the initial
distribution of all tokens, where

∑
i∈Vso

si = 1.
• The function p : E → [0, 1] maps a probability to

each edge, where
∑

j∈N+(i) pi,j = 1, ∀i ∈ V \ Vsi.
pXi denotes the related discrete random variable of
the token’s next transition, starting from vertex i.

• The function ∆ : E → P(R+
0 ) assigns a probability

distribution from the set of all distributions sup-
ported on [0,∞) to each edge. ∆Xi|j denotes the cor-
responding random variable (distributed with proba-
bility density function (PDF) δi|j(τ)) of the sojourn
time at Vertex (i) under the condition of a subsequent
transition to j. Contrary to this, ∆Xi is the random
variable of sojourn time without knowledge of the
next transition.

• The capacity c : V → N describes the maximum
number of tokens located at a certain vertex at the
same time.

As every model, the chosen representation is a trade-off
between a preferably high coverage of the most important
restrictions and causalities of a real production facility on
the one hand and a favorable mathematical abstraction for
the later described graph based algorithms one the other

hand.
The capacity of a vertex and the predetermined possible
transitions in the process (e. g. serial and parallel pro-
duction) are examples for these realistic restrictions. By
defining the graph as finite and acyclic, path searching can
be solved in at least polynomial time (see Chatterjee et al.
(2015)). Also a random work piece loss can be modeled by
a sink as shown in Fig. 1 at vertex 7.

Fig. 1. Example of a simple SSTG with nine vertices and
edges each. Sources are marked as green diamonds
and sinks as blue squares.

Additionally to the definition of the SSTG, we suppose all
capacities c to be infinite to ensure both random variables
∆Xi and pXi being stochastically independent from the
number of tokens located at the set of successive vertices
N+(i). This implies, that tokens are able to overtake each
other and do not influence among themselves in their
temporal behavior, which is generally not the case for work
pieces in serial production processes, but is considered to
be a permissible simplification here.
In terms of probability theory, a single transition of one
token starting from vertex i can be interpreted as a two-
stage random experiment and therefore described by a
mixed joint probability distribution (see Ross et al. (1996))
with density

fpXi,∆Xi(pxi,δ xi) = P (pXi = pxi)
· f

∆Xi | pXi
(∆xi | pxi) ,

(3)

with the conditional probability density function f
∆Xi|pXi

and the realization pxi of pXi and ∆xi of ∆Xi respectively.
In terms of the proposed SSTG, (3) can be formulated as

fi(t, j) = pi,jδi|j(τ) . (4)
Consequently, ∆Xi and pXi are independent if and only if

δi|j = δi|k , ∀ j, k ∈ N+(i), k 6= j (5)
and dependent otherwise.

2.2 Model Parameters

For the proposed SSTG a number of parameters has to be
determined (see table 1). Both the graph’s topology and
the vertices’ capacity are considered to be definite and
manually identifiable. Since the edge probabilities pi,j of
all outgoing edges of a vertex i ∈ V \ Vsi sum to one, all
single edges

{
(i, j)

∣∣ |N+(i)| = 1
}

hold probability 1 and it
is evident that

DOFp = |E| − |V |+ |Vsi| , (6)
where DOFp is the degree of freedom regarding the edge
probabilities.
In case of the abstracted production process shown in
Fig. 1, one edge probability must be determined after
vertex 2 and vertex 6 respectively.
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Table 1. SSTG model parameters

Symbol Explanation
sv ∈ [0, 1] : A Tokens Probability to start from source

v ∈ Vso
pi,j ∈ [0, 1] : Edge probability
ci : Capacity of vertex i
δi|j(τ | • ) : PDF of the sojourn time from vertex i to j,

parameterized by •

µi|j : First moment (mean) of δi|j
σ2
i|j : Second central moment (variance) of δi|j

As described in section 2.1, the edge-specific sojourn time
is distributed with density δ(τ) and support on R+

0 because
a negative sojourn time is unfeasible. In literature, the
gamma distribution with density γ(τ) is frequently used
to model waiting times (see e. g. Sun and Jusko (1998))
and so it is in this paper for later simulation. With its
shape parameter α and rate parameter β, it follows

δsim
i|j (τ | αi|j , βi|j) = γ(τ |αi|j , βi|j) (7)

=
β
αi|j
i|j ταi|j−1e−βi|jτ

Γ(αi|j)
(8)

for t > 0, αi|j , βi|j > 0 and with the gamma function
Γ(·). Both parameters can be substituted by the more
interpretable mean µi|j variance σ2

i|j of the distribution

αi|j =
µ2
i|j

σ2
i|j

, βi|j =
µi|j

σ2
i|j

, (9)

with µi|j ≥ 0 and σ2
i|j > 0 .

There are several approaches for the identification of the
listed parameters in production processes, in particular
see Maier et al. (2011) for the identification of timed
hybrid automata and Coit and Jin (2000) for the maximum
likelihood estimation of gamma distributions in the course
of modeling failure times. Since the parameters for the
presented verification were given for the simulation, the
identification process is not part of this publication.

2.3 Measurement Propagation

For the later recursive Bayesian estimation, the true state
xξ is defined as the point in time of the transition of a
token h via edge (i, j) (in the time domain of t), with
index set

ξ = {(h, (i, j)) |h ∈ T (i, j) ∈ E} . (10)
Furthermore we define the k-th measurement zξk as noisy
measurement of xξ. It is assumed that each measurement
can be assigned to one token uniquely. This fits the earlier
mentioned application scenarios with hardware like RFID
or QR-Readers. We further assume a static white Gaussian
measurement noise

Rmeas ∼ N
(
0, σ2

meas
)

(11)
with a constant measurement noise variance σ2

meas and the
normal distribution N (·) . Considering the previous, the
measurement likelihood function is given by:

p(zξk |x
ξ) = N

(
zξk |x

ξ, σ2
meas

)
. (12)

Taking into consideration that the information provided
by a single measurement of one token crossing a spe-
cific edge does not only effect our knowledge about the

corresponding true state but also about the state of the
remaining edges, we propose the propagation of the single
measurement over all edges. With the given parameterized
SSTG model, describing the transitional behavior of each
token over time t in the process, let ΦX

h
i,j be the random

variable of the transition time (e. g. given by a single mea-
surement zξk) of token h regarding edge (i, j) distributed
with density φh

i,j(t) and ∆Xj,m be the random variable
of the sojourn time of a successive edge m ∈ N+(j)
with density δj,m(τ). Then the transition time can be
propagated towards this successive edge by adding both
random variables (cf. Ross et al. (1996))

ΦX
h
j,m = ΦX

h
i,j + ∆Xj,m (13)

and if follows for the corresponding PDFs
φh
j,m(t) =

(
φh
i,j ∗ δj,m

)
(t) , (14)

with the convolution operator ∗ .
As the PDF of the sum of multiple gamma distributed
random variables over a path on G cannot easily be
expressed in closed form according to Ansari et al. (2017),
in this paper all sojourn times in the propagation step
will be approximated by normal distributions. In order
to estimate the parameters for the normal distributed
sojourn time for the measurement propagation, the method
of moments is applied and the approximated PDF of the
sojourn time results to:

δ̃prop
i,j (τ |µi,j , σ

2
i,j) = N (τ |µi,j , σ

2
i,j) . (15)

It should be noted that this computationally necessary
approximation has only limited validity in case of a small
mean with simultaneously high variance because the nor-
mal distribution provides an unfeasible probability density
for t < 0 . Since this work always assumes a sufficiently
high mean of the sojourn time in relation to its variance,
this is not considered.
In order to propagate a single measurement zξk recur-
sively, the graph G is partitioned into a forward subgraph
G+

j ⊆ G, including all reachable vertices and edges from
vertex j, and a backward subgraph G−

j ⊆ G, including all
vertices and edges which could have been crossed before
causally. Since G is provided to be acyclic, it directly
applies

G+
j ∩ G−

j = ∅ , (16)
so that no vertex or edge can be part of both subgraphs.
In Fig. 2, the exemplary SSTG from section 2.1 is par-
titioned for an observation at edge (4, 6). As vertex 5 is
not reachable anymore, it is not part of either subgraph.
The resulting scaled probability density function and cu-
mulative distribution function (CDF) of the propagated
measurement over time is shown in Fig. 3, while obtaining
z4,6 = 5 s and σ2

meas = 1× 10−3 s2. The used edge param-
eters can be found in appendix table A.1.

When a single measurement zξk is propagated from mul-
tiple edges into one vertex (see e. g. vertex 8 in Fig. 1),
this merging inevitably results in a PDF consisting a
(weighted) sum of normal distributions. Therefore, the
likelihood of the propagated measurement (denoted by yξk
to avoid the confusion with the original single measure-
ment zξk) appears in form of a Gaussian mixture distribu-
tion (GMD)
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Fig. 2. Partitioning of the example SSTG for a transition
measurement across edge (4, 6) (solid black bar). The
right square (dashed blue) encloses the subgraph rele-
vant for the forward propagation of the measurement.
The left square (solid orange) encloses the reverse
subgraph for the backward propagation.

Fig. 3. Scaled PDF (top) and CDF (bottom) of the
propagated measurement at edge (4, 6) (black curve)
over all reachable edges. (Both PDF and CDF are
scaled with the token’s probability of having crossed
the specific edge within t → ∞, considering the
appearance of the measurement.)

p
(
yξk |x

ξ
)
=

Nξ
k∑

n=1

ηξk,n N
(
yξk |µ

ξ
k,n , σ

2ξ
k,n

)
(17)

and
Nξ

k∑
n=1

ηξk,n = 1 ,

with the likelihood function of the propagated measure-
ment p(yξk |xξ), the number of mixture components Nξ

k ,
and the component’s weighting coefficient ηξk,n, mean µξ

k,n,
and variance σ2

k,n
ξ.

3. BAYESIAN ESTIMATION WITH GAUSSIAN
MIXTURES

Since the true state xξ in this paper is not obtained to
be dynamic, we use a recursive Bayesian estimation of the
static transition time by a sequence of propagated mea-
surements. Therefore, the prediction step from Bayesian
filtering (known in particular for its most frequent use in
Kalman filters) is dropped, as there is no model function or
process noise to be included. According to Särkkä (2013),
the solution to the estimation problem (also called param-

eter estimation, as the estimated state is considered to be
static) is formulated as follows:

(1) The propagated measurements yξk are obtained to
be conditionally independent and modeled by their
likelihood function p(yξk |xξ), given by (17).

(2) All information in the beginning of the estimation is
given by the initial prior

p
(
xξ

)
= N

(
xξ |µξ

0, σ
2
0
ξ
)
, (18)

with the initial mean µξ
0 and initial variance σ2

0
ξ.

(3) The estimation is performed recursively after each
k-th measurement of token h with an update of the
posterior distribution

p
(
xξ|zξ1:k

)
=

p
(
zξk |xξ

)
p
(
xξ | zξ1:k−1

)
∫

p
(
zξ |xξ

k

)
p
(
xξ | zξ1:k

)
dxξ

, (19)

where the denominator is often called model evidence
and serves as a scalar normalization term.

3.1 Application and Reduction of Gaussian Mixtures in
Bayesian Estimation

In this paper, the frequently used closed form solution for
the recursive Bayesian estimation by enforcing the pos-
terior distribution to be a Gaussian mixture distribution
(GMD) is applied as we obtain the likelihood of our prop-
agated measurements to be a GMD (17). This method was
first introduced by Sorenson and Alspach (1971) and has
been extended frequently, most notably to the presented
problem by Vo and Ma (2006). Like the authors, we tackle
the problem of a time varying number of observed targets,
since single states can vanish as Fig. 3 demonstrated for
edges (2, 5) and (5, 8).
With the determination of the prior (18) being plainly
normal distributed, every updated posterior distribution
is also a GMD and all of its weights, means and variances
can be calculated in closed form, see Vo and Ma (2006).
As Sorenson and Alspach (1971) pointed out early, the
number of Gaussian components in the a posteriori dis-
tribution grows exponentially with k and the recursive
Bayesian update, given by (19), has therefore a time com-
plexity of O(Nk) with the presumed maximum number of
GMD components N of the measurement likelihood (17)
within k steps.
Since then, a number of reduction algorithms has been
proposed and compared (see Crouse et al. (2011)), where
in this paper the method by Runnalls (2007) is used, which
minimizes an upper bound regarding the Kullback-Leibler
divergence between the full and the reduced mixture.

In terms of the following validation, x̂h
i,j(t) = p(xξ | zξ1:κ)

denotes the final PDF of the posterior for edge (i, j) (i. e.
after the maximum number of measurements κ regarding
token h). The mean of this PDF is indicated by x̂h

i,j , which
is used as point estimate for the transition time in the next
section.
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4. VALIDATION AND PARAMETER ANALYSIS

For the validation of the proposed methods the flow of
tokens will be simulated within three scenarios with dif-
ferent complexity of the graph’s topology, determined by
the number of vertices and edges in each of the three cases.
As preliminary experiments showed a strong dependency
between the method’s performance and the selected topol-
ogy and parameterization of the graph, 10 independent
random DAGs per scenario are drawn under given speci-
fication of |V |, |E|, |Vso| and |Vsi|, see table 2.
The SSTG model parameters, shown in table 1, are ran-
domly drawn with determining µXi,j ∼ γ(10, 10) and
σ2Xi,j ∼ γ(10, 10), where the random variable µXi,j

represents the sojourn time distribution’s mean of edge
(i, j) and σ2Xi,j its variance. This is done to ensure
E[µXi,j ] = E[σ2Xi,j ] = 1 s and analogically Var(µXi,j) =
Var(σ2Xi,j) = 0.1 s2 for better comparability of the valida-
tion metrics. The capacity of all vertices is assumed to be
infinite as described in section 2.1 and the measurement
noise’s variance is determined to be σ2

meas = 0.01 s2. Each
prior PDF is distributed with

p(xη
1) ∼ N

(
10 s, 100 s2

)
. (20)

For each randomly drawn graph the flow of 1000 tokens is
simulated while calculating the individual sojourn times by
(7). The number of components allowed within the GMD
of an updated posterior distribution is limited to 20 by
Runnalls’ method (cf. section 3.1).

Table 2. Specification of the topology for the
validation scenarios

Scenario A Scenario B Scenario C
|V |: 10 20 40
|E|: 20 40 80
|Vso|: 2 3 4
|Vsi|: 2 3 4

4.1 Variation of Measurement Parameters

Besides the influence of topology the effect of both pa-
rameter noise and the number of measurement stations is
analyzed.
Since the proposed method relies on the knowledge of the
SSTG model parameters, these have to be identified for
real production facilities. In order to analyze the influence
of an uncertainty regarding the model parameters, four
levels of white Gaussian noise added to each parameter
group and quantified by a decreasing signal-to-noise ratio
from SNR∞ dB to SNR10 dB are investigated.
By varying the number of edges that measure the transi-
tion of a token, the realistic production case of an only
partially observed process (e. g. by a few single RFID
readers) will be reflected. A distinction is made between a
randomly chosen set of edges with measurement capability
(denoted by Emeas ⊆ E) of either 10%, 20%, or 50% of |E|.
In addition, it is considered that only one transition per
token is measured (more precisely: Its last transition into a
sink). This case should serve as a benchmark, since there is
exactly one Bayesian update performed on the initial prior
regarding the transition statistics given by the SSTG.

4.2 Evaluation Metrics

All three scenarios with varying model parameter noise
and number of measurement stations are validated regard-
ing three metrics. The average error of the method’s point
estimation and its distribution is quantified by the root-
mean-square error

RMSE =

√
ehi,j

2 (21)

with point estimation error ehi,j = ŷhi,j − yhi,j and an
application-specific mean function (denoted by an over-
line)

• =
1

|T |
∑
h∈T

 1

|Eh|
∑

(i,j)∈Eh

•

 , (22)

with the set of edges Eh ⊆ E transitioned by token h
during the simulation.
To take not only a point estimation but also the whole
distribution of the estimation into account, we use the
Bhattacharyya distance

DB (f, g) = −ln
(∫ ∞

−∞

√
f(t) g(t)

)
(23)

as measure of the similarity (cf. Bi et al. (2017)) between
the estimated PDF f(t) = ŷhi,j(t) and the simulated
transition time g(t) = N (t | yhi,j , σ2

meas). To give g(t)
support on R, it is assumed to be normal distributed with
equal measurement noise σ2

meas.
In order to evaluate not only the goodness of the estimated
transition time but also the accuracy of a token’s path
which is estimated to be the most likely one, we define the
paths accuracy

ACC =
1

|T |
∑
h∈T

1(Ph = P̂h) , (24)

where Ph is the sequence of edges the token h visited
while simulation and P̂h is the most probable sequence
of edges after the last update of the Bayesian estimation.
1(•) denotes the indicator function.
Finally, the average computing time for an update step
(including measurement propagation and eventual GMD
reduction) is given by tupd. The validation was performed
on a single core CPU with 3.5GHz and 16GB RAM in the
Matlab R2019a computing environment.

4.3 Results

The results shown in table 3 reflect a clear trend regarding
the three scenarios. For all three quality metrics, the value
deteriorates as the complexity of the graph increases (that
means a rising value in case of RMSE and mean Bhat-
tacharyya distance DB and a decreasing value for the ac-
curacy). In particular, the calculation time increases even
more than linear with the number of edges in the graph.
This was expected, since the computing time without re-
duction mechanism of the GMD even grows exponentially
with the number of measurements (cf. section 3.1).
Concerning the number of measuring edges, the validation
result indicates a consistent decrease for both RMSE and
Bhattacharyya distance, in case of an increasing amount of
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Table 3. Validation results with simulated token flow for three different graph sizes (scenarios).
The estimation was performed with a varying number of measuring stations (edges) and different

noise levels in the model parameters.

RMSE (s) DB (-) ACC (-) tupd (ms)
A B C A B C A B C A B C

SN
R

∞
dB Emeas,1 4.23 7.88 13.49 0.61 0.95 2.39 59.2 43.8 22.1 84 198 691

Emeas,10% 3.99 7.48 11.81 0.53 0.84 2.10 73.5 54.3 25.2 113 250 781
Emeas,20% 3.50 6.71 11.19 0.52 0.82 2.06 80.2 59.3 29.5 149 399 1280
Emeas,50% 2.99 5.81 9.40 0.44 0.64 1.75 99.3 93.2 44.4 190 557 1562

SN
R

4
0

dB Emeas,1 4.54 8.38 14.01 0.64 1.00 2.51 60.3 45.1 21.5 95 198 748
Emeas,10% 4.10 7.22 13.40 0.58 0.88 2.24 71.0 55.1 26.3 89 240 729
Emeas,20% 4.00 6.83 12.53 0.52 0.86 2.23 72.2 58.5 28.3 138 380 1386
Emeas,50% 3.20 5.85 9.66 0.44 0.72 1.76 99.3 80.9 40.1 193 469 1965

SN
R

2
0

dB Emeas,1 4.83 8.87 15.62 0.65 1.05 2.64 54.0 40.7 19.6 74 221 645
Emeas,10% 4.24 7.95 13.96 0.60 0.91 2.48 60.4 47.5 23.6 87 271 835
Emeas,20% 4.17 8.00 12.58 0.58 0.88 2.30 68.1 54.6 25.2 147 390 1104
Emeas,50% 3.47 6.13 10.58 0.48 0.74 1.91 99.3 88.6 40.6 222 549 2040

SN
R

1
0

dB Emeas,1 5.64 10.73 19.25 0.79 1.27 3.15 48.6 33.6 17.0 78 184 630
Emeas,10% 5.21 9.97 17.94 0.74 1.18 2.92 51.0 40.6 22.6 112 229 925
Emeas,20% 5.39 9.55 17.01 0.72 1.05 2.61 68.4 49.6 22.7 169 306 1425
Emeas,50% 4.13 8.13 13.72 0.56 0.87 2.19 94.4 67.7 35.4 225 592 1655

measurements. In terms of the accuracy, the proportion of
correctly estimated token paths could be increased by an
average of 26 percentage points. Even in case of the highest
noise of the model parameters within the validation setup,
a clear improvement can be seen in all three metrics.
As it was to be expected, there is a negative influence on
the estimation quality for increasing noise in the model
parameters. While the effect from noiseless (SNR∞ dB)
to SNR40 dB is hardly noticeable due to the logarithmic
scale of the signal-to-noise ratio, in the case of SNR10 dB
a significant deterioration is visible for all three metrics.
The computing time for one update is uninfluenced by the
signal-to-noise ratio, since the imprecision of the parame-
ters affects the estimation quality but not the number of
calculations per update step.
In comparison with the trivial case of a single measurement
(Emeas,1), it can be observed, that the estimation quality
is increased in all cases, so that the positive benefit of the
methodology seems reasonable.
The measured computing time appears tolerable for most
real-scenario online or real-time applications but depends
essentially on the complexity of the graph as well as the
number of measurements. Therefore, it must be investi-
gated in each individual case whether the particular real-
time requirements can be met.

5. CONCLUSION AND FUTURE WORK

In this paper, a novel method for combining a graph-based,
stochastic model of an arbitrary production process with a
recursive Bayesian estimation was elaborated with the aim
of estimating the transition times of objects between differ-
ent process steps, even if there is only partial information
about their temporal location available. It was shown, how
a single temporal measurement can be propagated due to
the proposed stochastic sojourn time graph. The proposed
method was validated with simulated data, covering dif-
ferent levels of graph complexity, a varying proportion of
measuring edges, and four distinct noise levels of the model
parameters.

The results have revealed that the method can improve
the transition time estimation with a recursive Bayesian
update compared to a static estimation. Also a real-time
application seems reasonable due to the measured com-
puting time.
Nevertheless, the examination in a real application case is
still pending and indispensable, since in the presented case
only simulated data were used and a benefit of the results
through the methodological proximity between simulation
method and estimation model cannot be excluded. More
than one assumption, however, results from simplifica-
tions, the validity of which should be validated in reality.
In addition, other more sophisticated Bayesian estima-
tion methods, such as the particle filter or an unscented
Kalman filter, should also be examined for the presented
problem.

REFERENCES
Ammour, R., Leclercq, E., Sanlaville, E., and Lefebvre,

D. (2016). Faults prognosis using partially observed
stochastic petri nets. In 2016 13th International Work-
shop on Discrete Event Systems (WODES), 472–477.
IEEE.

Ansari, I.S., Yilmaz, F., Alouini, M.S., and Kucur, O.
(2017). New results on the sum of gamma random
variates with application to the performance of wireless
communication systems over nakagami-m fading chan-
nels. Transactions on Emerging Telecommunications
Technologies, 28(1), e2912.

Bi, S., Prabhu, S., Cogan, S., and Atamturktur, S. (2017).
Uncertainty quantification metrics with varying statis-
tical information in model calibration and validation.
AIAA Journal, 3570–3583.

Chatterjee, S., Paladhi, S., Hore, S., and Dey, N. (2015).
Counting all possible simple paths using artificial cell
division mechanism for directed acyclic graphs. In
2015 2nd International Conference on Computing for
Sustainable Global Development (INDIACom), 1874–
1879. IEEE.

Coit, D.W. and Jin, T. (2000). Gamma distribution pa-
rameter estimation for field reliability data with missing
failure times. Iie Transactions, 32(12), 1161–1166.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11281



Crouse, D.F., Willett, P., Pattipati, K., and Svensson,
L. (2011). A look at gaussian mixture reduction algo-
rithms. In 14th International Conference on Information
Fusion, 1–8. IEEE.

Liewald, M., Karadogan, C., Lindemann, B., Jazdi, N.,
and Weyrich, M. (2018). On the tracking of individual
workpieces in hot forging plants. CIRP Journal of
Manufacturing Science and Technology, 22, 116–120.

Maier, A., Niggemann, O., Vodencarevic, A., Just, R., and
Jaeger, M. (2011). Anomaly detection in production
plants using timed automata. In 8th International
Conference on Informatics in Control, Automation and
Robotics (ICINCO), 363–369.

Maurer, I., Riva, M., Hansen, C., and Ortmaier, T. (2017).
Cloud-based plant and process monitoring based on a
modular and scalable data analytics infrastructure. In
Tagungsband des 2. Kongresses Montage Handhabung
Industrieroboter, 33–42. Springer.

Niggemann, O., Stein, B., Vodencarevic, A., Maier, A., and
Büning, H. (2012). Learning behavior models for hybrid
timed systems. In 26th AAAI Conference on Artificial
Intelligence (AAAI-12), 1083–1090.

Qiao, Y., Wu, N., Zhu, Q., and Bai, L. (2015). Cycle time
analysis of dual-arm cluster tools for wafer fabrication
processes with multiple wafer revisiting times. Comput-
ers & Operations Research, 53, 252–260.

Rahmati, A., Zhong, L., Hiltunen, M., and Jana, R.
(2007). Reliability techniques for rfid-based object
tracking applications. In 37th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Net-
works (DSN’07), 113–118. IEEE.

Răileanu, S., Anton, F., Borangiu, T., Anton, S., and Nico-
lae, M. (2018). A cloud-based manufacturing control
system with data integration from multiple autonomous
agents. Computers in Industry, 102, 50–61.

Ross, S.M., Kelly, J.J., Sullivan, R.J., Perry, W.J., Mercer,
D., Davis, R.M., Washburn, T.D., Sager, E.V., Boyce,
J.B., and Bristow, V.L. (1996). Stochastic processes,
volume 2. Wiley New York.

Runnalls, A.R. (2007). Kullback-leibler approach to
gaussian mixture reduction. IEEE Transactions on
Aerospace and Electronic Systems, 43(3), 989–999.

Särkkä, S. (2013). Bayesian filtering and smoothing,
volume 3. Cambridge University Press.

Shrouf, F. and Miragliotta, G. (2015). Energy manage-
ment based on internet of things: practices and frame-
work for adoption in production management. Journal
of Cleaner Production, 100, 235–246.

Sorenson, H.W. and Alspach, D.L. (1971). Recursive
bayesian estimation using gaussian sums. Automatica,
7(4), 465–479.

Sun, Y.N. and Jusko, W.J. (1998). Transit compartments
versus gamma distribution function to model signal
transduction processes in pharmacodynamics. Journal
of pharmaceutical sciences, 87(6), 732–737.

Tao, F., Qi, Q., Liu, A., and Kusiak, A. (2018). Data-
driven smart manufacturing. Journal of Manufacturing
Systems, 48, 157–169.

Vo, B.N. and Ma, W.K. (2006). The gaussian mixture
probability hypothesis density filter. IEEE Transactions
on signal processing, 54(11), 4091–4104.

Zumsande, J., Kortmann, K.P., Wielitzka, M., and Ort-
maier, T. (2019). Probabilistic simulation and deter-

mination of sojourn time distribution in manufacturing
processes. In 2019 IEEE International Conference on
Mechatronics and Automation (ICMA), 2094–2099.

Appendix A. PARAMETERIZATION OF
EXEMPLARY SSTG

Table A.1. Edge parameterization of the exem-
plary SSTG in Fig. 1

(i, j) pi,j µi,j σ2
i,j

(1, 2) 1.0 4.9 0.1
(2, 4) 0.6 2.1 0.2
(2, 5) 0.4 4.3 0.1
(3, 4) 1.0 3.2 0.1
(4, 6) 1.0 1.4 0.1
(5, 8) 1.0 1.0 0.1
(6, 7) 0.2 3.5 0.1
(6, 8) 0.8 1.9 0.1
(8, 9) 1.0 1.2 0.1

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11282


