
Towards an Open Toolchain for Fast
Nonlinear MPC for Serial Robots ?

Alejandro Astudillo ∗ Joris Gillis ∗ Wilm Decré ∗

Goele Pipeleers ∗ Jan Swevers ∗

∗MECO Research Team, Dept. of Mechanical Engineering, KU Leuven.
Flanders Make - DMMS-M, Leuven, Belgium.

(e-mail: {alejandro.astudillovigoya, joris.gillis, wilm.decre,
goele.pipeleers, jan.swevers}@kuleuven.be).

Abstract: This paper presents an open toolchain tailored for deployment of nonlinear model
predictive control for serial robots. The toolchain provides a direct workflow from problem
definition to solution deployment on a serial robot based on open-source software. Thus, we
provide an insightful selection of modules for rigid body dynamics, numerical optimization, and
robot control, and a strategy to make them cooperate in a way that is efficient in terms of
computation and engineering time. A detailed numerical study is presented for path-following
MPC on a 7-degrees-of-freedom robot, showing the efficiency and ease of use of the presented
toolchain while comparing its modules with other tools.

Keywords: Nonlinear model predictive control; Serial robots; Real-time optimization.

1. INTRODUCTION

Automated solutions with robots are of vital importance
in increasing quality, safety, competitiveness, and profit
margin within industrial processes. Modern industry
requires robots to execute autonomous tasks while being
easy to setup, safe to work with, and robust. This calls for
development of tools that simplify the workflow of robot-
based solution deployment, while ensuring satisfaction of
user-defined constraints.
Versatility and high workspace-to-robot-size ratio are very
important features of serial robots within industry. Such
robots consist of series of rigid links connected by joint
actuators, where the last link in the chain is called end-
effector. These robots usually perform repetitive tasks
which are either hard-coded or controlled by simple,
reactive controllers. Such controllers cannot respond well
to disturbances nor changes in the environment of the
robot.
Model predictive control (MPC) is an optimal control
technique which optimizes the performance of a system,
based on a defined criterion or objective. This optimization
contemplates the satisfaction of input and state constra-
ints. MPC for serial robots is an active research topic
since it can be used to actively control a robot accounting
for predicted nonlinear dynamics of robots and obstacles,
actuator limits, safety constraints, and a desired perfor-
mance objective. Although an extensive literature review,
see Verschueren et al. (2019), Janeček et al. (2017), Englert

? The authors would like to thank Flanders Make SBO MULTIROB:
”Rigorous approach for programming and optimal control of
multi-robot systems”, FWO project G0A6917N of the Research
Foundation - Flanders (FWO - Flanders), and KU Leuven-BOF
PFV/10/002 Centre of Excellence: Optimization in Engineering
(OPTEC) for supporting this research. Flanders Make is the Flemish
strategic research centre for the manufacturing industry.

et al. (2019), showed that there are multiple frameworks
for optimization and MPC, none of them is both tailored
for serial robots and simple to use. These frameworks
need the user to explicitly define system dynamics or
kinematics, system limits, the optimization problem to be
solve, as well as requiring the user to employ additional
software to deploy the solution.
In this work we propose a toolchain for nonlinear MPC
of serial robots, entirely based on open-source software.
The presented toolchain may be of great interest to
researchers, roboticists, and control engineers, even though
all theoretical concepts described in this paper are already
known. Its main advantage is that it eases the workflow
from problem definition to solution deployment in a
serial robot, requiring few user-inputs and using open-
source tools with computationally-efficient algorithms
while allowing a great deal of flexibility.
The remainder of the paper is structured as follows. First,
Section 2 introduces the type of optimization problems the
toolchain aims to solve and the algorithmic background
on which the solution is based. Next, the structure and
workflow of the toolchain are presented in Section 3.
Afterwards, Section 4 presents results and discussion of
a numerical example. We close the paper with concluding
remarks.

1.1 Notation

For a variable x ∈ Rnx , let us define ẋ ∈ Rnx as
its element-wise derivative with respect to time. For
a nonempty closed convex set W , we define operator
ΠW (v) = argminw∈W ||w − v|| as the projection onto
W , and operator distW (v) = infw∈W ||w− v|| as distance
from W . Overlined variables w define local variables in an
algorithm. Subindex ee represents the end-effector of the
robot.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9949

2. PRELIMINARIES

This section briefly discusses preliminary concepts and
algorithms on which the toolchain relies. We first describe
concepts on MPC and robot modeling, and then introduce
the algorithms used to solve optimization problems within
the toolchain.

2.1 Multiple shooting for optimal control

Continuous-time nonlinear dynamics can be described as
an ordinary differential equation ẋ = ξ(x, u, t), where
x ∈ Rnx is the system state vector, u ∈ Rnu is the system
input vector, and t is time. Continuous-time dynamics ξ
can be discretized by means of a explicit Runge-Kutta
integrator, which leads to the discrete-time system

xk+1 = ξd(xk, uk). (1)

The multiple shooting method, introduced by Bock and
Plitt (1984), divides the interval over which a function is
discretized in N ∈ N subintervals, based on a time grid
Tms := {tk : k ∈ (0, N)}. Therefore, by introducing
grid state variables (x0, x1, ..., xN) and input variables
(u0, u1, ..., uN−1), one can formulate independent dynamic
constraints on each grid point of Tms as in (1), leading to
a parallelizable set of dynamic constraints.

2.2 Model predictive control

Model predictive controllers allow controlling a nonlinear
system while optimizing its performance and satisfying
contraints by solving an optimal control problem (OCP)
at every sample time δt. When using multiple shooting to
define dynamic constraints, such OCP has the form of

minimize
w

VN (xN) +

N−1∑
k=0

V (xk, uk) (2a)

subject to x0 − p = 0nx , (2b)

xk+1 − ξd(xk, uk) = 0nx , (2c)

ζ(xk, lk) ∈ Z, (2d)

w ∈W, k ∈ [0, N − 1], (2e)

where N is the prediction horizon, {VN (xN), V (xk, uk)}
define a performance objective, p ∈ Rnx is a parameter
corresponding to the estimation of the current state vector,
lk are slack variables, ζ(xk, lk) are path constraints, Z is

a closed set, and w =
[
xT0 uT0 lT0 · · ·uTN−1 l

T
N−1 x

T
N

]T ∈
Rnw is the vector of decision variables belonging to the set
W := {w ∈ Rnw : wmin ≤ w ≤ wmax}. OCP (2) can be
represented in a compressed manner as

min
w

f(w, p) (3a)

s.t. g(w, p) ∈ C, (3b)

w ∈W, (3c)

where f(w, p) and g(w, p) are possibly-nonconvex smooth
functions, and C is a closed convex set.

2.3 Robot modeling

For serial robots with ndof degrees of freedom, the state
vector is usually defined as x = [qT , q̇T]T , where q, q̇ ∈
Rndof are robot-joint angular positions and velocities
respectively, while input vector is selected as u = τ , where

τ ∈ Rndof is the joint torque vector. Serial robots are
restricted by their kinematics, which for the j-th link of the
robot may be described by the position vector pj(q) ∈ R3

and the rotation matrix Rj(q) ∈ R3×3.

2.4 Proximal Averaged Newton-type method for Optimal
Control

Let us define the bound-constrained optimization problem

min
w ∈W

φ(w), (4)

with φ(w) being a possibly-nonconvex smooth function,
which may also depend on p. Problem (4) can be solved
by means of the projected gradient operator

wν+1 = Tγ(wν) := ΠW (wν − γ∇φ(wν)), (5)

for some parameter γ > 0 and current iteration ν. If
φ(w) is continuously differentiable, ∇φ(w) is Lipschitz-
continuous with Lipschitz-constant Lφ, and γ ∈ (0, 2

Lφ
),

then all accumulation points w∗ of the projected gradient
operator are also fixed points, i.e., w∗ is a zero of the fixed-
point residual operator

Rγ(w) := w − Tγ(w). (6)

The proximal averaged Newton-type method for optimal
control (PANOC) is a matrix-free line-search method
proposed in Stella et al. (2017) for iteratively solving
problem (4), up to some tolerance ε > 0, by using (5).
PANOC approximates, with superlinear convergence, a
solution w∗ of (4) that satisfies

||Rγ(w∗)||∞ < ε. (7)

The complete PANOC algorithm is shown in Algorithm 1.
PANOC uses a globalization technique where the forward-
backward envelope (FBE)

ϕγ(w) = φ(w)− γ

2
||∇φ(w)||2 +

1

2γ
dist2

W (w − γ∇φ(w)),

(8)
is used as a merit function. FBE is a real-valued and
continuous function which shares the same minima with
(4) if γ ∈ (0, 1

Lφ
). Thus, by solving the unconstrained

minimization of (8), the solution of (4) is obtained.
To speed-up convergence, the solution update in PANOC
combines averaged safe projected gradient updates from
(5) and fast quasi-Newtonian directions dν , so that

wν+1 = wν + %νd
ν + (1− %ν)γRγ(wν), (9)

where %ν is a weight parameter, and

dν = −HνRγ(wν). (10)

Hν is an invertible linear operator, which encodes first-
order information about Rγ and satisfies the invert secant
condition sν = Hν+1y

ν , with sν = wν+1 − wν and
yν = Rγ(wν+1) − Rγ(wν). Hν is calculated by means of
the L-BFGS method.
The average parameter %ν is chosen to be the largest
number in {1/2i : i ∈ N} such that

ϕγ(wν+1) ≤ ϕγ(wν)− σ||Rγ(wν)||2. (11)

In case the Lipschitz constant Lφ is not known in advance,
it can be evaluated with a backtracking procedure. The
interested reader is referred to Stella et al. (2017) for more
information on this procedure.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9950

Algorithm 1 PANOC Algorithm

Input: Initial guess w0 ∈ Rnw , Tolerance ε > 0, Max.
iterations νmax, Estimate Lφ > 0, Parameters γ ∈
(0, 1/Lφ), σ ∈ (0, γ2 (1− γLφ))
Output: Approximate solution w∗

for ν = 0, 1, ..., νmax do

Evaluate Tγ(wν) as in (5)
Update Rγ(wν) as in (6)
if (7) is satisfied, exit
Get dν from (10)
Get %ν satisfying (11)
Update solution candidate wv+1 as in (9)

2.5 Augmented Lagrangian Method

Since PANOC is only suitable for minimizing bound-
constrained optimization problems (4), more general
optimization problems as (3) must be cast into the
form of (4). This cast procedure is done by using the
Augmented Lagrangian method (ALM). ALM is able to
solve constrained optimization problems by performing an
outer iterative procedure which depends on the solution
of an inner optimization problem. ALM is shown in
Algorithm 2. The inner optimization problem casts problem
(3) into problem

min
w ∈W

φ(w, p, c, λ), (12)

where λ ∈ Rnλ is the vector of Lagrange multipliers, c > 0
is a penalty parameter, and

φ(w, p, c, λ) = f(w, p) +
c

2
dist2

C(g(w, p) + c−1λ). (13)

Problem (12) can be solved by PANOC.
The outer iterative procedure updates λ, c and the
inner problem tolerance ε. The update of the Lagrange
multipliers λ is done in two steps. At every outer iteration
ϑ, λϑ is projected into a compact set Λ ⊆ C∗ as

λϑ = ΠΛ(λϑ), (14)

and after getting an updated inner optimization problem
solution wϑ from PANOC, λϑ+1 is calculated according to

λν+1 = λϑ + c(g(wϑ)−ΠC(g(wϑ) + c−1λϑ)) (15)

The termination criteria of ALM algorithm depends on the
λ-update, so that the condition

||λϑ+1 − λϑ|| := zϑ+1 ≤ cδ, (16)

where δ is a user-defined tolerance, must be satisfied.
The penalty parameter c is updated only if there has not
been a sufficient decrease in z, defined by the used-defined
parameter θ, so that

zϑ+1 ≤ θzϑ. (17)

Then c is updated by a factor ρ > 1 so that

cϑ+1 = ρcϑ. (18)

Inner problem tolerance ε is updated by a factor β ∈ (0, 1)
and lower bounded by the user-defined parameter εmin, as

εϑ+1 = max{εmin, βεϑ}. (19)

3. METHODOLODY

This section describes the overall structure and workflow
of the toolchain. First part presents the motivation and
overview of the toolchain. Next, details on matters of
every tool composing the toolchain are given in the
corresponding subsections.

Algorithm 2 ALM Algorithm

Input: Parameters p ∈ Rnp , ρ > 1, β ∈ (0, 1), θ ∈ (0, 1),

Initial guess w0 ∈ Rnw and λ
0 ∈ Rnλ , Penalty c0 > 0,

Tolerances (ε0, εmin, δ) > 0, Max. outer iterations ϑmax.

Output: Approximate solution (w∗, λ
∗
)

for ϑ = 0, 1, ..., ϑmax do

Project λ
ϑ

as in (14)
Get wϑ by solving (12) with Algorithm 1

Get λ
ϑ+1

from (15)
if (16) is satisfied, exit
elseif (17) is not satisfied, update cϑ as in (18)
Get εϑ+1 from (19)

3.1 Toolchain Overview

This toolchain aims to determine a direct workflow from
problem description to deployment of a solution in the
framework of nonlinear MPC for serial robots. To the best
of the authors knowledge, there is currently no open tool-
chain which allows a user to easily deploy nonlinear MPC
controllers on serial robots, without having to explicitly
program most of the solution. This toolchain is composed
by several modules based on open source software. These
modules are CasADi, Pinocchio, Optimization Engine, and
Orocos, and are described in the following subsections.
These modules are currently supported by most Linux
distributions.
The user-inputs required by the toolchain are

(1) Problem-definition script: the user must input the
optimization problem (2) in which the MPC controller
is based, as well as the definition of the decision
variables vector w and set W . This is done in a
Python script by setting CasADi functions.

(2) Unified robot description format (URDF) file: it is
an XML-based, human-readable file that describes
geometric and parametric features of robots. These
features include, among others, mass, inertia, relative
position and orientation of every link, limits and type
of joints, and collision geometry. This file is commonly
delivered by robot vendors or can be created by the
user.

The structure of the toolchain is shown in Fig. 1.

Pinocchio
Interface

Pinocchio

Optimization
Engine

Orocos

URDF

Commands

 description
Robot outputs

Measured

Problem definition

Robot
functions and

limits

Generated

C-codeexpressions
CasADi

expressions
CasADi

Fig. 1. Overview of the open toolchain for nonlinear MPC
for serial robots.

3.2 CasADi

CasADi is a software framework for algorithmic differen-
tiation (AD) and numerical optimization built in C++,
with Python and MATLAB bindings. The core feature

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9951

of CasADi is to perform AD on expression graphs, see
Andersson et al. (2019). CasADi can import and export
these expressions and generate self-contained C code for
their efficient evaluation. CasADi allows for expressions
handling, differentiation, and code-generation in the whole
toolchain, as described later in this section.

3.3 Pinocchio

The toolchain relies on Pinocchio (Carpentier et al.
(2019)), for generating computationally-efficient dynamics
and kinematics functions for a serial robot described by
a URDF file. Pinocchio is a rigid-body-dynamics library
(RBDL) written in C++ and interfaced from Python.
It computes forward dynamics functions by using the
articulated body algorithm, while forward kinematics are
computed based on coordinate transformations obtained
from the spatial placements of each robot link. The
computational efficiency of these functions relies on the
sparsity handling with specific spatial operators for each
joint type, and the use of static polymorphism, according
to Carpentier et al. (2019).
We built an interface between CasADi and Pinocchio that
converts functions generated by Pinocchio into CasADi
expressions, which can then be exported to be used by
the following tool in the chain. In addition to these
expressions, the interface passes robot limits, retrieved
from the URDF, to the following tool. These limits may
include input limits τmin, τmax ∈ Rndof and joint limits
qmin, qmax, q̇min, q̇max ∈ Rndof , and are needed to define
W .

3.4 Optimization Engine

Optimization Engine is a nonconvex optimization frame-
work. This framework is implemented in Rust and can
be interfaced from Python and MATLAB, see Sopasakis
et al. (2020). It relies on Algorithm (1) and Algorithm (2)
for fast solution of nonconvex optimization problems with
low computation and memory requirements. The workflow
of Optimization Engine inside the toolchain is defined as
follows. First, problem-definition is set by the user by using
CasADi expressions, while robot expressions and limits
are retrieved from Pinocchio. Next, it uses CasADi to
cast the optimization problem into the form of (3). To
prepare the execution of Algorithm (2), CasADi constructs
and code-generate expressions for g(w, p), φ(w, p, c, λ),
and ∇φ(w, p, c, λ). Afterwards, Optimization Engine code-
generates and compiles the solution of the problem in Rust
with C bindings.

3.5 Open robot control software (Orocos)

The open robot control software (Orocos) is a robotics
control framework satisfying real-time execution cons-
traints, introduced in Bruyninckx (2001). Its real-time
toolkit (RTT) allows users to deploy easily configurable,
component-based control applications while satisfying
hard timing constraints. In the toolchain, Orocos receives
the code-generated solution of the problem from Optimi-
zation Engine and executes it inside a control component,
thus computing the control input u0 to be applied to
the robot. An interface component, capable of simulating

robot dynamics and interfacing the driver of a real robot,
sends the control input to the robot and reads measured
data from it. The measured data is then sent to the control
component, which updates parameter p and solves the
optimization problem again.

3.6 Parallelization

The use of multiple shooting as method to set dyna-
mics constraints (2c) along N subintervals tk ∈ Tms,
enables the possibility to evaluate the resulting N de-
coupled constraints in parallel, see Leineweber et al.
(2003). A decoupled objective function (2a) and path
constraints (2d) can also be evaluated in a parallel manner.
CasADi implements a map function, which instructs the
parallel evaluation of a expression by using the open multi-
processing (OpenMP) API. The map function is used in
the problem-definition script. Since forward dynamics of
serial robots are computationally expensive expressions,
parallelization of multiple shooting constraints represents
a major speed-up in the computation of nonlinear MPC for
such robots. This is demonstrated by means of a numerical
example shown in next section.

4. NUMERICAL EXAMPLE

In this section, we present a numerical example built by
using the toolchain presented in Section 3 and compare
its results with other state-of-the-art tools. This example
was executed on a desktop PC with Intel Core i9-9900X
processor, with up to 20 threads, and 16 GB RAM.

4.1 Problem Definition

We consider a 7-degrees-of-freedom Kinova Gen3 serial
robot performing a common task such as path following.
Path-following MPC aims to steer a robot from an initial
end-effector pose, described by {pee(q0),Ree(q0)}, along a
path described by a reference position vector pref (s) ∈
R3×1, reference rotation matrix Rref (s) ∈ R3×3, and
reference path velocity ṡref (s) ≥ 0, where s ∈ [0, 1] is the
path progress parameter. pref (s), Rref (s), and ṡref (s) are
known a priori.
In order to introduce path following into the MPC
formulation, we follow the approach described in Van
Duijkeren (2019). This approach introduces path-related
state vector χ = [s, ṡ]T ∈ R2, path-related input µ =
s̈ ∈ R, and path dynamics ξpath(χ, µ, t) corresponding
to a double integrator. Recall that x = [qT , q̇T]T and

u = τ . We consider augmented dynamics ˙̂x = ξ̂(x̂, û, t),

where x̂ =
[
xT χT

]T ∈ Rnx̂ , û =
[
uT µ

]T ∈ Rnû , and

ξ̂(x̂, û, t) =
[
ξ(x, u, t)T ξpath(χ, µ, t)T

]T
. The augmented

dynamics are discretized as

x̂k+1 = ξ̂d(x̂k, ûk), (20)

featuring the multiple shooting method with a sample
time δt = 2.5 ms. The path progression error is defined
as eṡ = ṡ − ṡref , while path constraints are defined by

epos = pee − pref , and erot = (R(n)
ref × R

(n)
ee + R(s)

ref ×
R(s)
ee +R(a)

ref ×R
(a)
ee)/2, where a rotation matrix is divided

in three column vectors as Rj =
[
R

(n)
j R

(s)
j R

(a)
j

]
. These

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9952

constraints are relaxed allowing the end-effector to deviate
from the path reference so that[

||epos(x̂k)||2
||erot(x̂k)||2

]
≤
[
ρ2
pos

ρ2
rot

]
+ lk, (21)

where ρpos, ρrot are maximum deviations allowed for
position and rotation errors respectively, and lk ∈ R2 is
a slack variable that further relaxes the path constraints.

The following optimization problem is considered for the
rest of the section

min
w

∥∥∥∥∥∥∥∥∥


q̇N

epos(x̂N)
erot(x̂N)
sN − 1
ṡN


∥∥∥∥∥∥∥∥∥

2

QN

+

N−1∑
k=1


∥∥∥∥∥∥∥∥∥


eṡ(x̂k)
epos(x̂k)
erot(x̂k)
x̂k
ûk


∥∥∥∥∥∥∥∥∥

2

Qm

+ Qllk


(22a)

s.t. x̂0 − p = 0nx , (22b)

(20), (22c)

(21), (22d)

w ∈W, k ∈ [0, N − 1], (22e)

where QN = diag(10−5 ∗ 17×1,16×1, 10−5, 10), Qm =
diag(10, 0.1 ∗ 16×1, 10−5 ∗ 124×1), and Ql = diag(10, 10)
are diagonal weighting matrices, N = 16, ndof = 7,
nx̂ = 2ndof + 2, nû = ndof + 1,

w =
[
x̂T0 ûT0 lT0 · · · ûTN−1 l

T
N−1 x̂

T
N

]T ∈ Rnw , (23)

nw = nx̂N + nû(N − 1) + 2(N − 1), and W is defined
by considering qmin ≤ qk ≤ qmax, q̇min ≤ q̇k ≤ q̇max,
0 ≤ sk ≤ 1, ṡ ≥ 0, τmin ≤ τk ≤ τmax, and lk ≥ 02×1.
Constraints (22c) are defined to be evaluated in parallel,
in up to Nc = 16 cores. Problem (22) is set as input
of the toolchain in a Python problem-definition script 1

described in Section 3.1.

4.2 Robot dynamics and kinematics

CasADi expressions for forward dynamics and forward
kinematics, as well as limits of the robot, are obtained
by using Pinocchio’s interface as shown in Section 3.3.
This tool receives the Kinova Gen3 URDF file 2 as input.
The resulting expressions are code-generated in C, and
compared in terms of evaluation time with those generated
with other RBDLs such as Robotran (Docquier et al.
(2013)), Spatial V2 (Featherstone (2012)), and Robotics
System Toolbox (RST) (Mathworks (2016)).

Pinocchio Robotran Spatial V2 RST
0.0

0.5

1.0

1.5

2.0

2.5

E
v
a
lu

a
ti
o
n
 t

im
e

(
 s

)

Forward dynamics

Forward kinematics

Fig. 2. Comparison of the time needed to evaluate dyna-
mics and kinematics CasADi expressions generated
with four RBDL.

1 Available on https://git.io/JeoJT
2 Available on https://github.com/Kinovarobotics/ros kortex

As shown in Fig. 2, the evaluation time of the resulting dy-
namics expressions from Pinocchio’s interface are among
the lowest, only comparable with that from Robotran.
However, Robotran requires the user to manually build a
model of the robot, which is a more complex process than
the one using a URDF file. Evaluation times of kinematics
expressions, on the other side, are similar for every tested
RBDL.

4.3 Solution generation and deployment

Once problem-definition and robot expressions are set, a
solution is code-generated with Optimization Engine, as
described in Section 3.4. The generated C-code is then
executed by the Orocos control component, while the
interface component simulates the dynamics of the robot.
The actual path followed by the end-effector of the Kinova
Gen3 robot during the simulated test is shown in Fig. 3.

y(m) x(m)

z
(m

)

Fig. 3. Result of the path followed by the end-effector
compared with the reference path.

Fig. 4 shows the evolution of error norms {|eṡ|, ||epos||,
||erot||} along the path parameter s ∈ [0, 1]. Position and
orientation of the end-effector are allowed to deviate from
the reference up to ρpos = ρrot = 0.01 while satisfying
constraint (22d). Also, since |eṡ| is heavily penalized in
the objective (22a), its value is kept low.

s

Fig. 4. Evolution of position, rotation, and path progre-
ssion error norms.

We also compare the time needed to solve problem
(22) in one time-step, including function evaluations, by
using the presented toolchain (with no parallelization of
constraint (22c), Nc = 1), with the one using a common
approach such as the sequential quadratic programming
(SQP) method with the real-time iteration (RTI) scheme.
Also, the SQP approach is solved with three state-of-the-
art quadratic program (QP) solvers: QRQP (Andersson
and Rawlings (2018)), OSQP (Stellato et al. (2018)) and
HPIPM (Verschueren et al. (2019)). It is worth mentioning
that with our toolchain, problem (22) is completely
solved up to the defined tolerance ε = 10−4, while the
SQP method with RTI returns a suboptimal solution
after truncating its algorithm when solving just one QP
subproblem. This comparison is shown in Table 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9953

Table 1. Average solution time of problem (22)
with Nc = 1: measured and estimated(*)

Solver
Solution

time
Function

evaluation time
QP solver

time

Toolchain 4.613 ms - -
SQP-QRQP 4.692 ms 2.133 ms 2.559 ms
SQP-OSQP 4.720 ms 2.133 ms* 2.587 ms

SQP-HPIPM 6.376 ms 2.133 ms* 4.243 ms

As shown in Table 1, solution time of problem (22) with
this toolchain is comparable to that by using the fastest
solver in SQP method, when using one core.
Now, in Fig. 5, we evaluate the toolchain and SQP-
QRQP in terms of solution time of problem (22), while
parallelizing (22a), (22c) and (22d) in up to Nc = 16 cores.

1 2 4 8 16
Number of cores

0

1

2

3

4

5

S
o
lu

ti
o
n
 t

im
e

(m
s)

Toolchain

SQP-QRQP

Fig. 5. Comparison of the evaluation time needed to solve
problem (22) with the proposed toolchain and SQP-
QRQP.

The solution time achieved with the presented toolchain is
lower than the one achieved using SQP-QRQP for all tests
using Nc ≥ 2 cores to parallelize the evaluation of multiple
shooting constraints. The greatest difference between the
toolchain and SQP-QRQP in terms of solution time is
obtained when using Nc = 8 cores, where the solution
with the toolchain is 2.25 times faster than that with SQP-
QRQP. Also, the greatest speed-up due to parallelization
is achieved with Nc = 8 cores, having a speed-up of 3.07x
with respect to implementation with Nc = 1 core. The
results obtained while usingNc = 16 cores do not represent
a speed-up regarding those using Nc = 8 cores due to
overhead in multicore communication with OpenMP.
Two remarks are made regarding these results. Firstly,
the path velocity reference ṡref defined for this test is
small in magnitude since solution of problem (22) is not
converging within ϑmax iterations for ṡref > 0.2, while
it does converge to a suboptimal solution by using the
SQP method for ṡref > 0.2. Secondly, the initial guess
{w0, λ0} passed to both Algorithm (2) and SQP method,
is computed a priori by solving problem (22) for a previous
time-step and parameter p, with the interior point method
solver IPOPT.

5. CONCLUSION

In this paper we presented an open toolchain that has
several advantages to existing MPC and optimization
frameworks regarding its use on nonlinear MPC for
serial robots. The modules composing the toolchain were
described and their objective within the toolchain was
detailed. This toolchain is able to generate and deploy C
code for nonlinear MPC solution based on a URDF file

describing the robot, and a problem-definition script where
the user sets the objective and constraints that the solution
must consider. It also showed that evaluating multiple
shooting constraints in parallel leads to a practical speed-
up of up to 3.07x in terms of evaluation time of the
solution.
Future work will aim to develop a core module for the tool-
chain, which should be able to interface multiple numerical
optimization solvers, including Optimization Engine, to
widen the scope of the toolchain. We will then validate
the toolchain with a real robot application.

REFERENCES

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., and Diehl, M.
(2019). CasADi: a software framework for nonlinear optimization
and optimal control. Mathematical Programming Computation,
11(1), 1–36.

Andersson, J.A. and Rawlings, J.B. (2018). Sensitivity Analysis for
Nonlinear Programming in CasADi. IFAC-PapersOnLine, 51(20),
331–336.

Bock, H. and Plitt, K. (1984). A Multiple Shooting Algorithm for
Direct Solution of Optimal Control Problems. IFAC Proceedings
Volumes, 17(2), 1603–1608.

Bruyninckx, H. (2001). Open robot control software: the OROCOS
project. In Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation, volume 3, 2523–2528.
IEEE.

Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux,
F., Stasse, O., and Mansard, N. (2019). The Pinocchio C++
library : A fast and flexible implementation of rigid body dynamics
algorithms and their analytical derivatives. In 2019 IEEE/SICE
International Symposium on System Integration (SII), 614–619.
IEEE.

Docquier, N., Poncelet, A., and Fisette, P. (2013). ROBOTRAN:
A powerful symbolic gnerator of multibody models. Mechanical
Sciences, 4(1), 199–219.

Englert, T., Völz, A., Mesmer, F., Rhein, S., and Graichen, K. (2019).
A software framework for embedded nonlinear model predictive
control using a gradient-based augmented Lagrangian approach
(GRAMPC). Optimization and Engineering, 20(3), 769–809.

Featherstone, R. (2012). Spatial Vector and Rigid-Body Dynamics
Software. URL https://cutt.ly/spatial v2.

Janeček, F., Klaučo, M., Kalúz, M., and Kvasnica, M. (2017).
OPTIPLAN: A Matlab Toolbox for Model Predictive Control with
Obstacle Avoidance. IFAC-PapersOnLine, 50(1), 531–536.

Leineweber, D.B., Bauer, I., Bock, H.G., and Schlöder, J.P. (2003).
An efficient multiple shooting based reduced SQP strategy for
large-scale dynamic process optimization. Part 1: theoretical
aspects. Computers & Chemical Engineering, 27(2), 157–166.

Mathworks (2016). Robotics System Toolbox. URL
https://cutt.ly/rst-matlab.

Sopasakis, P., Fresk, E., and Patrinos, P. (2020). OpEn: Code
Generation for Embedded Nonconvex Optimization. In 21st IFAC
World Congress. Berlin, Germany.

Stella, L., Themelis, A., Sopasakis, P., and Patrinos, P. (2017).
A simple and efficient algorithm for nonlinear model predictive
control. In 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), 1939–1944. IEEE.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd,
S. (2018). OSQP: An Operator Splitting Solver for Quadratic
Programs. 2018 UKACC 12th International Conference on
Control, CONTROL 2018, 339.

Van Duijkeren, N. (2019). Online Motion Control in Virtual
Corridors - For Fast Robotic Systems. Ph.D. thesis, KU Leuven.

Verschueren, R., Frison, G., Kouzoupis, D., van Duijkeren, N.,
Zanelli, A., Novoselnik, B., Frey, J., Albin, T., Quirynen, R., and
Diehl, M. (2019). acados: a modular open-source framework for
fast embedded optimal control.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9954

