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Abstract: The increase in the renewable energy sources connected to the electricity grid has
resulted in an increased need for frequency regulation. On the demand side, frequency regulation
services can be provided by electrified heating/cooling systems exploiting the energy stored in
thermal mass of buildings. To provide such services a first principles model of the building is
needed, which is often difficult to obtain in practice. This issue can be overcome by using a buffer
storage between the heating/cooling source and the building. Here, we present a solution based
on robust optimization to offer frequency regulation reserves with such a system comprising a
heat pump, a thermal storage in the form of a warm water buffer tank, and heating demand
from a building that needs to be served. We mitigate the problem of limited thermal storage by
introducing affine policies on uncertain variables. In three experiments with a real heat pump
and warm water buffer storage and an emulated heating demand, we demonstrate that the
system can indeed offer reserves and can successfully track a regulation signal while meeting
the heating demand at all times.

Keywords: Frequency reserves, Robust Model Predictive Control, Frequency regulation,
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1. INTRODUCTION

With an increasing amount of renewable energy sources
connected to the electricity grid, the need for frequency
regulation increases. Besides regulation on the supply side,
for example with fast-reacting gas power plants, there is
increasing interest in regulation on the consumer side. This
concept is commonly referred to as demand-side manage-
ment. Buildings quipped with electric heating or cooling
systems are candidates for demand-side management: they
can influence the frequency in the grid as they run on grid
electricity and they have flexibility on the generation of
heating or cooling energy due to the thermal inertia of the
building (Fischer and Madani, 2017).

Zhang et al. (2017) and Vrettos et al. (2016) investigate
control schemes based on Robust Model Predictive Control
(MPC) to provide day-ahead reserves for frequency regula-
tion with commercial buildings and electrified heating and
cooling systems. In (Vrettos et al., 2018b,a) this concept
was adapted and successfully tested on a real case study of
a single small building equipped with a chiller. A potential
drawback of this approach is the need for a first-principles
model of the thermal dynamics of the building. Some au-
thors argue that the costs associated with the development
and maintenance of such models might be prohibitive for
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wide-spread commercial application of MPC in buildings
(Sturzenegger et al., 2016; Jain et al., 2018).

This issue could be overcome by decoupling the ther-
mal demand of the building and the supply of the heat-
ing/cooling system with a thermal buffer storage, for ex-
ample a warm water tank. In this case, the buffer stor-
age gives rise to the flexibility in heating/cooling energy
production instead of the building itself. The electrified
heater/cooler and storage are modelled with first princi-
ples, while the demand of the building can be modelled
with any forecasting technique (for example (Bünning
et al., 2020)).

Here, we adapt the robust MPC approach of Vrettos et al.
(2018b) to a system with a ground source heat pump and
a warm water tank, which supply heat for a building.
We overcome the problem of the low storage capacity of
a buffer compared to the thermal capacity of a building
by introducing affine policies, as proposed by Warrington
et al. (2012) for reserve operation on power systems. In
experiments with a real heat pump and buffer tank and an
emulated heating demand, we demonstrate that the heat
pump successfully follows a frequency regulation signal
and that the water temperature in the buffer tank stays
sufficiently warm to serve the building heating demand at
all times.

The remainder of the article is structured as follows. In
Section 2 we describe the reserve scheme, the device set up
under consideration and introduce the control scheme. In
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Fig. 1. Schematic of the heating system with heat pump,
water storage tank and heat exchanger

Section 3 we present the case study and the particular set
up of the controllers. In Section 4 we present and discuss
the experimental results. In Section 5 we conclude the
article.

2. METHODOLOGY

2.1 Reserve scheme

In this study we assume a reserve scheme inspired by the
US frequency regulation market. At midnight, the reserve
provider makes a reserve offer r ∈ R96 of symmetric
reserves in 15-minute intervals for the next 24 hours to
the Transmission System Operator (TSO). During the
execution phase, the reserve provider can update their base
load u0

k every timestep k (every 15 minutes). It then has
to follow the load

uk(τ) = u0
k + w(τ)rk, (1)

with w(τ) ∈ [−1, 1] denoting the regulation signal which
is send by the TSO every 2 seconds and rk denoting the
kth element of r. As u0

k and rk are constant for 15 minutes
and w(τ) is updated every 2 seconds, uk(τ) also changes
every 2 seconds.

2.2 Heating system

Figure 1 shows a schematic of the heating system under
consideration. The heat pump, depicted on the left, uses
ambient heat and electricity u(t) to generate heat at a
higher temperature level uth(t), where t denotes contin-
uous time. The conversion efficiency is described by the
coefficient of performance αCOP:

uth(t) = αCOP u(t) + e. (2)

Here, e denotes an error caused by the assumption of a
constant COP. Instead of modelling dependencies of e (for
example on the ambient temperature) explicitly, they will
be modelled by an uncertainty set in the following. Note
that equation (2) is valid for any u and uth, thus also for
uk(τ) and the corresponding uk,th(τ). The storage tank
in the middle is charged by pumping warm water from
the outlet of the heat pump to the top of the tank. Is is
discharged by pumping water from the top through the
heat exchanger, which serves the heating demand of the
building v(t). The average temperature in the storage tank
x(t) can be described by the differential equation

m cp
dx(t)

dt
= uth(t)− v(t) + δ, (3)
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Fig. 2. Control scheme

where m denotes the mass, and cp denotes the specific heat
capacity of the water, and δ denotes the error between the
actual and the forecast heating demand of the building.
Thermal losses are neglected here.

2.3 Control scheme

We use a 3-level control approach, as presented by Vrettos
et al. (2018a) and indicated in Figure 2. Level 1 is a robust
optimization scheme which is run once per day at midnight
to determine the offered reserves r in 15 minute intervals,
rk. Level 2 is the same optimization scheme which is
run at the beginning of each 15 minute interval, k, in a
shrinking horizon MPC fashion to determine the nominal
heat pump electrical set points u0

k held constant during the
entire duration of the 15 minute interval; in this calculation
the values of the reserves rj for j ≥ k are known. Level
3 is a feedback controller that controls the heat pump’s
compressor speed to track uk(τ) = u0

k + w(τ)rk.

For Level 1, equation (3) can be written in discrete linear
state space form as

xk+1 = Ãxk + B̃(uk − vk). (4)

Following a similar approach to Warrington et al. (2012),
by redefining x := [x1, ..., xN ]> ∈ RN , u := [u1, ..., uN ]> ∈
RN , v := [v1, ..., vN ]> ∈ RN the state trajectory for
horizon N can be described by

x = Ax0 +B(u− v), (5)

where

A :=


Ã

Ã2

...

ÃN

 B :=


B̃ 0 · · · 0

ÃB̃ B̃
. . . 0

...
. . .

. . .
...

ÃN−1B̃ · · · ÃB̃ B̃

 , (6)

and x0 denotes the initial system state. The robust opti-
mization problem can be formulated as

min
r,u0,z

f el>u0 − fr>r + λ>ε (7a)

subject to x = Ax0 +B(uth − v + δ + e), (7b)

uth = αCOP(u0 + w � r), (7c)

Xmin − ε ≤ x ≤ Xmax + ε, (7d)

zUmin ≤ u0 + w � r ≤ zUmax, (7e)

z ∈ ZN2 , (7f)

ε ≥ 0, (7g)

∀w ∈W, ∀δ ∈ ∆,∀e ∈ E, (7h)
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Fig. 3. Experimental set-up with heat pump, water storage
tanks and heat exchanger

where f el denotes costs for electricity, fr denotes payments
received for offered reserves, Xmin and Xmax denote lower
and upper temperature limits for the storage tank (defined
by minimum operating temperature for floor heating and
maximum supply temperature of the heat pump), ε ∈ RN
is a slack variable to ensure feasibility and λ the associated
cost, Umin and Umax denote lower and upper limits on the
electrical power of the heat pump, z is a binary variable
that determines whether the heat pump is on or off and �
denotes the operator for element-wise multiplication. The
constraints have to hold for all uncertainty realizations
w ∈W, δ ∈ ∆, e ∈ E, where the elements of w, δ and e are
box-constrained. The robust counterpart of this problem
is a Mixed Integer Linear Program (MILP).

For large B̃, low Xmax or high Xmin (low storage capacity)
and large uncertainty in W , ∆, and E, the offered reserves
r become small or the problem becomes infeasible (if no
slack variables are used) because the uncertainty on x
builds up over the prediction horizon, making it difficult
to guarantee constraint (7d). To alleviate this problem, we
introduce a causal policy that allows the system to react
to uncertainties that will have been revealed at the time
the decision is implemented, though they are still unknown
at the time the optimization is performed. As optimizing
over the set of all possible policies is intractable, we focus
on affine policies, as discussed in (Warrington et al., 2012).
In the case of uncertainties stemming from the regulation
signal w for example, equation (7c) can be changed to

uth = αCOP(u0 + w � r +Dww), (8)

with Dw ∈ RNxN being a strictly lower triangular matrix:

Dw :=


0 0 · · · 0

[Dw]2,0 0
. . . 0

...
. . .

. . . 0
[Dw]N,0 · · · [Dw]N,N−1 0

 . (9)

The entries of Dw become decision variables in the opti-
mization problem. Policies on uncertain variables δ and e
can be defined accordingly and can be merged into one
matrix, as δ and e appear in the same way in (7b).

To further reduce uncertainty, limits on the integral of
w(t) can be formulated by analysing historical regulation
signals (see (Vrettos et al., 2018a)). The uncertainty set
can therefore be shrunk to W̄ ⊂ W for constraint (7c),
but not for constraint (7e), as the instantaneous electrical

power of the heat pump still needs to be within operational
limits.

The resulting optimization problem is

min
r,u0,z,Dw,Dδ,e,ε

f el>u0 − fr>r + λ>ε (10a)

subject to x = Ax0 +B(uth − v + δ + e), (10b)

uth = αCOP(u0 + w̄ � r
+Dww̄ +Dδ,e(δ + e)), (10c)

Xmin − ε ≤ x ≤ Xmax + ε, (10d)

zUmin ≤ u0 + w � r +Dww̄

+Dδ,e(δ + e) ≤ zUmax, (10e)

z ∈ ZN2 , (10f)

ε ≥ 0, (10g)

[Dw]i,j = 0 ∀j ≥ i, (10h)

[Dδ,e]i,j = 0 ∀j ≥ i, (10i)

∀w ∈W, ∀w̄ ∈ W̄ ,∀δ ∈ ∆,∀e ∈ E.
(10j)

The constraint regarding lower and upper heat pump
capacity limit, now (10e), of course has to be adapted
to ensure feasibility under the chosen policies. For this,
[Dw]i,j and [Dδ,e]i,j have to be zero whenever the on/off
condition zk is zero too.

Controller Level 2 is a shrinking horizon MPC scheme
that also uses optimization problem (10). However, r is
now fixed (and with it all elements of z for which the
corresponding element in r is non-zero). The purpose of
Level 2 is to potentially change u0 depending on changed
initial conditions x0 or updated forecasts on v.

Controller Level 3 is a PI controller for tracking equation
(1). The control input is the set point for the relative
compressor speed of the heat pump nset. The measured
output is the electrical consumption of the heat pump.
Clamping is used for anti-windup when the heat pump
operates at speed limits. Moreover, as heat pumps often
have ramping constraints, integration is stopped if the
difference between nset and the measured compressor
speed exceeds a threshold.

3. CASE STUDY

We test the reserve scheme in experiments on a system
comprising a real compressor heat pump and water tank.
We conducted three different experiments with an em-
ulated heating demand, a horizon of 2 hours and the
regulation signal RegD by PJM. 1

3.1 Devices and heat demand emulation

Figure 3 shows the devices used. The heat pump is the
two-compressor model WP-WW-2NES 20.F4-2-1-S-P100
produced by Viessmann with a maximum thermal capacity
of 100 kW. It is fed by ground source heat from a borehole

1 RegD is the faster regulation signal (compared to RegA) which is
provided by PJM, a transmission system operator at the east coast
of the USA.
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Fig. 4. Emulated heating demand

field. We only use the first compressor stage. The storage
consists of two 1100 litre Matica water tanks connected in
series.

The right picture shows the heat exchanger that is used
for heating demand emulation. It has a maximum thermal
capacity of 80 kW. The rejected heat is dumped back
into the borehole field. To avoid feedback effects, the
experiment time is limited to 2 hours. 2 The heat demand
profile that was used during experiment 1 is shown in
Figure 4. It is an example of the real measured (and
discretized) demand from the NEST building at Empa,
Switzerland, which shows typical variations of demand in
time. For experiments 2 and 3, the demand was scaled by
factors 1.3 and 1.8 respectively.

3.2 Controller set up

The parameters that are used for controller levels 1 and 2
are shown in Table 1. αCOP, Umin, Umax were determined
in preliminary experiments with the heat pump, as well
as E, which is a product of the range of COP and the
maximum capacity. W is a property of the regulation
signal used (RegD by PJM, shown in Figure 5). The
same holds for W̄ , which was determined by Vrettos et al.
(2018a) through analysis of historical RegD signals. Ã and

B̃ were determined from the physical properties of the
storage tank under the assumption of negligible thermal
losses. ∆ is an approximation of the tracking accuracy of
the heating demand emulation. x0 is initialized by taking
a weighted average of six temperature measurements from
different water layers in the storage tanks.

For the feedback controller in level 3, the proportional gain
kp = 2.0 and integral gain ki = 0.4 were determined by
pre-tuning on a first-order representation of the heat pump
in Simulink R© and manual adjustments after transferring
the controller to the actual plant. The controller output
limits of nset (relative compressor speed) are 20% and
50% 3 . The maximum allowed difference between nset and
the measured speed was set to 2% before anti-windup
activates. The sampling time is 500 milliseconds.

The optimization problems for level 1 and 2 were formu-
lated using Matlab R© with YALMIP (Löfberg, 2012), which
automatically derives robust counterparts, and solved us-
ing CPLEX (v.12.9). Level 3 was implemented in Python
3. Communication between Matlab and Python was set up
through shared csv files. The communication with sensors
and actuators of the devices is done via a Python OPC-UA
client.
2 For longer experiments, the temperature of the ground around the
boreholes rises such that the supply temperature for the heat pump
is affected. As a result, the COP rises.
3 The heat pump is a two stage model where the second compressor
is started if the relative speed exceeds 50%.

Table 1. Parameters for controller level 1 and
2

general heat pump storage

N = 8, αCOP = 3.45, Ã = 1,

λ = 5, E = [−3, 3] kW , B̃ = 0.0978 K
kW ,

fel = 1, W = [−1, 1], Xmin = 28◦C,

fr = 1.2 W̄ = [−0.25, 0.25], Xmax = 38◦C,

Umin = 8.2kW , ∆ = [−2.5, 2.5] kW

Umax = 12.8kW

4. RESULTS AND DISCUSSION

4.1 Experiments

Figure 5 shows results of the first experiment. The first
graph shows the possible range of the electrical power of
the heat pump depending on the set point u0 and the
offered reserves r in dotted red. The orange line shows the
combination of these two variables with the regulation sig-
nal (depicted in the third graph), as described in equation
(1), which defines the set point for the electrical power of
the heat pump. The blue line shows the actual electrical
power of the heat pump.

The first thing to note is that level 1 offered reserves of
varying size in periods 1 (2.3 kW), 2 (0.8 kW), 3 (2.3
kW), 7 (2.3 kW) and 8 (2.3 kW). The cost function of
level 1 is 16% lower compared to the solution of problem
(10) without affine policies. The sum of offered reserves
is 21% higher. During the reserve periods, the regulation
signal is tracked generally very well. In period 4, the heat
pump operates at a constant set point, in periods 5 and 6
it is switched off. At the end of period 6, it can be noted
that the heat pump is switched on five minutes before
the next regulation period starts. This is done as the heat
pump takes several minutes before being fully operational
after starting. It ensures that the regulation signal can be
tracked at the beginning of the next period.

The third graph shows the tracking error in detail during
periods where reserves were offered. It can be seen that the
error becomes large where high gradients in the set point
are present for an extended period of time (e.g middle
of period 1, beginning of period 2, middle of period 7).
This is due to the compressor’s ramping limit. However,
the tracking performance is more than sufficient to op-
erate as a reserves provider for PJM. PJM benchmarks
reserve providers with an hourly performance score for
accuracy, delay and precision. Averaged, these scores give
rise to a composite score. For the presented experiment,
the individual scores for hour 1 and hour 2 are 0.9628,
0.9999, 0.8318 and 0.9656, 1.0000, 0.8369 respectively. The
composite scores are 0.9315 and 0.9341 respectively. The
minimum requirement is a composite score of 0.75. (For
more details on the scoring, please refer to (PJM, 2019)).

Besides being able to track the regulation signal, the
control approach needs to ensure that the heating demand
can be met at all times. The last graph of Figure 5 shows
the average tank temperature in black, the temperature
constraints in dotted black and the measurements at
different heights of the storage tanks transparent in the
background. It can be seen that the average temperature
is between the constraints and all individual temperatures
are between 36◦C and 28◦C at all times, which is sufficient
for meeting the heating demand.
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Fig. 5. Results of first experiment. First plot: possible set points according to offered reserves in dotted red, set point for
electrical capacity in orange, actual electrical capacity in blue. Second plot: tracking error. Third plot: regulation
signal. Fourth plot: temperatures of layers in water tank in different colours.

As discussed in Section 3, the experiment was re-
peated with different heating demands (scaled by 1.3
and 1.8). The results for tracking performance and stor-
age temperature are shown in Figures 6 and 7. The
offered reserves are [0,0,1.4,2.3,1.4,2.3,2.3,2.1] kW and
[2.3,0.1,0.7,0.7,0.7,2.0,2.3,2.3] kW for experiments 2 and
3 respectively. Compared to the level 1 solution without
affine policies, the cost functions decrease by 3% and 13%
respectively. The sum of reserves is slightly decreased by
2% in experiment 2 but increased by 102% in experiment 3
compared to when no recourse is used. The approach with
affine policies would further benefit from longer prediction
horizons, as the build up of uncertainties in the case where
no affine policies are used, is not as prominent for N=8
(compared to N=96).

The tracking performance is satisfactory in both exper-
iments. Moreover, the average storage temperature stays
within limits in both experiments. The performance scores
of all three experiments are shown in Table 2. The lower
precision performance in hour 1 of the third experiment
can be explained by the small value of offered reserves
(0.1 kW) in the second reserve period. This leads to a high
relative tracking error. The problem could be omitted by
imposing a lower constraint on r. However, as the scores
are well above the limit of 0.75, this would be optional.
Generally, the good scores could also be used to tune the
feedback controller in level 3 to be less aggressive. While
this would lower the performance scores, it would lessen
the mechanical stress on the compressor of the heat pump.

Table 2. PJM performance scores for all exper-
iments

score: accuracy delay precision composite

hour: 1 2 1 2 1 2 1 2

exp 1 0.96 0.97 1.00 1.00 0.83 0.84 0.93 0.93

exp 2 0.89 0.97 1.00 1.00 0.80 0.81 0.90 0.93

exp 3 0.80 0.96 1.00 1.00 0.69 0.82 0.83 0.93

5. CONCLUSION

By using a buffer storage between an electrified heat-
ing/cooling source and a building, frequency regulation
reserves can be provided without the need for a first-
principles model of the building. In this study, we have
shown a control approach based on robust optimization to
control such a system. We have introduced affine policies
on uncertain variables to overcome the problem of low stor-
age capacity of a buffer tank compared to the thermal mass
of a building. In three experiments with a real heat pump,
real water storage and an emulated heating demand, we
have demonstrated that the approach can offer reserves,
track a regulation signal with sufficient accuracy and meet
the energy demand at all times. Ongoing research focusses
on combining the approach with demand forecasting to
conduct experiments with a real heating demand of a
building and a full prediction horizon of one day.
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Fig. 6. Results of second experiment
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Fig. 7. Results of third experiment
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