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Abstract: This paper concerns adaptive sliding-mode control for wearable robots with a
human in the loop. The exoskeletons are wearable robots in interaction with different users.
The proposed approach supposes that the dynamic model of the exoskeleton-human system is
unknown except for some classical bounded properties. The controller guarantees the closed-
loop convergence with an embedded-in estimation of unknown dynamics and uncertainties. The
stability analysis of the system is demonstrated using the Lyapunov theory. Experimentation
on an upper arm exoskeleton was conducted in order to exhibit the effectiveness of the proposed
control method. The results show good tracking of the desired trajectories, which can be used
in the assistive phase of the functional rehabilitation.
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1. INTRODUCTION

Since a decade, exoskeletons or wearable robots continue to
attract academia and industry interest, with different ap-
plication domains. In the medical domain, exoskeletons are
expected to deliver more effective rehabilitation therapies
(Burger, 2000). The challenge is to provide appropriate
assistance for patients with disabilities and the elderly not
only in hospitals but also in their own homes. However,
given the complexity of the exoskeleton as an electrome-
chanical system, one of the research problem concerns the
control system design, taking into account the safety of the
wearer. Human-exoskeleton interactions lead to different
challenging problems for the control design as the dynamic
of the user’s limb is practically unknown and varies from
one user to another. The robustness of the exoskeleton
controller plays a significant role to obtain satisfactory
performances. The designed controller must be robust
against dynamic changes, external disturbances and the
state of the exoskeleton wearer. Several control strategies
for exoskeletons have been proposed in the literature, as for
instance: Adaptive control (Pehlivan et al., 2016), Fuzzy
and backstepping control (Chen et al., 2017), Admittance
control (Culmer et al., 2010), Impedance control and re-
inforcement learning (Li et al., 2017) and EMG-based
control (Loconsole et al., 2014). A recent review on control
strategies for upper limb exoskeletons can be found in
(Proietti et al., 2016).

The Sliding Mode (SM) control is a robust technique for
the control of systems with uncertainties and bounded
disturbances (Yuri et al., 2014). Conventional SMC uses
linear sliding surface which can only achieve asymptotic
stability of the system during the sliding mode phase (Per-
ruquetti and Barbot, 2002). More advanced techniques

such as Terminal SM (TSM) control have been proposed
in order to guarantee finite time convergence to zero of
the tracking error (Zhihong et al., 1994). The Fast TSM
(FTSM) surface has been introduced to further reduce
the finite-settling-time (Madani et al., 2014). The TSM
and FTSM techniques use fractional power in sliding sur-
face that may lead to singularities. A Nonsingular TSM
(NTSM) control has been proposed to overcome the sin-
gularity problem (Madani et al., 2016). An Integral TSM
(ITSM) control has been proposed to completely eliminate
singularities (Riani et al., 2018).

In this paper, a new adaptive ITSM controller is pro-
posed for exoskeletons in order to perform passive move-
ments. The main objective is to compute the torques of
the wearable robot with fast time convergence towards
the desired joint positions and velocities. The proposed
sliding mode control is completely free of singularity, a
well known phenomenon in the TSM control. The human
and wearable-robot are seen as an unknown global in-
terconnected system. An adaptive method is proposed to
guarantee the convergence with embedded-in estimation of
the unknown dynamics and uncertainties of the system. To
validate the proposed scheme, experiments are carried out
with a healthy subject using an upper limb exoskeleton
to perform trajectories that correspond to passive arm
movements.

The paper is organized as follows: In second II, the descrip-
tion of the considered dynamic model is presented. Section
III describes the development of the proposed approach.
Section IV constitutes the analysis of performing passive
movements with the implementation of the proposed con-
troller for an upper limb exoskeleton. The last section is
the conclusion of this work.
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2. DYNAMIC MODEL

Consider an n-link exoskeleton-human system with pivot
joints governed by the following dynamic model described
by the Lagrange-Euler equation:

M(q) q̈ + C(q, q̇) q̇ +H(q, q̇) = u+ τhum + τext, (1)

where
H(q, q̇) = G(q) + F (q̇), (2)

with q = q(t) ∈ Rn denoting the joint position, q̇ =
d
dtq(t) ∈ Rn the joint velocity, q̈ = d2

dt2 q(t) ∈ Rn the

joint acceleration, M(q) = MT (q) ∈ Rn×n the positive
definite inertia matrix, C(q, q̇) ∈ Rn×n the centrifugal and
Coriolis matrix, G(q) ∈ Rn the gravity torque, F (q̇) ∈ Rn
the friction torque, u ∈ Rn the actuated torque applied by
the controlled actuators of the exoskeleton, τhum ∈ Rn the
torque provided by the human subject, and τext ∈ Rn the
external torque, which can include the unmodeled effects.

In this paper, the notation ‖.‖ denotes the Frobenius
norm 1 . Since the system (1) is considered with only pivot
joints, then the well known following properties are verified
for any q ∈ Rn and q̇ ∈ Rn (Khalil and Dombre, 2002):
Property 1. For any x ∈ Rn, the matrix M(q) is bounded
by

µ1M ‖x‖2 ≤ xTM(q)x ≤ µ2M ‖x‖2 , (3)

where µ1M , µ2M > 0 are some constants.
Property 2. The matrix [Ṁ(q) − 2C(q, q̇)] is skew sym-
metric, then

1
2 x

T Ṁ(q)x = xTC(q, q̇)x, (4)

for any x ∈ Rn.
Property 3. The matrix C(q, q̇) is bounded by ‖C(q, q̇)‖ ≤
µC‖q̇‖ where µC > 0 is some constant.
Property 4. The vector G(q) is bounded by ‖G(q)‖ ≤ µG
where µG > 0 is some constant.

The friction vector F (q̇) is defined as the gradient of the
dissipation energy of the system with respect to q̇. It is
the result of numerous physical phenomena such as the
geometry of the contacts, the nature of the lubricants, the
properties of bulk, and surface materials on the bodies.
The exact formulation of this torque is practically difficult
to obtain. In this work, the following assumption for F (q̇)
is considered:
Assumption 1. The vector F (q̇) is bounded by ‖F (q̇)‖ ≤
µ1F + µ2F ‖q̇‖ where µF > 0 is some constant.

Obviously, the humans torques τhum are provided by
natural muscles. They can not deliver infinite torques. On
the other hand, the external torques τext are completely
unknown. Then, the following assumptions for τhum and
τext are adopted:
Assumption 2. The vector τhum is bounded by ‖τhum‖ ≤
µτhum where µτhum > 0 is some constant.
Assumption 3. The vector τext is bounded by ‖τext‖ ≤
µτext where µτext > 0 is some constant.

In the rest of this paper, the arguments (q), (q̇) and (q, q̇)
will be omitted for the sake of clarity. Therefore, M(q),
C(q, q̇) and H(q, q̇) will be simply presented by M , C and
H respectively.

1 The Frobenius norm of x is defined by ‖x‖ =
√

tr(xT x) where
tr(.) is the trace function.

3. CONTROLLER DESIGN

The main objective of the proposed controller is to ensure
the tracking of q(t) and q̇(t) to their desired trajectories
qd(t) and q̇d(t) respectively in finite-time. The following
additional assumptions are needed:
Assumption 4. The position q(t) and velocity q̇(t) are
known for all time t.
Assumption 5. The desired trajectory qd(t) is an admis-
sible trajectory which is twice differentiable with respect to
time t and qd(t), q̇d(t) and q̈d(t) are bounded.

The controller design will be done in the following two
main steps that will be detailed in the sequel sections of
the paper:

• Select an nonlinear switching manifold so that the
closed-loop system in sliding mode guarantees the
convergence to the equilibrium point in finite-time.

• Design an adaptive control law that guarantees the
exact reachability of the selected sliding surface in
finite-time.

The following lemmas will be used in the stability analysis
of the proposed approach:
Lemma 1. (Hale, 1969) Let V (t) be a continuously
differentiable scalar positive-definite function that satisfies
the following differential inequality:

V̇ (t) ≤ −λV γ(t), ∀t ≥ t0, V (t0) ≥ 0, (5)

where λ > 0 and 0 < γ < 1 are some constants. Then, for
any given t0, the function V (t) satisfies

V 1−γ(t) ≤ V 1−γ(t0)− λ(1− γ)(t− t0),
for t0 ≤ t < t1,

(6)

and V (t) = 0 for t ≥ t1 where t1 given by

t1 = t0 +
V 1−γ(t0)

λ(1− γ)
. (7)

Lemma 2. (Bhat and Bernstein, 2005) Let the following
second-order system:{

ẋ1 = x2
ẋ2 = −k2 sgn(x2) |x2|γ − k1 sgn(x1) |x1|

γ
2−γ

(8)

where x1, x2 ∈ R and k1,k2,γ are some constants such as
0 < γ < 1 . Then, the origin (x1, x2) = (0, 0) is a globally
finite-time-stable equilibrium k1,k2 are chosen such that
the polynomial r2 + k2 r + k1 is Hurwitz.
Lemma 3. (Beckenbach and Bellman, 1961) Let the
scalar constants 0 < γ < 1 and a1, . . . , an > 0. Then,
the following Jensen’s inequality holds:(∑n

i=1
ai

)γ
≤
∑n

i=1
aγi . (9)

3.1 Switching manifold selection

Let e = (qd − q) and ė = (q̇d − q̇) be the tracking position
and velocity errors respectively. The selected nonlinear
switching law is given by

s(t) = ė(t) + α

∫ t

0

ė
q
p (µ) dµ+ β

∫ t

0

e
q

2p−q (µ) dµ+ η, (10)

where p > q > 0 with p and q are some positive
odd integers, α = diag(α1, ..., αn) ∈ Rn×n and β =
diag(β1, ..., βn) ∈ Rn×n are some positive diagonal ma-
trices, chosen such that the polynomials r2 + βi r + αi for
i = 1, ..., n are Hurwitz, and η is some constant vector.
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Remark 1. The sliding manifold ( 10) contains terms ė
q
p

and e
q

2p−q with fractional powers which satisfy 0 < q
p < 1

and 0 < q
2p−q < 1. The relative degree of the used sliding

manifold s is 1 meaning that the control u has to appear
explicitly in the first time derivative ṡ. Thanks to the
integration parts of s in ( 10), the calculation of the time

derivative of ė
q
p and e

q
2p−q are not required. Indeed, in

the case of a time derivation of ė
q
p and e

q
2p−q , the terms

q
p ė

q
p−1ëi and q

2p−q e
q

2p−q−1ė appear and the singularity

may occur due to the negative powers ( qp − 1) and ( q
2p−q −

1). This problem will not arise by choosing the sliding
manifold ( 10). Therefore, the proposed controller will be
completely singularity-free.

The derivative of the switching law (10) with respect to
time, gives

ṡ = ë+ α ė
q
p + β e

q
2p−q . (11)

From the dynamic model (1) and the derivative (11), the
following equation is obtained:

M ṡ+ C s = M q̈r + C q̇r +H − u− τhum − τext, (12)

where q̇r and q̈r are the reference trajectories given by{
q̇r = s+ q̇

q̈r = q̈d + α ė
q
p + β e

q
2p−q

(13)

Let the constants M̄ ∈ Rn×n, C̄ ∈ Rn×n and H̄ ∈
Rn be the nominal values of M(q), C(q, q̇) and H(q, q̇)
respectively. Then, the following equation holds:

M ṡ+ C s = M̄ q̈r + C̄ q̇r + H̄ − u+ ξ, (14)

where ξ is given by

ξ = (M−M̄) q̈r+(C−C̄) q̇r+(H−H̄)−τhum−τext. (15)

The first equation of (13) gives q̇ = q̇r−s then ‖q̇‖ ≤ ‖q̇r‖+
‖s‖. Hence, the vector ξ can be bounded by the following
inequality according to the properties and the assumptions
of the previous section:

‖ξ‖ ≤ µ1 + µ2 ‖s‖+ µ3 ‖s‖‖q̇r‖
+µ4 ‖q̇r‖+ µ5 ‖q̇r‖2 + µ6 ‖q̈r‖,

(16)

where µ1, ..., µ6 > 0 are some suitable positive constants.

The previous inequality (16) results in the following rela-
tion:

δ + ‖ξ‖ ≤ θTφ(s, q̇r, q̈r), (17)

where the function φ(s, q̇r, q̈r) ∈ R6
+ is defined by

φ(s, q̇r, q̈r) =


1

1 + ‖s‖
1 + ‖s‖‖q̇r‖

1 + ‖q̇r‖
1 + ‖q̇r‖2
1 + ‖q̈r‖

 , (18)

the vector θ = [θ1, ..., θ6]T ∈ R6
+ is formed by

θ1 = δ + µ1 −
6∑
i=2

µi,

θ2 = µ2, θ3 = µ3, θ4 = µ4,
θ5 = µ5, θ6 = µ6,

(19)

and δ is some arbitrary positive constant satisfying the
inequality

δ > −µ1 +

6∑
i=2

µi. (20)

In the rest of the paper, to simplify the writing of the
equations, the arguments (s, q̇r, q̈r) will be omitted. So
the function φ(s, q̇r, q̈r) will be replaced by the simple
notation φ. This function will be used in the proposed
control law to ensures the stability of the closed-loop. The
following lemma regarding this function φ will be used in
the stability proof of the proposed controller.
Lemma 4. Let x be any positive vector in R6

+. Then, the
following inequality holds:

xTφ ≥ ‖x‖, (21)

Proof. The function φ defined in (18) can be rewritten as
an addition of two positive terms in the form

φ = φ1 + φ2, (22)

where

φ1 =


1
1
1
1
1
1

 and φ2 =


0
‖s‖
‖s‖‖q̇r‖
‖q̇r‖
‖q̇r‖2
‖q̈r‖

 . (23)

Since x is defined as a positive vector, then it is obvious
that xTφ1 = ‖x‖1 and xTφ2 ≥ 0 where ‖x‖1 denotes the
one-norm 2 of x. Therefore, the computing of the product
xTφ gives

xTφ = xTφ1 + xTφ2 = ‖x‖1 + xTφ2 ≥ ‖x‖1. (24)

Recall that in this paper, the notation ‖.‖ denotes the
Frobenius norm which here ‖x‖ is the same as the standard
two-norm because x is a vector. Using the well known
property ‖x‖1 ≥ ‖x‖ in the equation (24), the inequality
(21) comes. This completes the proof of the lemma 4.

3.2 Sliding mode controller

In this section, a control law is proposed to achieve and
maintain the sliding mode by assuming that the nominal
values M̄ , C̄, H̄ and the vector θ are known. The following
theorem is proposed:
Theorem 1. Consider the system (1), the properties 1-
4, the assumptions 1-5, and the switching law s given by
(10), the trajectory (q, q̇) tracks the desired one (qd, q̇d) in
finite-time under the controller

u = M̄ q̈r + C̄ q̇r + H̄ + v, (25)

where v is a switching control term defined as

v = θTφ
s

‖s‖
. (26)

Proof. Consider the following Lyapunov function:

V (t) = 1
2 s

TM s, ∀t ≥ 0, V (0) ≥ 0, (27)

By taking the time derivative V̇ = sTM ṡ+ 1
2 s

T Ṁ s along
with the property 2 and (14), it comes

V̇ = sT (M̄ q̈r + C̄ q̇r + H̄ − u+ ξ). (28)

Substituting the control law (25)-(26) into (28), yields to

V̇ = sT (ξ − θTφ s

‖s‖
)

≤ −(θTφ− ‖ξ‖) ‖s‖.

(29)

2 The one-norm of x ∈ Rn is defined by ‖x‖1 =
∑n

i=1
|xi|.
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From (17), it is easily verified that (θTφ−‖ξ‖) ≥ κ0, then
(29) gives

V̇ ≤ −κ0 ‖s‖. (30)

From the property 1, the relation 2V = sTM s ≤ µ2M‖s‖2
holds that results in

V̇ ≤ −κ0
√

2

µ2M
V

1
2 . (31)

Using the lemma 1 and (31), the finite-time convergence
V (t) = 0 is achieved for t ≥ tr such as

tr =

√
2µ2M

κ0
V

1
2 (0), (32)

with tr is a finite-time in the reaching phase.

Therefore, if t ≥ tr then the controller (25) ensures
si(t) = 0 for i = 1, . . . , n. Consequently, ṡi(t) = 0 which
allows to write the ith error dynamic

ëi + αi ė
q
p

i + βi e
q

2p−q
i = 0 for i = 1, ..., n. (33)

Finally, according to the lemma 2 by taking x1 = ei
and x2 = ėi, the ith sub-system (33) is globally finite-
time-stable to the equilibrium point (ėi, ei) = (0, 0) for
i = 1, ..., n. The proposed controller ensures the exact
tracking of the trajectory (q, q̇) to the desired one (qd, q̇d)
in finite-time. This completes the proof of the theorem 1.

Remark 2. From (10) and (32), in can be noted that the
reaching time tr is equal to zero if the vector η is chosen
such as η = −ė(0).

3.3 Adaptive sliding mode controller

The proposed controller in the previous section guarantees
the stability of the system if the elements M̄ , C̄, H̄ and
θ are known. However, these elements are not easy to
find in practice. Basing on a prior knowledge of these
parameters is a strong hypothesis. In this section, in
order to make the proposed controller less restrictive and
make its implementation easy, a new adaptive law is
presented without requiring any knowledge of the elements
mentioned before. The following theorem points out the
proposed adaptive control law:
Theorem 2. Consider the system (1), the properties 1-3,
the assumptions 1-5, and the switching law s given by (10),
the estimation errors of M̄ , C̄, H̄ and θ are bounded and
the trajectory (q, q̇) tracks the desired one (qd, q̇d) under
the adaptive controller

u = M̂ q̈r + Ĉ q̇r + Ĥ + v, (34)

where v is an adaptive switching control term defined as

v = θ̂Tφ
s

‖s‖
, (35)

with M̂ , Ĉ, Ĥ and θ̂ are tuned by the following adaptation
laws to estimate M̄ , C̄, H̄ and θ respectively:

˙̂
M = ΓM s q̈Tr
˙̂
C = ΓC s q̇

T
r

˙̂
H = ΓH s
˙̂
θ = Γθ φ ‖s‖

(36)

where ΓM , ΓC , ΓH∈ Rn×n and Γθ∈ R5×5 are some sym-
metric positive-defined matrices.

Proof. Consider the following Lyapunov candidate func-
tion

V (t) = V1(t) + V2(t) + V3(t),
∀t ≥ 0, V (0) ≥ 0,

(37)

with
V1 = 1

2 s
TM s

V2 = 1
2 tr(M̃TΓ−1M M̃) + 1

2 tr(C̃TΓ−1C C̃) + 1
2 H̃

TΓ−1H H̃

V3 = 1
2 θ̃

TΓ−1θ θ̃
(38)

where M̃ = (M̄ − M̂), C̃ = (C̄ − Ĉ), H̃ = (H̄ − Ĥ) and

θ̃ = (θ − θ̂) are the estimation errors.

By taking the time derivative V̇1 = sTM ṡ+ 1
2 s

T Ṁ s along
the property 2, the dynamic equation (14), the control law
(34)-(35), it comes

V̇1 = sT (M̄ q̈r + C̄ q̇r + H̄ − u+ ξ)

= sT (M̃ q̈r + C̃ q̇r + H̃ − v + ξ)

= sT M̃ q̈r + sT C̃ q̇r + sT H̃ + sT ξ − θ̂Tφ ‖s‖.

(39)

Using the time derivative of V2 and the adaptation laws
˙̂
M ,

˙̂
C,

˙̂
H given in (36), the following development 3 is given:

V̇2 = −tr(M̃TΓ−1M
˙̂
M)− tr(C̃TΓ−1C

˙̂
C)− H̃TΓ−1H

˙̂
H

= −tr(M̃T s q̈Tr )− tr(C̃T s q̇Tr )− H̃T s

= −q̈Tr M̃T s− q̇Tr C̃T s− H̃T s

= −sT M̃ q̈r − sT C̃ q̇r − sT H̃.

(40)

The time derivative of V3 is given by the following equation

where the adaptation law of
˙̂
θ given in (36) is used:

V̇3 = −θ̃TΓ−1θ
˙̂
θ

= −θ̃Tφ ‖s‖.
(41)

The addition of (39), (40) and (41) gives

V̇ = sT ξ − θ̂Tφ ‖s‖ − θ̃Tφ ‖s‖
≤ −(θTφ− ‖ξ‖) ‖s‖

(42)

The inequality (θTφ − ‖ξ‖) ≥ δ holds according to (17),
then

V̇ ≤ −δ ‖s‖. (43)

It yields that V̇ ≤ 0 for ∀t which means that the variables
s, M̃ , C̃, H̃ and θ̃ are bounded. The assumption 5 allows
to guarantee that ė is uniformly continuous since q̈d and q̈
are bounded. As a result, the variable s given in (10) is also
uniformly continuous. In addition, it can be verified from

(43) that lim
t→+∞

∫ t
t0
‖s(µ)‖dµ ≤ V (t0)

δ . Therefore, applica-

tion of Barbalat’s lemma (Barbalat, 1959) indicates that
lim

t→+∞
‖s(t)‖ = 0. According to the stability performances of

the used switching variable s, it can be conclude that e→ 0
and ė → 0 as t → +∞. Finally, the proposed adaptive
controller guarantees a zero steady-state tracking error of
the position and the velocity trajectories. This completes
the proof of the theorem 2.

3 The equalities xT y = yT x and xT y = tr(y xT ) hold for ∀x, y ∈ Rn.
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4. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed adaptive
controller, a real-time application with exoskeleton is per-
formed by asking a healthy subject to apply alternatively
flexion and extension movements. The used exoskeleton
is ULEL (Upper Limb Exoskeleton of LISSI) which is
developed by RB3D company especially for the LISSI
laboratory (Laboratoire Images, Signaux et Systèmes In-
telligents) of University Paris-Est Créteil (UPEC), France.
This exoskeleton is designed to perform scientific re-
searches on the rehabilitation of the human right arm.

The following modules of ULEL are used to carry out our
validation tests (see the left side of Fig. 1):

• Shoulder module: connected to the frame module by
a passive spherical joint used for the 3D orientation
of the exoskeleton.
• Upper arm module: articulated to the shoulder mod-

ule by an active rotational shoulder joint.
• Forearm module: articulated to the upper arm mod-

ule by an active rotation elbow joint.

Fig. 1. Upper Limb Exoskeleton of LISSI (ULEL) on the
left, and the kinematic diagram of the used modules
of ULEL on the right.

The active joints of ULEL are actuated by powerful DC
motors. An electrical control system is used to provide
the regulation for motor currents. The applied torques at
human joints are provided by a special screw and cable
mechanical system. The joint positions are measured by
incremental encoders with a good measurement accuracy.
The controller is programmed on a PC equipped with
a dSpace DS1103 PPC real-time controller card, using
Matlab/Simulink and dSpace Control Desk software. The
fourth-order Rung-Kutta’s numerical solver with 0.001sec
sampling time are used to solve the nonlinear differential
equations.

The experience is produced using the active shoulder and
elbow joints of ULEL. The exoskeleton is worn by a
healthy subject having 43 years old, measuring 1.69m
and weighing 73 kg. For safety reason, the joints are
constrained by safety ranges of motion and the electric
motor currents are limited.

The used human-exoskeleton system is seen as a system
decomposed into two subsystems numbered by the sub-
scripts i = 1 and i = 2 for the shoulder and elbow joints
respectively. The right side of Fig. 1 shows the kinematic

diagram of the used modules of ULEL. The zero reference
corresponds to the resting position toward the ground (all
joints facing down). The desired reference trajectory qq(t)
is chosen as a sine wave to ensure the existence and the
boundness of the successive time derivations of the refer-
ence trajectories. This kind of periodic trajectories is often
used in medical rehabilitation protocols. The parameters
of the sliding surface function (10) are p = 7, q = 9,
α = 3 I, β = I and η = −ė(0). The adaptation gains
ΓM , ΓC , ΓH and Γθ are chosen equal to 10 I. The initial

values of the estimations M̂ , Ĉ, Ĥ and θ̂ are equal to
zero. The actuators of the used exoskeleton have delays
and other practical imperfections. These constraints can
lead to chattering and excitation of non-modeled dynamics
when sliding mode control is applied. A boundary layer
technique is used to avoid chattering excitation of the slid-
ing mode control. The terms s

‖s‖+ε is introduced instead

of s
‖s‖ in (35) where ε = 0.1 is chosen heuristically.
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Fig. 2. Position trajectories q(t) and qd(t).
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Fig. 3. Velocity trajectories q̇(t) and q̇d(t).
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Fig. 2 shows the desired and the measured positions for
the shoulder and elbow joints, with good tracking of the
desired trajectories. Fig. 3 presents the desired and the
measured velocities. The small perturbations are due to
the noisy measurements of the used instruments.
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Fig. 4. Control inputs u(t).

The control inputs u(t) are shown in Fig. 4. In both cases
of flexion and extension movements, the torque inputs of
the exoskeleton are smooth. The torque increases if the
flexion movement is needed and decreases otherwise. The
high excitation of the power electrical system is discarded
thanks to the used boundary layer technique. The applied
torques meet the physical limits of the real system.

5. CONCLUSION

This paper proposes an adaptive integral-terminal-sliding-
mode controller for exoskeletons ensuring trajectory track-
ing of the position and velocity. Only the structure of the
dynamic model and some bounded properties were used for
the controller design. The knowledge of the dynamic model
and the uncertainties bounds are not required thanks
to the proposed adaptation laws. The stability has been
demonstrated by the Lyapunov theory. The robustness of
the controller has been tested by asking a healthy subject
to apply alternatively flexion and extension movements
using an exoskeleton in real-time application. The experi-
mental results show the effectiveness and the satisfactory
performances of the proposed approach.
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