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Abstract: Smart-Shirts (and other wearable technologies) that provide vital medical data are becoming 

increasingly prevalent. However, obtaining accurate measurement of respiratory parameters via a Smart-

Shirt requires ongoing research. In this study, various respiratory parameters have been captured via an 

optoelectronic plethysmograph and a body plethysmograph using an optimal set of spatial sensors. Sixty-

four reflective markers were fixed on a compression shirt and different respiratory manoeuvres were 

performed by the subjects. In this analysis, Singular Value Decomposition was used to determine the 

minimum marker set required to yield accurate predictions of respiratory mechanics. Sufficient accuracy 

and precision for most clinical applications was able to be determined using positional data from nine 

markers. Using motions of nine sensors, the tidal volume can be predicted with a mean error of less than 

139 ml and an adjusted R2 higher than 0.96. A subsequent linear regression analysis provides the location 

of the nine markers. These outcomes reduce the computational complexity of analysing optical based 

wearable technology, reducing barriers to further uptake. 
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1. INTRODUCTION 

The increase in air pollution and life expectancy of the 

human population correlates with increased pulmonary 

disease (Barnes et al. 2014, Ferkol and Schraufnagel 2014). 

Therefore, low-cost monitoring of respiratory parameters that 

reflect the health of lungs will become more significant. 

In spontaneous breathing, these parameters are typically 

determined via gold-standard pulmonary function tests: 

spirometry or body plethysmography (C.-P. Criée 2015, 

Coates et al. 1997, Criée et al. 2011, Hayes and Kraman 

2009, Miller et al. 2005). Unfortunately, both systems have 

the disadvantage that the subject must breathe through a 

facemask or a mouthpiece, while the nasal passage is blocked 

by a clip. These measurements can be uncomfortable for the 

subject, especially during longer measurements or during 

exercise. 

Therefore, the aim of this study is to obtain tidal volume via 

the surface motion of the upper body. This idea was initially 

proposed by Konno and Mead (Konno and Mead 1967). 

Subsequently, multiple studies have been carried out 

analysing surface motions of the upper body as a surrogate 

for spirometry or body plethysmography in the determination 

of respiratory parameters (Cala et al. 1996, De Groote et al. 

1985, Ferrigno et al. 1985). However, an accurate wearable 

system is still not available on the market.  

Optoelectronic plethysmography (OEP) showed the potential 

to meet the objective (Massaroni et al. 2017, Parreira et al. 

2012, Romagnoli et al. 2008, Vogiatzis et al. 2005). OEP 

uses cameras to measure the spatial positions of reflective 

markers to determine surface motion of the upper body. The 

method can provide sophisticated measurements in clinical 

settings and research. However, OEP is very expensive to 

operate and measurement is restricted to movements within 

the area between the cameras. 

Currently, due to the development of improved, novel and 

miniaturized sensors, wearable technologies are on the rise 

(Chu et al. 2019, Ciocchetti et al. 2015, Gaidhani et al. 2017, 

Hering and Schönfelder 2012, Karacocuk et al. 2019, Yang 

2014). Smart-Shirts are getting increased attention in research 

and development (Aliverti 2017, Heyde et al. 2015). Smart-

Shirts that can measure vital parameters, such as heart or 

respiratory rate, are currently available on the market, but a 

Smart-Shirt that provides other respiratory parameters such as 

accurate tidal volume, cannot be found. Such a Smart-Shirt 

would be beneficial for various clinical tasks and in high 

level sports.  

The number of sensors is a decisive factor in the development 

of Smart-Shirts. A high number of sensors might improve the 

accuracy of the measurement, but will also increase cost, size 

and complexity of the Smart-Shirt. Therefore, a fundamental 

objective of Smart-Shirt development is to optimise the 

number of sensors to provide the lowest level of discomfort, 

complexity and cost while ensuring the desired system 

accuracy. 

Previous approaches have attempted to determine the 

minimal number of position sensors in various ways (Laufer 

et al. 2017, Laufer et al. 2018). However, this study analyses 
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the optimal number and location of spatial sensors, using the 

information content of each sensor signal to find optimal 

sensor placement for tidal volume measurement. 

2. METHODS 

2.1  Data 

This study uses data from Laufer et al. (Laufer, et al. 2018), 

where breaths of varying tidal volumes were performed by 

three volunteers.  

The measurement was done with a constant-volume body 

plethysmograph (PowerCube® Body+, Ganshorn Medizin 

Electronic, Germany) which was surrounded by 9 infrared 

motion tracking cameras (VICON Bonita B10, Firmware 

Version 404) of an OEP system. The OEP was a camera-

based motion tracking-system (Bonita, VICON, Denver, CO) 

with a sampling frequency of 100 Hz. The measurement 

setup can be seen schematically in Fig. 1.  

Sixty-four motion tracking markers were fixed to a 

compression shirt at different heights (Fig. 2). Thirty-two 

markers were fixed ventral to the shirt, 26 dorsal and 6 

markers were fixed lateral (3 markers at each side of the 

shirt). 

The data transfer from the VICON system to MATLAB 

(R2019a, The MathWorks, Natick, USA) was done with the 

VICON Nexus Software (Version 1.8.5.6 1009h, Vicon 

Motion Systems Ltd.). All further data processing was done 

with MATLAB. 

The body plethysmograph gave access to flow, mouth 

pressure and the cabin pressure data with a sampling 

frequency of 200 Hz. LF8 software (Version 8.5M 

RC25r7071, Ganshorn Medizin Electronic GmbH) was used 

for data recording. The raw data of the body plethysmograph 

was obtained via the serial port.  

Details to the subjects can be found in Table 1 and respiratory 

manoeuvres are listed in Table 2. 

 

Fig. 1. Measurement setup: body plethysmograph surrounded 

by the cameras of the motion tracking system. (figure 

published 2018 in Laufer et al.) 

    

Fig. 2: Motion tracking markers, fixed on a compression shirt 

(front / ventral view (left) and back / dorsal view (right)). 

Here, the lateral markers are marked by thin dashed yellow 

ellipses. (figure published 2018 in Laufer et al.) 

The number n of measurement points in time was about 

21.000 but n was dependent on the breathing rhythm and 

varied from subject to subject. For exhaustive details on the 

experimental procedure please refer to Laufer et al. (2018). 

Table 1.  Participants 

Subject Height 

(m) 

Weight 

(kg) 

Gender BMI 

(kg/m2) 

Age 

(years) 

1 1.82 66 male 19.9 25 

2 1.84 76 male 22.4 27 

3 1.60 48 female 18.8 32 

Table 2.  Respiratory manoeuvres 

Approximate duration Respiration manoeuvre 

30 seconds normal spontaneous breathing 

30 seconds 3 deeper breaths 

30 seconds normal spontaneous breathing 

30 seconds 3 maximal breaths 

30 seconds normal spontaneous breathing 

30 seconds shallow breathing 

30 seconds normal spontaneous breathing 

2.2  Data processing 

Fig. 3 illustrates the processing-workflow of the spatial 

position data, provided by reflective marker movement of an 

OEP with the aim to get optimal location and number of 

markers/sensors for the Smart-Shirt. 

 

Fig. 3. Data processing via Singular Value Decomposition 

SVD and linear regression. 
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Fig. 4. Position data (black) over time during various 

respiratory manoeuvres are illustrated based on the data of 

subject 1 (left), where the position data are nearly in line (red 

dotted lines). The corresponding compression shirt with 

reflective markers is shown (right). 

Initial exploration of the data showed that the movement of 

individual markers was not particularly distinctive, and that 

each marker was moving predominantly on a particular line 

(see Fig. 4). Hence, a dimension reduction could be 

undertaken. Separately for each of the j markers (with 1 ≤ j ≤ 

64), the mean position value   jOEPOEPOEP z ,y ,x  of the 

movement of marker j was calculated and the movement was 

referenced from the obtained mean value. 

(𝑥, 𝑦, 𝑧)𝑡𝑖,𝑗

= (𝑥𝑂𝐸𝑃 , 𝑦𝑂𝐸𝑃 , 𝑧𝑂𝐸𝑃)𝑡𝑖,𝑗 − (𝑥𝑂𝐸𝑃̅̅ ̅̅ ̅̅ , 𝑦𝑂𝐸𝑃̅̅ ̅̅ ̅̅ , 𝑧𝑂𝐸𝑃̅̅ ̅̅ ̅̅ )𝑗   (1) 

Afterwards, the position data during the measurement (x,y,z)j 

were projected on the direction of their main principal 

component vector (see Fig. 5). This principal component was 

obtained by using a Singular Value Decomposition (SVD).  

𝑈Σ𝑉∗ = 𝑠𝑣𝑑 [

𝑥𝑡1
𝑦𝑡1

𝑧𝑡1

⋮ ⋮ ⋮
𝑥𝑡𝑛

𝑦𝑡𝑛
𝑧𝑡𝑛

] (2) 

where: t1 to tn are all time-points of the measurement. Then 

let Lj be the projection of (x,y,z)j onto the first column of V*
j. 

The measured spatial positions (xOEP, yOEP, zOEP) can be 

approximated by  

(𝑥𝑂𝐸𝑃 , 𝑦𝑂𝐸𝑃 , 𝑧𝑂𝐸𝑃)𝑡𝑖,𝑗 ≈ (𝑥𝑂𝐸𝑃̅̅ ̅̅ ̅̅ , 𝑦𝑂𝐸𝑃̅̅ ̅̅ ̅̅ , 𝑧𝑂𝐸𝑃̅̅ ̅̅ ̅̅ )𝑗 + 𝐿𝑡𝑖,𝑗𝑉1,𝑗
∗  (3) 

(Lj is the length of the movement of marker j in direction of 

its principal component and V*
1,j is the unit vector of the main 

principal component of marker j). 

 

   

Fig. 5. Dimension reduction by the projection of the position 

data (black) on the principal component line (red) of one 

marker, while the projected positions are illustrated in blue.  

After this dimension reducing, the information content of the 

system was analysed via a further SVD:  

𝑈Σ𝑉∗ = 𝑠𝑣𝑑[𝑀] where: 𝑀 = [

𝐿1,𝑡1
⋯ 𝐿64,𝑡1

⋮ ⋱ ⋮
𝐿1,𝑡𝑛

⋯ 𝐿64,𝑡𝑛

] (4) 

where: U is an orthogonal 64×64 rotation matrix, Σ a 

diagonal 64×n stretching matrix and V* an orthogonal n×n 

rotation matrix and n the number of time-points. M is the 

matrix of length vectors of all markers. 

The column vectors of Σ are the singular vectors of M, sorted 

in information content, so that the vector carrying most 

information is the first column vector. Thus, by analysing 

these singular vectors the number of vectors k can be 

determined, in order to achieve the required accuracy of the 

system refer to the principal components (see Fig. 6). Thus, 

the number of principal components which carried more than 

2% of the total system information was selected. This number 

can serve as a guide for the number of markers needed 

regarding the initial, non-rotated system. Furthermore, 

several markers are considered to be essential for correction 

of movements that are not respiration induced: the reference 

markers at the cervical, the middle and the lowest spine. 

Twists and bending of the upper body can captured by the 

movement of these 3 markers and thus, the 3 markers were 

fixed in the reduced marker set. At least k markers were 

necessary to get the desired system accuracy in the real-world 

system. Thus, k+3 markers were taken into consideration for 

the measurement system.  

After the number of markers was specified, a linear 

regression analysis showed which of the reflective markers 

carried most of the information. The results were calculated 

using the backslash function of MATLAB. 

𝜆 = 𝑀\𝑉𝑏𝑜𝑑𝑦  (equivalent to 𝜆 = (𝑀𝑇𝑀)−1𝑀𝑇𝑉𝑏𝑜𝑑𝑦)  (5) 

Where: Vbody was the volume, measured by the body 

plethysmograph. 

After regression, λ was sorted. The higher the corresponding 

λ-value of a marker, the higher the sensitivity of the system 

refer to this marker. Thus, additional to the three essential 

markers, k markers with the highest λ–values were used for 

further calculation.  

Via a bootstrapping algorithm on each measurement, the best 

sensor locations were analysed. For each subject, the data of 

500 randomly chosen sections of the experimental data were 

analysed. The number of times each marker represented more 
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than 2% of the system information was counted. A threshold 

of 2% was arbitrarily chosen as it was estimated that this 

value would yield good agreement between the predictions of 

the approach and the measured data. Then each marker that 

contributed less than 50 times (10% of the 500 analysis) 

amongst all subjects to the system information, were 

neglected.  

Subsequently, the bootstrapping was repeated on the reduced 

marker set with 1000 repetitions. Based on the bootstrapping 

data, the optimal markers were chosen from the marker set. 

These markers contributed the most to the system 

information and were necessary for the model. Finally, the 

marker set was reduced further to k+3 markers while 

minimising the disagreement between the respiratory 

parameters predicted by the markers and the volume data 

from the body plethysmograph. 

3. RESULTS 

The number of principal components and their corresponding 

information content of the system can be seen in Fig. 6. All 

principal components that contained more than 2% of the 

system information were selected for further calculation. 

Amongst all three subjects, k = 6 principle components had 

more than 2% of system information and therefore, the 

corresponding number of markers / sensors, which was used 

for further calculation was set to 9 (k + 3 = 9). 

Linear regression combined with a bootstrapping algorithm 

allowed identification of the optimal markers from the 

marker set shown in figure 7. The information of the marker 

set of the optimal markers compared to the volume data of 

the body plethysmograph (mean squared error and the 

adjusted R2) is shown in Table 3. Figure 8 shows the result of 

the marker set based on the data of subject 1, after the 

determination of the λ-values by linear regression (according 

to equation 5 but based on the optimal 9 markers). 

 

Fig. 6. A result of the SVD – the number of principal 

components and the corresponding information content of the 

system, illustrated based on the data of subject 2. 

Table 3.  Measurement results 

Subject  errormean (ml) adjusted R2 

1 82.5 0.984 

2 138.6 0.965 

3 71.4 0.982 

    

Fig. 7. Nine markers used for this calculation. The 3 fixed 

markers (green) and the 6 selected markers (red). The yellow 

ellipses show areas, where either marker could be selected. 

 

Fig. 8. Volumes, given by the body plethysmograph and the 

volume calculated with 9 sensors, illustrated based on the 

data of subject 1. 

4. DISCUSSION 

The OEP delivers accurate position information of the 

reflective markers. However, initial investigation of the 

motion of the markers showed that the information from most 

markers was redundant. In particular, the markers generally 

moved in unison and the individual markers generally moved 

on a particular line. Hence, this study aimed to reduce the 

cost and analysis complexity for estimating respiratory 

parameters from optical measurements by reducing the size 

of the data set required.  

The resulting marker set is shown in Fig. 7. Due to symmetry 

and similarity of adjacent markers most markers in the 

optimal set could be replaced with proximal markers (yellow 

ellipses in Fig. 7). However, the low precision needed for the 

marker placement does not imply that an entirely arbitrary set 

of nine marker placements would yield accurate respiratory 

mechanics. In contrast, this analysis showed that the general 

placement across the thorax required to capture accurate and 

precise respiratory mechanics. The non-uniqueness of 

markers in each of the regions shown in figure 7 allowed the 

SVD analyses to obtain the reduced marker distribution that 
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contained the most unique information. In particular, the 

SVD analysis enabled the generation of a grey-box model 

that captured global motions of the chest via a limited set of 

local measurements.  

The SVD methodology used enabled very good correlation 

between the measured volume data and a heavily reduced 

marker set. In particular, reducing from 64 markers to nine 

allowed R2 > 0.96 for the three participants tested (Table 3). 

Furthermore, there were no noticeable aberrations from the 

measured data (Figure 8). This indicates that the 

methodology did not include systemic bias that may reduce 

the clinical value of the overall approach. This is an 

important factor for use in practice as it may be expected that 

changes in breathing patterns would be of primary interest to 

inform decision-support in critical care or high-performance 

sports training. 

SVD is a well-known method for determining the key 

contributors to a particular behaviour. However, it can also be 

used to determine how to use a reduced data set to predict the 

behaviour. This research yielded parameter coefficients that 

can be used to predict respiratory mechanics from the motion 

of a few motion sensors on the chest. Further research is 

required to determine how applicable these coefficient values 

are across individuals and if calibration is required when the 

system is used for the first time or when patient condition 

changes.  

This study exploited this benefit by determining the markers 

that contained more than 2% unique information about the 

system behaviour. While this was an arbitrary choice, it 

yielded a level of agreement that was sufficiently high to be 

of use in a clinical setting. Figure 6 shows how alterations to 

the 2% threshold would affect the number of parameters in 

the analysis. Shifting to 10% information content would lead 

to only two markers (in addition to the three datum markers). 

These markers would capture broad trends in the chest and 

stomach breathing, respectively. In contrast lowering the 

threshold to 1% would increase the number of markers to 16 

but would also potentially increase the level of agreement 

between the predictions of the approach and the measured 

data. Further consideration is required to determine the 

optimal number of parameters for any given scenario.  

For clinical applications, the patient is generally supine, and 

there are only minimal lateral or torsional movements of the 

spine. Hence, there would not be movements in the lung that 

confound the approach shown in this analysis. However, 

most sporting applications require a significant range of 

motion in the thorax, potentially confounding this approach. 

The addition of further markers that can capture this motion 

would theoretically allow information that could be used to 

mitigate the effects of these motions. However, the lung has a 

complex geometry and it is unlikely that the linear 

assumptions of this SVD approach would be able to capture 

the expected non-linear effects of complex motions of the 

spine on respiratory mechanics. Further research is required 

to confirm the contribution of lateral and torsional motion of 

the lung.  

Two bootstrapping algorithms were applied one after the 

other, to analyse the best sensor locations amongst all the 

three subjects. The first bootstrapping helped to reduce the 

marker set further. All markers, which contribute less than 

10% of all analysis of the bootstrapping to the system 

information amongst all three subjects, were omitted from 

further analysis. Another more precise bootstrapping 

approach reduced the set of 40 candidate markers from the 

first bootstrap to an optimised set of the nine markers that 

consistently contribute the most to volume estimation 

correlation with the body plethysmograph. The 2-stage 

approach used in this analysis was required to quickly 

determine the optimal marker set. The second stage could 

potentially have been used in isolation. However, this stage 

was much slower to converge and converging from 64 

markers to six in a single approach would have been 

computationally onerous. Previous work has shown the 

robustness of hierarchical identification (Schranz et al. 2011).  

This analysis used only three data sets from three healthy 

young individuals. This study analysed the optimal location 

and number of sensors for different tidal volume manoeuvres. 

Future work should evaluate the results additionally in 

different breathing manoeuvres, such as chest and abdominal 

breathing and in different breathing speed (e.g. panting). It 

would seem most likely that the finding would not be 

applicable in chronic obstructive pulmonary disease or in 

cases wherein a general symmetry in lung behaviour should 

not be assumed. In such cases, the viscoelastic behaviour of 

the lung in non-linear and even calibration is unlikely to 

improve the outcomes. The use of surface motion of the 

thorax may still allow prediction of respiratory mechanics in 

these cases. However, it is most likely that nonlinear 

mechanics transforms will be required if a similar SVD 

approach is used.  

Nonetheless, there remain very many cases wherein the 

proposed methodology shows considerable promise. In 

particular, the approach is imminently applicable to very 

accurate measurement of the respiratory behaviour of sedate, 

supine patients with very low levels of intrusion. Only visual 

analysis of the patient’s thorax motion would be required. 

Further analysis and development are required before this can 

be used for analysis of respiratory patterns in sporting 

applications.  

5.  CONCLUSION 

The optimal number and the location of markers / sensors to 

obtain tidal volume were identified using a SVD approach. 

This study showed that the main information of the 

measurement system can be captured with a set of nine 

markers with sufficient accuracy (adjusted R2 higher than 

0.96) to imply that it may enable future use in clinical 

applications. 
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