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Abstract: The paper is exploring a new method of controlling of the attitude dynamics of
the spacecraft with non-zero angular momentum, using deliberately applied changes to the
spacecraft inertial properties, called inertial morphing (IM). This method does not employ
classical gyroscopic devices, nevertheless it enables the spacecraft to perform various acrobatics
manoeuvres, allowing interchanges between stable and unstable states. In one case scenario,
it enables transformation of the stable spin into unstable flipping motion and establishment
of the desired periods of the flips at various stages of the procedure. Special consideration is
given to the selection of the controllable morphed parameters to impose the desired periods and
patterns of the acrobatics. This paper exploits use of the unstable flipping motions of the systems
and due to established mini-max relationships for the flipping periods, enables selection of the
system parameters, maximizing or minimizing the values of the periods for faster (more agile)
maneuvers. In the other scenario, IM is used to transfer the regular spin about one body axis into
the regular spin about another nominated body axis. Numerous illustration cases are presented
and application of the new enhanced capabilities are discussed in detail. For example, paper
presents a scenario of the reconfiguration of the articulated spacecraft with its segments being
inverted during the acrobatic procedure in the desired way, which may open new possibilities
during the spacecraft operation, including re-boost and landing.

Keywords: Spacecraft, angular momentum, attitude dynamics, inertial morphing, regular spin,
tumbling, flipping, period, control, acrobatics.

1. INTRODUCTION

A phenomenon of periodic flips of the rigid body, spun
about its intermediate axis is attributed to the “Tennis
Racquet Theorem” and is often called the “Dzhanibekov’s
Effect”, named after V.A.Dzhanibekov, who discovered it
in space in 1985 while observing flying spinning wing nuts.
However, famous USA scientist-astronaut Owen Kay Gar-
riott, even earlier, in 1973, has performed his experiments
with boxed rigid objects and also observed the flipping pat-
terns, associated with their spin, conceptually predicted
by Beachley (1971). For more information, please, refer
to Trivailo & Kojima (2019 RaES); Murakami (2016).

2. INTRODUCTION INTO INERTIAL MORPHING

It has been realised that if the spinning system is designed
in a way, where the inertial properties could be changed
in the desired way, using, for example, mechanical or
electromagnetic means, than these controls could be used
for manipulations with attitude dynamics of the system.
For extensive discussions on the topic interested reader

? The authors acknowledge support of the RMIT University and
DLR Institute of Space Systems.

may refer to the following references: Trivailo & Kojima
(2019 ISSFD); Trivailo & Kojima (2019 JSASS); Trivailo
& Kojima (2018 IAC); Trivailo & Kojima (2017 IAC);
Trivailo & Kojima (2017 ISSFD), Noack (2019).

These are some examples of the system, admitting IM:
spacecraft, deploying solar arrays; system with linear mo-
tors to re-position concentrated masses; systems, releasing
pre-constrained masses, etc. (Trivailo & Kojima (2019
ISSFD)).

One of the scenarios of application of the inertial morphing
may involve stabilisation of the flipping motion: this task
may have two conceptual solution, at the expense of
gaining or loosing angular velocity of the predominant spin
(see Trivailo & Kojima (2017 ISSFD)). In another case,
IM can be used for initiation of the flipping motion on the
system, being initially in the stable spin.

This paper presents two detailed cases on using controlled
IM: (1) first example demonstrates controls, enabling
spinning spacecraft to performing acrobatic 180◦ inversion
and allowing to use the same thruster for boosting and
braking stages; (2) second example shows 90◦ inversion,
enabling transition of the spin about one body axis into
the spin about another nominated orthogonal axis.
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3. ANALYSIS OF THE PERIODIC FLIPPING
MOTIONS

3.1 General Equations for calculation of the period T

The period of the unstable flipping motion can be calcu-
lated, using Eq. (37.12) in page 154 from the reference by
Landau (1988)):

T = 4K

√
Ixx Iyy Izz

(Izz − Iyy) (H2 − 2K0 Ixx)
(1)

where K is complete elliptic integral of the first kind

K =

1∫
0

ds√
(1− s2) (1− k2s2)

=

π/2∫
0

du√
1− k2 sin2 u

(2)

being a function of the parameter k2

k2 =
(Iyy − Ixx)(2K0 Izz −H2)

(Izz − Iyy)(H2 − 2K0 Ixx)
(3)

It should be noted that Eqs. (1)-(3) correspond to the case
of H2 > 2K0 Iyy. If this condition is not observed, in Eqs.
(1)-(3) subscripts “xx” and “zz” must be interchanged.

Eq.1 has been used (Trivailo & Kojima (2019 RaES))
to investigate selection of the value of the intermediate
moment of inertia Iyy on the flipping period.

However, as the detailed analysis on the influence on the
flipping period T of the angular velocity of the predom-
inant spin ωy (here we will assume, for the convenience
in notations, that Ixx < Iyy < Izz) and combinations of
principal moments of inertia of the system, Ixx, Iyy, Izz
have not been performed yet, this aspect is explored in
this paper.

3.2 Influence of the value of the angular velocity ωy of the
predominant spin on the period T

In this paper we consider systems with non-zero initial
angular momentum H0. In case of the system with pre-
dominant spin about its intermediate axis, the major con-
tributors to H0 are the ωy and Iyy.

Using Eq. 1, we can represent T as a 3D surface plot,
explaining influence on the T (ωy, Iyy) function of its two
argument. The resultant plot is shown in Fig. 1. It clearly
reveals the tendency of the periods to become very large,
when Iyy is approaching to the Ixx or Izz. However, the
plot also reveals the ridge of high value of periods, being
asymmetrically in between Ixx and Izz. As surface gradient
is very high in vicinity of the ridge, it should be avoided for
practical implementations, because in this area T would be
very sensitive to small changes in Iyy, which would make
control of the system period impractical.

As an example, in Fig. 1 we also intersect the T surface
with two illustrative level values of the period: T=30 s and
T=50 s. The intersection lines show that for the desired
value of the flipping period T , there are multiple matching
combinations of ωy and Iyy, however, if the goal of the
selection is to minimise the spin rate, then, there may be
two local minimum specific values of Iyy. Two contour lines

Fig. 1. Variation of the period T (ωy, Iyy) of the flipping
motion with the changes in the predominant spinning
angular velocity ωy and value of the intermediate
moment of inertia Iyy for the system with Ixx=3,
Izz=3.5 kg×m2 (i.e. η = 0.8571).

Fig. 2. Two labeled contour lines for the T (ωy, Iyy) surface
in Fig. 1, corresponding to the values of the flipping
periods equal to T=30 s and T=50 s.

for T=30 s and T=50 s are shown separately in Fig. 2. It
shows, that, if, for example, the aim of the design process
is to keep ωy low, for the T=50, there are two solutions
for Iyy, approximately equal to Iyy=3.335 and Iyy=3.18.

3.3 Influence of the value of the period T on the angular
velocity ωy of the predominant spin

Results in Fig. 1 are presented for the ωy=ωy(T, Iyy), being
a function of two arguments, T and Iyy. This function is
shown Fig. 3 as a 3D surface plot. For the illustration
purposes, we assume interest in two special values of
angular velocity of the predominant rotation: ωy=6 and
ωy=12 rad/s. The intersection lines of these level panes
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Fig. 3. Variation of the initial spin rate ωy(T, Iyy) with
the changes in the period of the flipping motion T and
value of the intermediate moment of inertia Iyy for the
system with Ixx=3, Izz=3.5 kg×m2 (i.e. η=0.8571).

Fig. 4. Contour lines for the T (ωy, Iyy) surface in Fig. 3
with in-between bands individually colored. Red band
corresponds to the ωy=4–6 (rad/s) spin rate range;
yellow band - to the ωy=6–8 range; green band - to
the ωy=8–10, cyan band - to the ωy=10–12 and blue
band - to the ωy=12–14 range and purple band - to
the ωy=14–16 range.

and the ωy surface, together with other contour curves,
are given in Fig. 4.

3.4 Numerical Simulation of the Systems with IM

In order to be able to simulate systems with IM, we
need to extend Euler’s equations, to allow variation in
the moments of inertia of the system to be taken into
consideration. These extended equations are:

Fig. 5. Collocated Angular Momentum Sphere (light blue
surface) and Kinetic Energy Ellipsoid (red surface),
intersecting along the separatrices (shown with thick
black lines).

 İxx 0 0

0 İyy 0

0 0 İzz

{
ωx
ωy
ωz

}
+

[
Ixx 0 0
0 Iyy 0
0 0 Izz

]{
ω̇x
ω̇y
ω̇z

}
+

+

[
0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

][
Ixx 0 0
0 Iyy 0
0 0 Izz

]{
ωx
ωy
ωz

}
=

{
0
0
0

}
(4)

These equations can be solved numerically, using variety
of methods. For details and examples of solutions, please,
refer to Trivailo & Kojima (2017 ISSFD) and Trivailo &
Kojima (2019 RaES).

3.5 Geometric Interpretation of Solutions

We employ graphical interpretation of the flipping mo-
tion, using angular momentum unit sphere (AMS) and
kinetic energy ellipsoid (KEE), constructed in the non-
dimensional coordinates of the normalised angular mo-
mentum H. The values of the semi-major axes of the
ellipsoid are given with the following relationships:

ax = q
√
Ixx(t); ay = q

√
Iyy(t); az = q

√
Izz(t); (5)

where q =
√
K(t)/H(0).

For the illustration system with Ixx = 3, Ixx = 4, and
Ixx = 5, the AMS is shown with light blue color and KEE
is shown with semi-transparent red ellipsoid. The line of
intersection between both is known as polhoid and for the
flipping case also corresponds to the separatrices, shown
with thick black lines. Interestingly, that from Eq. 5 it
follows that az/ax =

√
Izz/Ixx =

√
4/3 = 1.1547, which

explains the extend of the bulging of the part of the KEE
over the AMS along the ±H̄z direction.

In our methodology, in order to perform fast and agile atti-
tude transformations of the systems, we use IM to transfer
the system into the state, when its angular momentum
vector is sliding along the separatrix, therefore, we call
this method “insertion into separatrix”.
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(a) Spacecraft is in stable y-axis spin: thruster is used for boost.

(b) Morphing-1 is activated to initiate y flips.

(c) 180 degrees y flip is completed.

(d) Morphing-2 is activated to stop y flips.

(e) Spacecraft is in stable y-axis spin: thruster is used for braking.

Fig. 6. Example of application of inertial morphing for
inversion of the spacecraft, allowing to use the same
thruster for the boosting and braking stages.

3.6 Application of Inertial Morphing: Detailed Example-1

Figure 6 is dedicated to one (out of many) possible
applications of the IM. It illustrates inversion of the
spacecraft, using two morphing procedures: the first is to
activate unstable flipping motion and second is to stop
flipping motion. This enables for a single thruster to be
used for acceleration of the spacecraft (boosting stage, Fig.
6a) and also for its deceleration (braking stage, Fig. 6e).

To demonstrate the feasibility of the proposed application,
let us consider six-masses model of the spacecraft with
corresponding numerical parameters mx=4 kg, my=5 kg;
mz=1 kg. The key requirement to this design would be
ability of the system to re-position six paired masses (for
example, via linear actuators), in accordance to the control
considerations. Let us assume that the mission profile
would enable installment of the spacecraft with initial
predominant spin about y axis (with angular velocity ωy =
8.57 and other components of ω being small: ωx=ωz=0.01,

Fig. 7. Positions of the masses during spacecraft inversion
via IM for acrobatic manoeuvre in Fig.6).

all in rad/s). If the masses are initially positioned at
their locations, shown in Fig 7 with white spheres, with
position radii equal to rx0=548, ry0= 510, and rz0=447
mm correspondingly, then the inertial properties of the
spacecraft would be Ixx,0=3; Iyy,0=2.8; Izz,0=5 (all in
kg×m2). With these selected parameter, the y spin of the
system would be stable, as axis of rotation coincides with
the minimal inertia axis. Let assume that at the instant
t=10 s we wish to initiate flipping motion of the system.
This can be achieved by applying inertial “Morphing-1”,
during which moment of inertia Iyy should become an
intermediate axis. Aiming for the new moments of inertia
to be Ixx,1=3; Iyy,1=2.8; Izz,1=5 (kg×m2), we calculate
new radii for the masses, using the following relationships:

Ixx = 2 (my r
2
y +mz r

2
z);

Iyy = 2 (mz r
2
z +mx r

2
x); (6)

Izz = 2 (mx r
2
x +my r

2
y).

Resultant values of the new position radii, ensuring tran-
sition of the system from stable regular spin to the flip-
ping unstable motion are: rx1=581, ry1=480 and rz1=592
mm. Therefore, to trigger the spinning motion, it is just
necessary to move paired masses from initial positions
(shown in Fig. 7 with white spheres) to their new po-
sitions, shown with black spheres. For better perception
of the 3D design, an imagined semi-transparent xz plane
is added to the figure. For the system, initially satisfy-
ing Iyy,0 < Ixx,0 < Izz,0 condition, rapid assignment at
t=10 s of the new moments of inertia, satisfying now
Ixx,1 < Iyy,1 < Izz,1 condition, transfers regular y spin
motion into unstable spin. Its period can be calculated
using Eq. 1 for the corresponding regular spin condi-
tions at t=10 s: Ixx,1=3, Iyy,1=4.8, Izz,1=5, ωx1=-0.2917,
ωy1=5.0284, ωz1=-0.6714. Calculations gives us T=17.784
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(a) time history of the spacecraft inertias Ixx, Iyy , Izz ;

(b) time history of the angular velocities ωx, ωy , ωz .

(c) time history of the angular momentum H̄ components.

Fig. 8. Realisation of the spacecraft “y”-axis inversion
(shown in Fig.6) via two inertial morphings (as per
Fig.7).

s, therefore, the time to 180◦ flip would be T/2=8.8920
s. At this very moment, rapid “Morphing-2” should be
applied to stop flipping phase and stabilise the system.
For this morphing, in accordance with Trivailo & Kojima
(2017 ISSFD) any set of new moments of inertia can
be selected, strictly satisfying any of the two conditions:
Iyy,2 < Ixx,2 < Izz,2 (“solution Iyy min” strategy) or
Ixx,2 < Izz,2 < Iyy,2 (“solution Iyy max” strategy). In
one case scenario, return to the initial moments of inertia
can be implemented. However, as an additional example,
we illustrate implementation of the Ixx=3, Iyy=5.2, Izz=5
(“solution-1” strategy) scenario. To achieve these new iner-
tia characteristics, as per Eq. 6, spacecraft control masses
should be rapidly moved to their final positions: rx2=671,
ry2=374 and rz2=894 mm. The the described morphings
(achieved via controlled changes in rx(t), ry(t) and rz(t)),
time histories for the resulting moments of inertia, angular
velocity and angular momentum components are presented
in Fig. 8. Interestingly, that rapid changes in ωy and Iyy
do not lead to similar changes in H̄y. Also, as evidenced
by Fig. 8c, the total angular momentum |H̄| is conserved
during the flipping acrobatics.

The same principle can be used for complete reconfigura-
tion (“re-packaging”) of the articulated compound space-
craft, consisting, for example, of three segments A1-B1,

(a) Spacecraft is in stable spin about y body axis.

(b) Spacecraft is transferred to stable spin about x body axis.

Fig. 9. Example of application of inertial morphing for 90◦

change of the spin axis of the spacecraft.

B2-C2, C3-D3. If all of these segments are un-docked, they
can independently perform the same flipping maneuvre,
as described above, then (after stabilisation) docked to a
new configuration B1-A1, C2-B2, D3-C3. Note, that the
re-configuration can be applied to the selected segments
only and to the spacecraft with any number of segments.
For example, if only central segment B2-C2 is inverted, the
new configuration would be A1-B1, C2-B2, C3-D3.

3.7 Application of Inertial Morphing: Detailed Example-2

Figure 9 is dedicated to another possible applications of
the IM. It illustrates 90◦ change of axis of spin of the
spacecraft, using three morphing procedures: the first is
to activate unstable flipping motion; second is to switch
to x separatrix and the third is to stop tumbling motion
with transfer of spacecraft spin from y to a new nominated
body axis, being x in this illustration example. It should
be noted, that in Fig. 10 initial and final spin axes
are presented in body axis system. And in the global
axis system, due to the law of conservation of angular
momentum, both, initial and final spin orientations are
aligned with the same direction of the angular momentum
|H̄| vector.

Spacecraft morphing parameters, corresponding to Fig.9-
10, are shown in Table 1. Initially system is in stable spin
(shown as IM0 in table). IM1 was designed to insert the
system into ”y” separatrix, similar to shown in Fig.5. This
initiates a ”y” flip, during which IM2 is applied, forcing the
system to transfer to ”x” separatrix. So, this acrobatics
involves two “installments into separatrices”. Important
control consideration is: IM2 is applied at the instant when
in body axes vector |H̄| (to be displayed in boxy axes, as
in Fig.5) passes intersection of ”x” and ”y” separatrices.
IM3 is designed to stop ”x” flips in the same way as shown
in Fig.8.

4. CONCLUSION

This paper presents details of the new method of control
of the attitude dynamics of the spacecraft, which does
not require conventional gyroscopic devices, but instead
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Fig. 10. Positions of the masses during spacecraft inversion
via IM for acrobatic manoeuvre in Fig. 9.

is using inertial morphing. Resulting in a lighter and
simple hardware implementation (with simple mechanical,
electrical and/or magnetic devices, capable of changing
the mass distribution of the system), it may be used
on the smaller spacecraft. The key of the proposed ef-
ficient control method is in geometric interpretation of
the changes of the kinetic energy ellipsoid of the sys-
tem during applied inertial morphing. This interpreta-
tion enables determination of the controls for the desired
transformation of the initial attitude motion into another
type of motion with desired characteristics. This method
exploits unstable flipping motion of the system, which
occurs when the system is provided with the predominant
spin about its intermediate axis of inertia. For the desired
acrobatics, the system is deliberately transferred into the
flipping mode with the pertinent separatrices, and then is
switched to the new inertial properties at the instants,
corresponding to the intersection with the separatrices,
typically corresponding to different body axis, pertinent
to the new desired flipping direction. After the transfer
of one unstable flipping into another flipping is achieved,
the motion can be further stabilised when the angular
momentum vector reaches one of two pole positions. The
paper also presents a method of selection of the morphing
parameters to secure the flips with desired periods. To
illustrate the application of the presented methodology, an
articulated spinning spacecraft is considered. During the

Table 1. Spacecraft morphed parameters.

IM t r1 r2 r3 Ixx Iyy Izz
index s mm mm mm kg×m2 kg×m2 kg×m2

0 0 548 510 447 3 2.8 5
1 10 565 495 524 3 3.1 5
2 18.25 474 566 806 4.5 3.1 5
3 25.15 403 608 949 5.5 3.1 5
f 35.14 403 608 949 5.5 3.1 5

demonstration, its segments were disconnected, enabling
some segments to perform inversions via flips with further
inertial morphing stabilisation and finally consolidation
of the spacecraft inverted components. This can be, for
example, useful at the landing phase of the mission, when
the instruments from the central part of the spacecraft are
repositioned to the front.
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