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Abstract: This paper considers coordination control of double-integrator systems and proposes
general control laws involving time-varying inputs. The nominal control input is weighted by
time-varying (time-dependent or state-dependent) positive definite matrices, providing more
freedoms in defining the control tasks. We present sufficient conditions to ensure the asymptotic
convergence of double-integrator networked systems in this context, and support the theoretical
results by several application examples. This includes distance-based multi-agent formation
control and power network systems with unknown inertia matrices.
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1. INTRODUCTION

As a canonical example of second-order control systems,
the double-integrator is one of the most fundamental
models in control theory. It has been used extensively
in describing motion properties and design of controllers
for acceleration-driven control systems. Examples in-
clude robot manipulator dynamics Spong and Vidyasagar
(2008), vehicle dynamics Ren and Beard (2008), single-axis
spacecraft dynamics Rao and Bernstein (2001) and power
system dynamics Machowski et al. (2011); Chiang and
Alberto (2015). As compared to the single-integrator sys-
tem considered in Zhao and Sun (2017), double-integrator
models better reflect the dynamics of physical control
systems in which the control input directly relates to
forces that generate permissible accelerations. The double-
integrator systems have been studied extensively since the
early days of control theory, and a review of results on the
stability and convergence properties for such systems are
available in the literature (see Rao and Bernstein (2001)).

In recent years, double-integrator models have been
adopted in modeling networked control systems, such as
multi-agent consensus Ren (2008) and multi-robotics ren-
dezvous control Dong and Huang (2013). In particular,
double-integrator models are popular and have been stud-
ied extensively for flocking control of multi-agent systems,
partly originated by the pioneering work of Olfati-Saber
(2006); Tanner et al. (2007) and subsequent works, e.g., Su
et al. (2009); Ren and Cao (2010); Deghat et al. (2015);
Sun et al. (2017). Inspired by these prior works on rich
applications on double-integrator systems, we revisit the

? The research leading to these results has received funding from EL-
LIIT, and the Swedish Science Foundation (SSF) project “Semantic
mapping and visual navigation for smart robots” (RIT15-0038).

conventional control design for coordination control (in
e.g., Olfati-Saber (2006); Tanner et al. (2007); Deghat
et al. (2015); Sun et al. (2017)), and aim to propose a more
general feedback law that allows time-varying weighting
of control input. In many applications involving double-
integrator systems, the control input typically consists
of a velocity damping term, and a gradient-like control
term that regulates the system state to reach a control
task described by a potential function. In this paper we
generalize this conventional control law, by designing a
time-varying input for individual systems that renders
more motion freedoms and better transient behaviors.

The main contribution of this paper lies in the introduction
of a time-varying positive definite matrix weighting the
input signals, granting the systems extra motion freedoms
to locally adapt the control law and permit extra control
tasks while retaining certain stability properties. With
the time-varying input, sufficient conditions are derived to
ensure the (global) asymptotic stability of the closed-loop
system. We also propose update laws on the eigenvalues of
the time-varying weight matrix, guaranteeing asymptotic
stability of the system states and global convergence of
the spectrum of the time-varying matrix to a desired
spectrum. Therefore, we generalize the standard double-
integrator control design methodology in prior works, fa-
cilitating its use in a wide class of second-order systems.
This is demonstrated in a set of simulations, where the in-
put weighting is generalized to typical networked systems,
including double-integrator formation systems, and power
system networks with unknown inertia matrix.

Outline This paper is organized as follows. Section 2
defines the problem and gives the necessary mathematical
preliminaries. Section 3 addresses this control problem by
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generalizing the single-integrator ideas in Zhao and Sun
(2017) to the double integrator case with weighted inputs.
Section 4 demonstrates the utility of the weighted input
control in a set of networked control systems, including
multi-agent distance-based formation shape control, and
synchronization control of networks of power generators
with unknown time-varying inertia tensors. Finally, Sec-
tion 5 closes the paper with a set of conclusions.

2. PROBLEM SETUP

We consider a set of n systems with state vectors xi =
[p>i , v

>
i ]> ∈ R2d and control input ui ∈ Rd, satisfying the

double integrator dynamics p̈i = ui, or in state-space form

ẋi = Axi +Bui =

[
0 I
0 0

]
xi +

[
0
I

]
ui. (1)

The interaction between each individual system is de-
scribed by a graph G = (E ,V) with a vertex set V =
{1, · · · , n} and the edge set E ⊂ V × V. By this, we mean
that if (i, j) ∈ E , the system i has knowledge of the state of
system j. Furthermore, the number of edges in G is written
m = |E|, and we denote the set of neighbouring nodes to
system i by Ni = {j ∈ V | (i, j) ∈ E}. In the application
examples, we shall make use to both directed and undi-
rected graphs, where in the latter (i, j) ∈ E ⇒ (j, i) ∈ E .

For the stability proofs, we will use standard Lyapunov
theory, as well as the Lemma of Barbalat in the slightly
modified form, originally in Micaelli and Samson (1993).

Lemma 1. (Micaelli and Samson (1993)). Let f : R+ → R
be any differentiable function. If limt→∞ f(t) = 0, and

ḟ(t) = f0(t) + η(t), t ≥ 0, (2)

where f0(t) is a uniformly continuous function and

limt→∞ η(t) = 0, then limt→∞ ḟ(t) = limt→∞ f0(t) = 0.

With this brief background, the problem addressed in this
paper can be stated in the following general form.

Problem Formulation Assume a set of initial conditions,
xi(t0) = x0,i, i = 1, ..., n, and a graph, G, describing the
system interactions. Find a decentralized feedback law to
for the system (1) minimizing a potential function V (e(p))
of the position p, expressed in terms of an error e(p),
while permitting the control action for each system to be
weighted locally and dynamically, such that despite the
input weighting, (e, v)→ (0, 0) for all i ∈ 1, ..., n as t→∞.

3. CONTROL WITH WEIGHTED INPUTS

Before considering a multi-agent problem formulated in
the previous section, we address the problem of controlling
the double integrator by generalizing the single-integrator
framework in Zhao and Sun (2017) to a non-autonomous
double integrator setting, where a time-varying positive
definite matrix is acting on the input signals. The goal is
to establish sufficient conditions on this weight matrix for
asymptotic stability in the resulting closed-loop system,
thereby enabling a richer class of application examples.

3.1 Main results

The first main result of this paper is presented as follows.

Theorem 1. Consider a control task defined in terms of a
potential function V (e), a positional error e(p) and some
time-varying positive definite matrix 0 ≺ D(t) = D(t)>.
Assume that

(A1) The potential function V (e) is positive definite, con-
tinuously differentiable and radially unbounded, its
level sets are compact, and ∇pV (e) = 0⇔ e = 0;

(A2) The gradient of the potential function, ∇pV (e), is
uniformly continuous if e and v are bounded;

(A3) The matrix D satisfies 0 ≺ 2kDD+Ḋ, Ḋ is uniformly
continuous, and the spectral radius ρ(D) ≤ C for tow
constants k,C > 0.

Given these assumptions, the feedback law

u(t) = −D(t)(∇pV (e(t)) + kv(t)) (3)

applied to the double integrator model

ṗ = v, (4a)

v̇ = u, (4b)

yields a globally asymptotically stable (GAS) equilibrium
point in (e, v) = (0, 0).

Proof. With the proposed feedback, we obtain

ṗ = v, (5a)

v̇ = −D(∇pV (e) + kv). (5b)

Consider the Lyapunov function candidate

W = V (e) + (1/2)v>D−1v. (6)

Differentiation of W along the trajectories of (5) yields

Ẇ =(∇pV (e))>ṗ+ v>D−1v̇ + (1/2)v
(
d(D−1)/dt

)
v

=(∇pV (e))>v+v>(−∇pV (e)−kv)−(1/2)vD−1ḊD−1v

=− v>(kI + (1/2)D−1ḊD−1)v ≤ 0, (7)

for all

0 � kI + (1/2)D−1ḊD−1 ⇔ 0 � 2kDD + Ḋ. (8)

Since Ẇ is negative semi-definite and D is bounded,

W (t0) ≥ V (e) + (1/2)v>D−1v (9a)

≥ V (e) + (1/2)v>ρ(D)−1v (9b)

≥ (1/2C)v>v, (9c)

or equivalently ‖v(t)‖22 ≤ 2CW (t0) ∀t ≥ t0. Furthermore,

Ẅ =2v>(kI + (1/2)D−1ḊD−1)D(∇pV (e) + kv)

+ v>D−1(ḊD−1Ḋ − (1/2)D̈)D−1v. (10)

Consequently, uniform continuity of Ḋ implies that Ẅ is
bounded when differentiated along the trajectories of (5),

since v is bounded by (9). Therefore, Ẇ is uniformly
continuous along the trajectories of (5). Subsequent ap-
plication of Barbalat’s lemma in Barbălat (1959), yields

lim
t→∞

Ẇ = 0⇒ lim
t→∞

v = 0⇒ lim
t→∞

v̇ = 0. (11)

Furthermore, since 0 ≺ D, there exists no solution 0 = Dx
unless x = 0, which means that Dv = 0 ⇔ v = 0 and
D∇pV (e) = 0 ⇔ ∇pV (e) = 0 ⇔ e = 0 by (A1). Invoking

Theorem 1, one has limt→∞ η(t) = limt→∞ ḟ(t) = 0
by (11), and uniform continuity of ∇pV (e) then implies,

lim
t→∞

D∇pV (e) = 0⇔ lim
t→∞

∇pV (e) = 0⇔ lim
t→∞

e = 0

and (5) is GAS at the equilibrium point (e, v) = (0, 0). 2

Remark 2. Note that it is possible to retain stability while
adapting D, provided that the constraints posed in (A3)
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of Theorem 1 are satisfied. Consequently, we can steer the
eigenvalues of D by feedback, so as to always satisfy these
conditions, granting substantial freedoms in the design of
the transient behavior of the error dynamics.

Proposition 3. Let D(t) = QΛ(t)Q> ∈ Rd×d where
Λ(t) = diag(λ1(t), · · · , λd(t)). Consider a target eigen-
value matrix, with a set of target eigenvalues as Λf =
diag(λf1, · · · , λfd). Assume that 0 ≺ Λ(t0), 0 ≺ Λf , and
τ,M > 0. Granted these assumptions, the feedback law

λ̇j(t) = (1/τ)tanh(M [λfj − λj(t)])[λfj − λj(t)]2, (12)

yields D(t)→ QΛfQ
> as t→∞, while ensuring that (A3)

in Theorem 1 is met at all times provided 2kτ > 1.

Proof. Let ej(t) = λfj−λj(t) and consider the Lyapunov
function candidates Vj(ej) = (1/2)e2j , for j = 1, · · · , d.
When differentiated along the solutions of (12), we obtain

V̇j = −(1/τ)tanh(Mej)e
3
j < 0, (13)

for all ej 6= 0, as tanh(Mej)e
3
j ≥ 0. Consequently, each

subsystem in (12) has a globally asymptotically stable
equilibrium point in ej = 0 ⇒ λj(t) = λfj by Theorem
4.2 in Khalil (2002), and D(t)→ QΛfQ

> as t→∞.

To show that the conditions (A3) in Theorem 1 are

satisfied, note that V̇j ≤ 0 ⇒ Vj(t) ≤ Vj(t0) ∀t ≥ t0.
Therefore, ρ(D(t)) ≤ max{ρ(Λ(t0)), ρ(Λf )} ∀t ≥ t0, and

|λ̈j | = | − (1/τ)Msech2(Mej)e
3
j − (3/τ)tanh(Mej)e

2
j |,

≤ (1/τ)(|Me3j |+ |3e2j |), (14a)

≤ (1/τ)(|M(2Vj(t0))3/2|+ |6Vj(t0)|), (14b)

for all t ≥ t0, implying that D̈(t) = QΛ̈(t)Q> is bounded

in the spectral norm, and that Ḋ is uniformly continuous.

Finally, we consider the matrix inequality in (A3), where

0� 2kDD+Ḋ⇔ 0≤ 2kλ2j + λ̇j ∀j = 1, ..., d, t≥ t0. (15)

Note that the conditions 0 ≺ Λf and 0 ≺ Λ(t0) can
be equivalently stated as 0 < λj(t0), 0 < λfj ∀j =

1, ..., d, t ≥ t0. Now, if λfj ≥ λj , λ̇j ≥ 0 and the matrix
inequalities in (A3) hold trivially at all times t ≥ t0. If

instead λfj < λj(t), then λ̇j ≤ 0 ∀ t ≥ t0, and

λ̇j ≥ −(1/τ)(λfj − λj)2 ≥ −(1/τ)λ2j ≥ −2kλ2j , (16)

if 1 ≤ 2kτ . Given this relation between k and τ , we note
that 0 ≤ 2kλ2j + λ̇j for all initial conditions λj(t0) > 0 and
all terminal configurations λfj > 0, hence the assumptions
in (A3) of Proposition 1 hold at all times by (15). 2

3.2 Numerical simulations

To demonstrate the eigenvalue update law in Proposi-
tion 3, consider a single eigenvalue system (one of the
eigenvalues of D) driven between various set-points as

depicted in Fig. 1. Note that λ̇(t) ≥ −(1/τ)λj(t)
2 at all

times, and that the bound is close to tight on t ∈ [9, 10],
on which λfj = 0⇒ ej = −λj .
With this eigenvalue update law, we can consider dynam-
ically updating the input weighing matrix in a double
integrator context. To illustrate this, consider a positional
error defined in terms of a stationary reference position,
e = p − pr, and a potential function V (e) = ‖e‖42 + ‖e‖22,

Fig. 1. Top: One of the eigenvalue trajectories, λj(t),
when using the general feedback in Proposition 3 and
switching the reference eigenvalue λfj in time. Bot-
tom: Illustration of the associated matrix inequality.

which meets the conditions (A1) of Theorem 1. Further-
more, the gradient is ∇pV (e) = (4‖e‖22 + 2)e, whereby

d∇pV (e)

dt
= (4‖e‖22 + 2)v + 8(e>v)e, (17)

which is bounded if e and v are bounded. Hence, the
gradient is uniformly continuous and condition (A2) in
Theorem 1 is also satisfied. Finally, the third condition
(A3) can be met by using any weight matrix D computed
by the proposed eigenvalue update law in Proposition 3.

To demonstrate the input weighting, the initial conditions
of the double integrator system are randomized. The
eigenvalues defining D(t0) are randomized on the interval
λj(D(t0)) ∈ (0, 1] and a random orthogonal basis Q
is chosen. Given this initialization, the system response,
Lyapunov function W (e, v) as defined in (6) and the
matrix elements of D(t) are depicted in Fig. 2. The
Lyapunov function is strictly decreasing and the system
states converge to the equilibrium point (p, v) = (pr, 0).

4. NETWORKED DOUBLE-INTEGRATOR
CONTROL SYSTEMS WITH WEIGHTED INPUTS

Next we demonstrate the practicality of the input weight-
ing and the freedom it provides in a distributed controller
design and networked control systems modelled by double-
integrator dynamics. Two main application examples will
be considered. The main results in the last section are first
generalized to input-weighted distance-based formation
control of multiple double integrator systems, where the
time-varying weight matrix D can be used to locally mod-
ify the control law so as to incorporate other tasks such
as obstacle avoidance. Then, the approach is generalized
to the design of synchronizing a set of networked power
generators with unknown time-varying inertia tensors.

4.1 Distance-based formation control with weighted inputs

The main result in Theorem 1 can be applied to distance-
based formation control, where a set of n double-integrator
agents, p̈i = ui, i = 1, ..., n, are to converge to a predefined
formation shape defined by a set of desired distances
dij , using only local information from neighboring agents.
However, this assumes that the graph G defining these
neighbor sets is undirected and rigid, c.f., Sun et al. (2017).
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Fig. 2. Top left : Positional response Top right : Velocity
response. Bottom left : Lyapunov function in the 10-
logarithm. Bottom right : matrix elements of D(t).

To see this, consider a set of m squared distance errors,
ek = ‖pi − pj‖2 − d2ij , for each edge (i, j) ∈ E , and define

e = [e>1 , · · · , e>m]> ∈ Rdm. The potential function for
formation shape stabilization is given by

V (e) =
1

4

∑
(i,j)∈E

(‖pi − pj‖2 − d2ij)2 =
1

4
e>e. (18)

In addition, define the concatenated vectors and matrix

p = [p>1 , · · · , p>n ]> ∈ Rdn, (19a)

v = [v>1 , · · · , v>n ]> ∈ Rdn, (19b)

u = [u>1 , · · · , u>n ]> ∈ Rdn, (19c)

D = blockdiag(D1, · · · , Dn) ∈ Rdn×dn. (19d)

Note that if D(t) = QΛ(t)Q> = blockdiag(Di, · · · , Dn),
and each Di(t) = QiΛi(t)Q

>
i , then

Q = blockdiag(Q1, · · · , Qn),

Λ = blockdiag(Λ1, · · · ,Λn).

Now, with a feedback law u(t) = −D(t)(∇pV (e)+kv), the
closed-loop double-integrator formation system is

ṗ(t) = v(t) (20a)

v̇(t) = −D(t)(∇pV (e) + kv) (20b)

It is clear that the time-derivative of the gradient of the
potential function d∇pV (e)/dt = (1/2)e>ė is bounded,
as e and v are bounded, hence the gradient is uniformly
continuous in time, and (A2) in Proposition 1 holds.

Next, consider the matrix inequality condition in (A3) of
Proposition 1. Since D admits a spectral decomposition,

0 ≺ 2kDD + Ḋ ⇔0 ≺ 2kΛΛ + Λ̇ (21a)

⇔0 ≺ 2kΛiΛi + Λ̇i ∀i ∈ 1, · · · , n (21b)

⇔0 ≺ 2kDiDi + Ḋi ∀i ∈ 1, · · · , n (21c)

and if each Di(t) = QiΛi(t)Q
>
i for system i satisfies the

matrix inequality in (A3), then D necessarily satisfies the
same inequality. Furthermore, it is clear that ρ(D) =

maxi∈[1,n](ρ(Di)) ≤ C and Ḋ is uniformly continuous if Ḋi

is uniformly continuous for all i = 1, ..., n. Consequently, if
the conditions (A3) in Theorem 1 hold for each individual
Di, then they will necessarily hold for D.

As discussed in Deghat et al. (2015); Sun et al. (2017), the
nominal double-integrator formation system (with Di =
In, ∀i) is locally asymptotically stable in the sense that
v → 0 and e → 0 and all agents locally converge to a
desired formation shape. However, we have shown that the
conditions (A1)-(A2) in Theorem 1 are satisfied, and (A3)
holds if satisfied for each individual Di(t). This leads to a
more general statement summarized below.

Proposition 4. The desired equilibrium point (e, v) =
(0, 0) is asymptotically stable for the formation control
system in (20) with time-varying inputs, provided each
individual Di(t) satisfies assumptions (A3) in Theorem 1.

Remark 5. Note that the update law for system i becomes

ui(t) = −Di(t)(∇pi
V (e(t)) + kvi(t)), (22)

and can be implemented in a decentralized fashion, per-
mitting local updates of Di(t) using Proposition 3.

We now present a numerical example to illustrate the
above result. Consider a 4-agent formation system with
six edges, while the desired distances for the six edges are
d = [3, 4, 3, 4, 5, 5]>. The control action is implemented in
a distributed manner by (22). For simulation purposes we
choose random Qi, and the time-varying input gain matrix
Di(t) = Qidiag(λi1, · · · , λid)Q>i is updated by λij(t) = 1−
e−t+λij(0)e−t with random positive 0 < λij(0) < 1, which
then satisfies the condition in (A3) of Theorem 1. As shown
in Fig. 3, under the double-integrator formation systems
with time-varying input, the target formation shape is
asymptotically achieved and all distance errors converge
to zero. Furthermore, in the second simulation depicted
in Fig. 4, the weight associated with the control signal of
system i = 1 is instead modified so as to approach a small
positive value using the feedback in Proposition 3. This
drastically changes the convergence behaviour, and the
systems instead converge to the desired shape in a location
closer to agent i = 1. Such a weight updating strategy
can be used to achieve additional control objectives such
as collision avoidance (for agents 1 and 2 in the example
shown in Fig. 4) or adjusting the traveling distances
between different agents.

4.2 Synchronization of power generators with unknown
time-varying inertia tensors

Yet another interesting application example pertains to
the synchronization of power generators with an unknown
time-varying inertia Ji(t) = Ji(t)

> � 0, and dynamics

ṗi(t) = vi(t), (23a)

Ji(t)v̇i(t) = ui(t). (23b)

In this example we will assume no knowledge of Ji(t), apart
from the existence of a constants k,Ci > 0, s.t.,

− 2kI ≺ J̇i(t), sup
t0≤t

ρ(Ji(t)) ≤ Ci, (24)
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Fig. 3. Convergence of a 4-agent formation system mod-
elled by double-integrator equations with sinusoidal
time-varying weights acting on the input. Top: Posi-
tional trajectories. Bottom: Distance errors.

Fig. 4. Convergence of a 4-agent formation system where
the weight D1 associated with system i = 1 is adapted
locally to become small in the spectral norm. Top:
Positional trajectories. Bottom: Distance errors.

and that J̇i(t) is uniformly continuous for all i = 1, · · ·n.
Just as in the previous example, we let the systems
be configured in pi ∈ Rd. The can be viewed as a
power network system with linearized swing equations
Machowski et al. (2011); Goldin (2013), in which the
gradient vector term ∇pV (e) is described by ∇pV (e) =∑

j∈Ni
(pi − pj). Given that the connectivity is described

by a connected graph G, our goal is to design a control law
to reach state synchronization without knowing Ji(t).

To make use of Theorem 1, we first concatenate the system
state vectors and control signals as in (19a)-(19c), we
let ek = pi − pj , for each edge (i, j) ∈ E , and define
e = [e>1 , · · · , e>m]> ∈ Rdm with a configuration error
defined as in (18). Similarly to (19c), we define matrix

J = blockdiag(J1, · · · , Jn) ∈ Rdn×dn. (25)

Consider a feedback similar to that in the previous section,

u = −∇pV (e)− kv. (26)

The closed-loop system becomes

ṗ(t) = v(t),

v̇(t) = J(t)−1u(t) = −J(t)−1(∇pV (e) + kv),

which is recognized as the form in (5) but with D(t) =

J(t)−1. Furthermore, we see that if −2kI ≺ J̇i(t), then

−2kI ≺ J̇i(t)⇔ 0 ≺ 2kD(t)D(t) + Ḋ(t)

Uniform continuity of D follows from the uniform conti-
nuity of J , and since J is positive definite, D is neces-
sarily bounded in the spectral norm. Therefore, the non-
restrictive assumptions posed on J in (23a) are equivalent
to D satisfying the conditions in (A3) of Theorem 1. As in
the previous example, conditions (A1) and (A2) are met.

Proposition 6. The feedback law in (26) yields an asymp-
totically stable equilibrium point (state synchronization)
in (e, v) = (0, 0) for the double-integrator system (23a),
without inertia needing to be known, provided (24) holds.

To illustrate this, consider a cyclic graph of m = n = 10
double integrator systems in d = 3 dimensional space (see
Fig. 5), where each double integrator has an associated
time-varying inertia tensor Ji(t). The initial states of
each integrator system are sampled from a unit Gaussian
distribution, and the eigenvalues of the matrices Ji(t) are
randomized on the interval [1/2, 1] and formed with a
random time-invariant bases Qi, also chosen at random.
The gain is chosen as k = 2, and new reference eigenvalues
λfj are chosen for the inertia tensor inverses D(t) =
Ji(t)

−1 at the times ts = {4, 8, 12}, and the inertia
tensors are changed by application of the update law in
Proposition 3 toD(t) = J(t)−1, with smallest possible gain
τ = (2k)−1, such that the condition (A3) is satisfied at all
times. We stress that the inertia tensors are completely
unknown to the systems, and that the double integrator
feedback law is implemented in a distributed manner.

The system response is illustrated in Fig. 6. It is clear
that the overall system reaches a stable synchronization
equilibrium where pi = pj for all i = 1, · · · , n and
j = 1, · · · , n, where then e = 0 and v = 0, implying
state synchronization is achieved. The Lyapunov function
W (e, v) is monotonically decreasing in time, despite the
rapidly changing time-varying inertia tensor inverses.
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Fig. 5. Connectivity in the considered generator network.

Fig. 6. Top: Positional and velocity response. Bottom
center: The Lyapunov function W (e, v) in the 10-
logarithm, the system converges to a consensus where
e ≡ 0. Bottom: The eigenvalues of each D(t) =
J(t)−1, here updated in time using Proposition 3 to
satisfy assumption (A3) in Proposition 1 at all times.

5. CONCLUSION

In this paper we consider coordination control of double-
integrator systems while the acceleration-driving input is
weighted by time-varying matrices. The introduction of
the time-varying input weight allows more freedoms in
the control design, and can be used to locally and dy-
namically regulate transient behaviours by a time-varying
gain matrix. We provide a sufficient condition on the time-
varying matrix that ensures the asymptotic convergence
of double-integrator systems under time-varying input.
Typical examples that demonstrate the applications of
the double-integrator systems in distributed control and
networked systems are shown to support the results.
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