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Abstract: In previous work, we have developed mathematical tools for the analysis of single-cell
gene expression data from population snapshots, and an inference algorithm for the estimation
of stationary statistics of promoter activation. In this work, we address the inference problem in
the nonstationary case of modulated processes. This is of special relevance to control scenarios,
where an exogenous input modulates the time evolution of promoter activation. We provide
an effective method for the computation of the output statistics of a reaction network with a
nonstationary, causal input process of modulated form. Based on this we devise and demonstrate
an algorithm for the reconstruction of the promoter (input) process statistics from snapshot data.

Keywords: Reporter gene systems, Controlled Markov chains, Regularized estimation, Splines

1. INTRODUCTION

Noise in gene expression is at the roots of important phe-
nomena in cell life and evolution, such as bet-hedging and
the emergence of specific gene regulatory patterns (Raj
and van Oudenaarden, 2008; Rao et al., 2002). Its charac-
terization is thus key for understanding cellular dynamics,
and it has been the object of intense investigation (Thattai
and van Oudenaarden, 2001; Paulsson, 2005; Swain et al.,
2002; Kaern et al., 2005) . Among the frontiers of systems
and synthetic biology is control of gene expression (Uh-
lendorf et al., 2012; Chait et al., 2017; Milias-Argeitis
et al., 2016). A primary objective of control is the explo-
ration of cellular dynamics. In particular, control enables
a deeper investigation of gene expression noise. This calls
for the development of statistical analysis and inference
methods (Komorowski et al., 2009; Munsky et al., 2009;
Neuert et al., 2013; Ocone et al., 2015) where the presence
of control is explicitly accounted for.

In previous work (Cinquemani, 2019), we have addressed
inference of promoter activity statistics from gene expres-
sion population-snapshot data, that is, measurements of
the statistical distribution of the gene expression product
in samples from the cellular population collected at differ-
ent times (Hasenauer et al., 2011). We framed the problem
in the context of (first-order) stochastic reaction networks
with a causal input on reaction rates, and developed Gen-
eralized Moment Equations (GMEs), a marginalized form
of the well-known Moment Equations (MEs, see e.g. Lestas
et al. (2008)) that describes the statistics of the network
state process as a function of the input process statistics.
We then used the GMEs to devise a method to reconstruct,
in particular, the autocovariance function of an arbitrary
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stationary promoter process. Unfortunately, the method
does not apply to controlled gene expression processes, due
to the typical nonstationarity of the control action.

In this work, we propose a generalization of the methods
in Cinquemani (2019) to modulated input processes (Zhao
and Li, 2013). With this terminology we refer to station-
ary processes reshaped by a time-varying signal. In their
matrix formulation, modulated processes account for a
variety of scenarios of special relevance to gene expression,
where a control input acts as an additive or multipicative
factor on random gene expression noise (see e.g. Munsky
et al. (2009); Uhlendorf et al. (2012); Milias-Argeitis et al.
(2016)). Based on a very flexible characterization of mod-
ulating functions via splines, we develop a strategy for
the efficient numerical solution of GMEs in presence of
modulated inputs. Then, we extend the inference method
in Cinquemani (2019) to the estimation of modulated pro-
cess statistics, and discuss reconstruction performance and
the role of the modulating input via numerical simulations.

GMEs are reviewed in Sec. 2. The inference problem and
method developed for stationary promoter processes in
discussed is Sec. 3. Modulated input processes as well as
an effective solution of the corresponding GMEs are pre-
sented in Sec. 4. The novel, generalized inference method
is then presented in the same section. Numerical simu-
lations demonstrating the method are in Sec. 5. Finally,
conclulsions are drawn in Sec. 6.

Notation: N, Z, R and R+ denote natural, integer, real and
nonnegative real numbers, respectively. For a set T ⊂ R,
1T (·) is the indicator function of T , and 1(·) is the unit
step function 1[0,+∞)(·). || · || denotes Euclidean norm. For
two random vectors X and Y , E[X] denotes expectation of
X, Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])T ] (superscript
“T ” denoting transposition) and Var(X) = Cov(X,X).
P[ · ] denotes probability.
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2. GENERALIZED MOMENT EQUATIONS

A reaction network is a family of n ∈ N chemical species
and m ∈ N reactions that may occur among them in
a given reaction volume. At a time t, let Xi(t), with
i = 1, . . . , n, be the number of molecules of the ith species.
Let Sj , with j = 1, . . . ,m, be the column vector whose
ith row is the net change in Xi when reaction j occurs.
S = [S1 · · · Sm] ∈ Zn×m is the network stoichiometry
matrix. Assuming a well-stirred reaction volume, X =
[X1 · · · Xn]T can be modelled as a Markov process, with

P[X(t+ dt) = x+ Sj |X(t) = x] = wj(x, t)dt+ o(dt),

where the functional form of the reaction rates (propen-

sities) w(x, t) = [w1(x, t) · · · wm(x, t)]
T

is typically fixed
by the mass-action laws (Gillespie, 1992), and o(dt) tends
to 0 faster than dt. We consider the case where rates are
affine functions of the state,

w(X, t) = WX(t) + F (t), (1)

with W ∈ Rm×n+ a constant matrix and F (t) some ex-
ogenous input taking values in Rm+ . This captures zeroth-
and first-order reactions and suffices to describe many
biochemical processes of interest (notably gene expression)
in an exact or approximate manner (Kaern et al., 2005;
Thattai and van Oudenaarden, 2001). Depending on the
context, F may represent environmental perturbations,
intracellular regulation, or control.

Let µ(t) = E[X(t)], Σ(t) = Var
(
X(t)

)
. Given S, func-

tions w(·, ·) and a deterministic function F (·), the time
dynamics of µ and Σ (and of higher-order moments) are
described by a well-known set of Ordinary Differential
Equations (ODEs) called the Moment Equations (MEs),
see e.g. Lestas et al. (2008). For the more general case
considered in this paper, where F (t) is a stochastic (vector)
process with well-defined second-order moments, let us fur-
ther define µF (t) = E[F (t)], ρF (t, τ) = Cov

(
F (t), F (τ)

)
,

ξF (t) = Cov
(
X(0), F (t)

)
. In Cinquemani (2019), we

proved in particular the following result.

Proposition 1. Assume that first- and second-order mo-
ments of F are uniformly bounded. Then, for t ≥ 0,

µ̇(t) = SWµ(t) + SµF (t), (2)

Σ̇(t) = SWΣ(t) + Σ(t)WTST +Q(t)+ (3)

Vξ(t) + V Tξ (t) + Vρ(t) + V Tρ (t),

where, denoting `(t) = exp(SWt)1(t),

Q(t) = Sdiag
(
Wµ(t) + µF (t)

)
ST , (4)

Vξ(t) = SξF (t)T `(t)T , (5)

Vρ(t) =

∫ +∞

0

dτSρF (t, τ)ST `(t− τ)T . (6)

We call Eq. (2)–(3) the Generalized Moment Equations
(GMEs). For F a deterministic profile (that is, F = µF ,
ρF = 0, ξF = 0), they reduce to the standard MEs. Note
that the result holds irrespective of F being Markovian or
stationary, however, a form of stochastic causality between
the input process F and the state process X is subsumed
by the definition of the rate functions (1) (see Cinquemani
(2019)). Crucially, GMEs are linear in the input statistics
µF , ρF and ξF . As discussed in the sequel, this fact
enables the development of efficient methods for practical
applications.

3. INFERENCE OF PROMOTER STATISTICS

At the single-cell level, gene expression is well described
by the so-called random telegraph model, i.e. the reaction
network defined by the four stochastic reactions

∅ kM ·U−−−→M, M
dM−−→ ∅,

M
kP−−→M + P, P

dP−−→ ∅
(7)

(Kaern et al., 2005; Paulsson, 2005), where M and P
denote mRNA and protein species, respectively, while θ =
(kM , dM , kP , dP ) are positive rate parameters. The binary
random process U describes the state of the promoter that
controls gene expression. Let X1 and X2 be the number
of mRNA and protein molecules, respectively. Ordering
reactions (7) from left to right, then top to bottom,

S =

[
1 −1 0 0
0 0 1 −1

]
.

Moreover, the rate equations are as in (1), with

W =

 0 0
dM 0
kP 0
0 dP

 , F (t) = KU(t), K =

kM00
0

 .
The random outcomes of the joint process (U,X) may be
thought of as different gene expression time profiles in
different cells of a genetically homogeneous population.
Randomness of U accounts in particular for different
activation profiles and can be interpreted as extrinsic
noise (Swain et al., 2002).

In order to study the expression of a gene of interest, it is
possible to engineer cells such that P is a fluorescent pro-
tein (see e.g. de Jong et al. (2010)). Then, individual-cell
fluorescent protein levels X2(t) can be quantified by means
of videomicroscopy or flow-cytometry. In particular, this
allows one to get population snapshots of gene expression
distribution at different times. We focus on the empirical
mean and variance of gene expression snapshots, which
provide noisy measurements of the mean and variance of
X2. Denoting these measurements with µ̃k and σ̃2

k, for a
sequence of measurement times tk with k = 1, . . . ,M ,

µ̃k = Cµ(tk) + eµk , (8)

σ̃2
k = CTΣ(tk)C + eσk , (9)

where C = [0 1]T selects from µ and Σ the mean and
variance of the protein count X2 (the proportionality
factor relating X2 with observed fluorescence is ignored
for simplicity). Measurement errors eµk and eσk can be
statistically characterized (Zechner et al., 2012).

3.1 Inference of the statistics of a stationary process

On the basis of the gene expression model above (with
known parameters θ), in Cinquemani (2019), a method for
the reconstruction of the second-order statistics of the pro-
moter state process U from snapshot data was developed
for the case where U is stationary. In particular, under a
few assumptions (notably X(0) = 0, as met by appropriate
experiments, which implies Vξ = 0 in (3)) the method
leverages the linearity of the GMEs (2)–(3) in µF and ρF
to infer the (scalar-valued) stationary autocovariance func-
tion ρ̄U (·) = Cov

(
U(t + ·)U(t)

)
from measurements (9),

without any mechanistic model for U . The interest of
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this problem is that the autocovariance function carries
information about hidden regulatory processes, and its
reconstruction from data is thus an important first step
in characterization of gene expression. Notice that

µF (t) = Kµ̄U , ρF (t+ δ, t) = Kρ̄U (δ)KT , (10)

so that linearity of (2)–(3) in µF and ρF implies their
linearity in µ̄U and ρ̄U . Assuming identification of the
unknown constant µ̄U from the mean data (8) and Eq. (2)
in a preliminary step, the method seeks the autocovariance
function ρ̄U such that the corresponding solution of (3)
best fits the measurements (9) in a Least-Squares (LS)
sense. This is done via a finite expansion of the unknown
autocovariance function. Let R(δ) = [r1(δ), . . . , rN (δ)]T

be N appropriately chosen functions such that the convex
cone generated by R approximates well the space of
stationary autocovariance functions. Then, for some vector
of nonnegative coefficients c = [c1, . . . , cN ]T , the equation

ρ̄U (δ) = c1r1(δ) + . . .+ cNrN (δ) = R(δ) · c (11)

holds with good approximation at all time lags δ. For
inference purposes, R is fixed a priori, and c is the quantity
to be determined from the data. For any t ≥ 0, let
Σ̂(t|ρ̄U , µ̄U ) denote the solution Σ(t) of the GMEs (2)–
(3), with µF and ρF as in (10), as a function of µ̄U
and ρ̄U . Define V (·) = [v1(·), . . . , vN (·)] where, for every

l, vl(·) = CT Σ̂(· |rl, 0)C, and v0(·) = CT Σ̂(· |0, µ̄U )C.
Using (11), in view of the linearity of the GMEs, it holds

that CT Σ̂(t|ρ̄U , µ̄U )C = v0 + V (t) · c. Therefore, the LS
estimate ĉ of c from data (9) can be written as

inf
c∈RN

+

M∑
k=1

α2
k

(
σ̃2
Y (tk)− v0(tk)− V (tk)c

)2
, (12)

where the weights αk = std(eσk)−1 are known (Zechner
et al., 2012). The estimate of ρ̄U is then defined as ρ̂U =
R · ĉ. In Cinquemani (2019), additional constraints and
a regularization term are introduced to ensure that the
problem is well-posed (De Nicolao et al., 1997) and that ρ̂U
is a well-defined autocovariance function, while preserving
convexity of the optimization problem.

The viability of the method crucially depends on the
ability to compute the transforms V of the approximating
functions R. For a convenient choice of univariate, scalar-
valued functions rl (notably, indicator functions), the
integral term Vrl(t) (see Eq. (6)) can be written out as an
explicit function of t. In turn, for every l, this allows one to
calculate the basis function transform vl(tk) at all times tk
by standard numerical integration of (3) (with rl in place
of ρ̄U ), leading to an efficient numerical implementation of
the inference method (see Cinquemani (2019) for details).

4. EXTENSION TO MODULATED PROCESSES

We now want to pursue the efficient solution of the GMEs
and a method for reconstruction of input process statistics
from snapshot data in the case where the input process F
is subjected to a control signal. We look at a specific class
of nonstationary processes, which we refer to as modulated
processes (Zhao and Li, 2013):

F (t) = G(t)E(t), (13)

where E(t) is a second-order stationary (vector) process
taking values in Rq and G(t) is a deterministic (matrix)

function of time taking values in Rm×q. If µ̄E and ρ̄E(·)
are respectively the stationary mean and stationary auto-
covariance function of E, then

µF (t) = G(t)µ̄E , ρF (t, τ) = G(t)ρ̄E(t− τ)G(τ)T . (14)

This case is of relevance, in particular, for gene expression
models. Indeed, thanks to its general matrix-vector form,
Eq. (13) includes as special cases additional and multi-
plicative forms of promoter regulation and control, acting
at the level of basal expression rate or in terms of expres-
sion strength (see e.g. Chait et al. (2017); Berthoumieux
et al. (2013); Fiore et al. (2016)).

Here, we limit ourselves to the case where the control
signal G(t) is known. For simplicity we focus on the case
where E is a scalar process (q = 1). The approach we take
is analogous to the one reviewed in the previous section.
For a given G(t), we aim at reconstructing the stationary
autocovariance ρ̄E from variance measurements (9) by a
LS approach, leveraging the GMEs (2)–(3) and (14). (As
above, we assume that the constant µ̄E is identified from
mean data in a preliminary step). From an estimate of ρ̄E ,
an estimate of the nonstationary ρF follows via (14).

Given functions R for the finite expansion of ρ̄E , the
main challenge in the new scenario is the computation
of the transformed functions V . Formally, these are still
given by vl = CT Σ̂(· |rl, 0)C, where, in the light of (14),

Σ̂(· |r,m) now expresses the solution of (2)–(3) relative to
a hypothetical mean m and autocovariance function r of
E. In practice, though, calculating Σ̂(· |r,m) by numerical
integration of (2)–(3) requires evauation at all times t of
the integral term (6), which is now

Vρ(t) =

∫ +∞

0

dτSG(t)ρ̄E(t− τ)G(τ)TST `(t− τ)T . (15)

For a generic G(t), this term cannot be written as an
explicit function of t. To solve the GMEs, the idea is then
to express Vρ itself as the solution of a system of differential
equations to be numerically solved jointly with (2)–(3).
For convenient classes of functions G(t) (possibly used
as approximations of more general functions) this is the
subject of the section that follows.

4.1 Computation of the approximating function transforms

For a modulated process (13), eliminating τ from (15) by
the change of variable δ = t − τ , one finds that, for a
generic function r in place of ρ̄E ,

Vr(t) = SG(t)

∫ t

0

dδr(δ)G(t− δ)TST `(δ)T

= SG(t)H0,r(t), (16)

where H0,r(t) is defined as the integral in the first line.
We aim at giving a differential expression to H0,r(t). For

later use, for indices i such that the ith derivative G(i)(·)
of G(·) exists, define

Hi,r(t) =

∫ t

0

dδr(δ)G(i)(t− δ)TST `(δ)T , (17)

which is also consistent with the above definition of H0,r.
For ease of notation, we will now temporarily write Hi in
place of Hi,r.
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Proposition 2. Suppose that G(t) is a matrix of polynomi-
als of order up to d− 1. Then, for t ≥ 0,

Ḣi(t) = r(t)G(i)(0)TST `(t)T +Hi+1(t), Hi(0) = 0,
(18)

with i = 0, 1, . . . , d− 2, and

Ḣd−1(t) = r(t)G(d−1)(0)TST `(t)T , Hd−1(0) = 0. (19)

Proof: For any i, the derivative of (17) is [r(δ)G(i)(t −
δ)TST `(δ)T ]δ=t +

∫ t
0
dδ ddt [r(δ)G

(i)(t− δ)TST `(δ)T ], which

is (18). For i = d − 1, since G(d)(t) = 0 for all t, the
above gives (19). The initial conditions Hi(0) = 0 are an
immediate consequence of (17).

Eq. (18)–(19) constitute an ODE system for H0(t), as
desired. In practice, though, the utility of this result is
limited. In general G(t) may not be made of polynomials,
and a polynomial approximation of a function over an
interval generally requires polynomials of high degree.
This would lead to a blow-up of the differential system
size, which increases with d. It turns out that the above
result can be extended to splines, a class of piecewise
polynomial functions that are well suited to function
approximation. In particular, suppose that the entries of
G are piecewise polynomials of order up to d − 1, with
continuous derivatives up to G(d−2) (Wahba, 1990). Let
the knots (points of junction of the different polynomials)
be placed at T1, . . . , Tp, with T1 < T2 < . . . < Tp (without
loss of generality, we assume all entries of G to have equally
placed knots). Notice that, for some constant matrices Gj ,

G(d−1)(τ) =


G0, τ < T1,

Gj , τ ∈ [Tj , Tj+1), j = 1, . . . , p− 1,

Gp, τ ≥ Tp.
(20)

Proposition 3. Suppose that the entries of G(t) are piece-
wise polynomials as defined above. Then, for t ≥ 0 and
i = 0, 1, . . . , d− 2, Eq. (18) holds. Moreover,

Ḣd−1(t) = H+
0 (t) +

p−1∑
j=1

(
H+
j (t)−H−j−1(t)

)
, (21)

with Hd−1(0) = 0, where, for all relevant j,

H+
j (t) = r(t− Tj)GTj ST `(t− Tj)T ,

H−j (t) = r(t− Tj+1)GTj S
T `(t− Tj+1)T .

(22)

Proof: The validity of Eq. (18) for i = 0, 1, . . . , d − 2 is
proven as in Prop. 2, also in view of the continuity of
the derivatives of G up to G(d−2). Next, using Eq. (20),
simple manipulations of Eq. (17) allow one to expand the
expression of Hd−1(t) as∫ t

t−T1

dδr(δ)GT0 S
T `(δ)T +

p−1∑
j=1

∫ t−Tj

t−Tj+1

dδr(δ)GTj S
T `(δ)T

+

∫ t−Tp

0

dδr(δ)GTp S
T `(δ)T

(since `(δ) = 0 for δ < 0, this holds for any value of t).
Taking the derivative in t term by term yields

H+
0 (t)−H−0 (t) +

p−1∑
j=1

(
H+
j (t)−H−j (t)

)
+H+

p (t).

Eq. (21) is a straightforward rearrangement of the above.

Notice that the generic jth term of the summation in (21)
is nonzero only for t > Tj . The generalization of (21) to an
unbounded number of knots over an infinite time horizon
is thus straightforward. In conclusion, for an arbitrary
(measurable) function r, Eq. (18) (with i = 0, . . . , d − 2)
and (21) jointly give a system of ODEs for the computation
of H0,r(·). For any time t, Vr(t) then follows from (16).

4.2 Inference method

We are now ready to state our method for the inference of
ρ̄E and ρF from measurements (9), for a known function
G. For the sake of this paper, we assume that E is a scalar
(stationary) process, and R = [r1 · · · rN ] is a collection of
indicator functions, though generalizations are immediate.
As in Cinquemani (2019), the method assumes X(0) = 0.
Parameters S and W are assumed known and, as explained
above, µ̄E is identified in advance.

(i) (Computation of the vl) Perform numerical integra-
tion of

µ̇(t) = SWµ(t) + SG(t)µ̄E ,

Σ̇(t) = SWΣ(t) + Σ(t)WTST+

Sdiag
(
Wµ(t) +G(t)µ̄E

)
ST ,

with µ(0) = 0 and Σ(0) = 0 to get the solu-

tion Σ̂(tk|0, µ̄E) at all measurement times, and set

v0(tk) = CT Σ̂(tk|0, µ̄E)C, with k = 1, . . . ,M . Next,
for every function rl, with l = 1, . . . , N , perform
numerical integration of the augmented ODE system

Σ̇(t) = SWΣ(t) + Σ(t)WTST+

SG(t)H0,rl(t) +H0,rl(t)
TG(t)TST ,

Ḣ0,rl(t) = rl(t)G
(0)(0)TST `(t)T +H1,rl(t),

...

Ḣd−2,rl(t) = rl(t)G
(d−2)(0)TST `(t)T +Hd−1,rl(t),

Ḣd−1,rl(t) = H+
0,rl

(t) +

p−1∑
j=1

(
H+
j,rl

(t)−H−j−1,rl(t)
)
,

with H0,rl(0) = . . . = Hd−1,rl(0) = 0 and Σ(0) =

0, to get the solution Σ̂(tk|rl, 0) at all measure-
ment times. Set V (tk) = [v1(tk), . . . , vN (tk)], where

vl(tk) = CT Σ̂(tk|rl, 0)C, with l = 1, . . . , N and
k = 1, . . . ,M .

(ii) (Estimation of c) Compute ĉ as a solution to the
convex optimization problem

min
c∈RN

M∑
k=1

α2
k

(
σ̃2
Y (tk)− v0(tk)− V (tk)c

)2
+ λ · cTQc

s.t. T (c) ∈ CN
where T (c) denotes the symmetric Toeplitz matrix
with first column equal to c, CN is the convex cone
of positive semi-definite matrices of order N , and
Q ∈ CN .

(iii) (Calculation of ρ̂E and ρ̂F ) Return the estimate of
ρ̄E as ρ̂E(·) = R(·)ĉ and the estimate of ρF as
ρ̂F (z, t) = G(z)ρ̂E(z − t)G(t)T .

In (ii), the penalty term cTQc is used to enforce regularity
of the solution. For a suitable choice of Q, cTQc accounts
in particular for the average curvature of the candidate
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solution Rc. The optimization constraint ensures that Rc
is a well-defined (positive semi-definite) autocovariance
function. Factor λ ≥ 0 is a regularization weight that can
be chosen automatically via repeated executions of step
(ii) with different candidate values of λ. See more details
in Cinquemani (2019).

5. NUMERICAL DEMONSTRATION

We now demonstrate by simulation the inference proce-
dure of Sec. 4. We consider the gene expression model of
Sec. 3, modified for the presence of a modulating signal.
That is, in place of F (t) = KU(t), we assume that F (t) =

G(t)E(t), where G(t) = [kMg(t) 0 0 0]
T

and E(t) =
U(t). The parameter values θ = (kM , dM , kP , dP ) =
(0.5, 0.1, 0.2, 0.01), as well as the definition of the mean
µ̄E = µ̄U = 0.5 and autocovariance function ρ̄E = ρ̄U
(shown in Fig. 1) of U are as in Cinquemani (2019). To
explore the role of the (known) control input g in the
estimation problem, we consider two different modulating
signals, G′ and G′′. For G′ we take g(t) = (1 + γ · t)−1,
while for G′′ we take g(t) = 1 − (1 + γ · t)−1 (γ = 0.02).
These control inputs are qualitatively different: G′ is a
monotonically decreasing signal with unit value at zero,
while G′′ is monotonically increasing and null at the origin
(from now on, with some abuse of terminology, we refer
to G′ and G′′ instead of their first entry as the control
inputs). Toward the application of the methods of Sec. 4,
we approximate G′ and G′′ by cubic splines (d = 3), with
knots at Tj = (j − 1) · T , with T = 1, j = 1, . . . , p and
p = 100. Plots of (the spline approximations of) G′ and
G′′) are visualized in the insets of Fig. 1.

For this stochastic gene expression system, we simulate
data (8) and (9) analogous to Cinquemani (2019). That
is, we consider empirical mean and variance measurements
collected from samples of 106 cells at times tk = 5 · k,
with k = 1, . . .M and M = 20, with initial state X(0) =
0. For inference, we assume that the gene expression
parameters θ are known, and so is the control input.
Additionally, given the simplicity of estimating µ̄E from
measurements (8), we assume the latter to be known,
and focus on testing the reconstruction of autocovariance
functions from measurements (9). For both G′ and G′′, we
simulate 100 datasets, and draw estimates ρ̂E and ρ̂F for
every dataset with the method of Sec. 4.2. Approximating
(indicator) functions R, regularization parameter λ and
roughness penalty terms are defined as in Cinquemani
(2019). The statistics of the estimation results are reported
in Fig. 1 and Fig. 2, for a fixed, educated choice of λ = 106

as well as for λ chosen from the data in every estimation
run. The whole simulation was implemented and tested
in Matlab on a 3GHz Intel Xeon (Ubuntu) laptop, using
standard ODE solvers and CVX (CVX Research, Inc.,
2012) for the solution of the optimization problems.

The first observation is that the prodecure is numerically
viable. The computation of the function transforms V
takes about 3 minutes, while the solution of every opti-
mization problem (with N = 156 unknown parameters,
as many as the size of R) takes about 3 seconds (for the
automated choice of λ, optimization is repeated several
times in the search of its best value). From the statistics
of the estimates ρ̂E in Fig. 1, the second observation is

Fig. 1. Results from 100 runs of the estimation of ρ̄E .
Solid black line: True profile of ρ̄E ; Dotted lines and
shaded regions: At all values of δ, median of 100
estimates ρ̂E(δ) and region between the 10% and 90%
quantiles of the estimates, for fixed (λ = 106, blue and
magenta) and automated (grey and red) choices of the
regularization factor, in the case G = G′ (magenta
and red) and G = G′′ (blue and grey). Plots are
bottom-cropped for better scaling. The inset shows
the modulating functions G′ (red) and G′′ (black).

Fig. 2. Statistics of the estimation error ρ̃F (z, t) =
ρ̂F (z, t) − ρF (z, t) (case G = G′′, automated choice
of λ). At every point (z, t), true autocovariance func-
tion ρF (z, t) (colored shading) vs. maximal (absolute)
value among the 10% and 90% quantile of ρ̃F (z, t)
over 100 simulation runs (grey mesh).

that estimates for both the cases G = G′ and G = G′′

have limited bias (no bias at most lags δ), with increasing
uncertainty toward the tail of ρ̄E . Here, the automated
choice of the regularization parameter λ reduces estima-
tion error relative to a fixed λ. The increasing error in the
tails has to be understood as the result of the memory
of the reaction network vanishing for large lag times δ,
and the smaller amount of measurements effectively en-
tering the computation of ρ̂E at large lags. All this is in
perfect analogy with the results in absence of a modulat-
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ing signal of Cinquemani (2019). Interestingly, estimation
performance is clearly worse for G′′ than for G′ in the
tails of ρ̄E (larger estimation error variability) and also
around 0 (larger bias). In our interpretation, this is strictly
related with the null value of G′′ at time zero, which
reduces the sensitivity of the data to the information-rich
(transient) system dynamics at early times. On the other
hand, the estimation error of ρ̂E does not equally reflect in
the estimation error of ρ̂F . Indeed, comparing Fig. 1 with
Fig. 2, one finds that the error strengh in the estimation
of ρF is smaller (in a relative sense) than for ρ̂E for large
differences |z − t|. Thus, in general, performance should
be assessed based on the context, depending whether the
input (E(t)) or the controlled (G(t)E(t)) process is the
object of primary interest. In summary, the procedure is
viable and capable to estimate the statistics of a modu-
lated noise process, with performance depending on the
modulating (control) signal.

6. CONCLUSIONS

Starting from own previous work, in this paper we have
developed an approach for the effective numerical solu-
tion of so-called GMEs for a class of modulated input
processes where the modulating input is in the form of
(or can be approximated by) splines. We have used this
result to develop an algorithm for the estimation of the
statistics of a controlled promoter activation process from
gene expression population-snapshot data. Demonstrated
via simulation, the method successfully reconstructed the
promoter activity autocovariance function in the limits of
a realistic dataset. The solution showed interesting depen-
dencies on the choice of the control input that deserve fu-
ture quantitative investigation. While developed with spe-
cific reference to gene expression reporter systems, many
results of this paper are applicable to more general reaction
networks and in other fields, where spline approximation of
control signals and analysis of controlled continuous-time
Markov chains is of relevance.
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