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Abstract: In this paper we are presenting the statement and evaluation guidelines of a control
engineering benchmark, oriented for multi-objective optimisation design techniques. This is
done with the aim of promoting new research on this field, by defining a benchmark to have
reproducibility and comparability of the three steps involved in the multi-objective process:
problem statement, optimisation process and multi-criteria decision making. The proposed
benchmark is a single-input single-output process based on the Peltier effect. Rules and
guidelines, merged with common practices in control systems engineering, are highlighted and
disclosed in the multi-objective open invited track 2020.
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1. INTRODUCTION

Control engineering problems are generally multi-objective
problems; this means that there are several specifications
and requirements that must be fulfilled, often in conflict.
A traditional approach for calculating a solution with a
desired trade-off is defining an optimisation statement.
Multi-objective optimisation techniques deal with such
a problem from a particular perspective by searching
for a set of potentially preferable solutions: the so-called
Pareto set. The designer may then analyse the trade-off
among solutions in this set, and select the most preferable
alternative according to the problem at hand. Controller
tuning can be considered as a multi-objective problem,
given that a set of requirements and specifications must
be fulfilled. In this sense, multi-objective optimisation
techniques have shown to be valuable tools for this task
(Meza et al., 2016).

Benchmarks allow researchers to have a higher degree
of reproducibility and comparability of diverse control
techniques (Kroll and Schulte, 2014). Even if it is pos-
sible to find literature on control engineering benchmarks
(Dixon and Pike, 2006; Bejarano et al., 2017; Kroll and
Schulte, 2014; Mercader et al., 2019; Romero and Sanchis,
2011; Fernández et al., 2011; Atanasijevic-Kunc et al.,
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2010; Eriksson et al., 2019) and solutions involving multi-
objective techniques (Xue et al., 2010; Kagami et al.,
2019), there is not a specific benchmark to test the specific
steps involved in the multi-objective optimisation design
process. That is, to test its problem statement, optimisa-
tion process and multi-criteria decision making stage.

Testing such scenarios is not trivial, given that the optimi-
sation process requires a model, obtained by getting data
from the process, to calculate its design objectives. This
simple, but critical step, is important to be considered in:

• the problem statement, to include robustness objec-
tives and/or constraints;

• the optimisation process, given that a model is used
instead of the process;

• in the decision making process, where it is crucial
that the Pareto front approximated with the model
preserves the trade-off coherence when its design
alternatives (controllers) are evaluated in the real
process.

Therefore, proposing a multi-objective control engineering
benchmark, taking into account such characteristics, could
be an opportunity to promote work oriented to multi-
objective optimisation for controller tuning and its via-
bility to solve real-world problems. That is the aim of
this paper. To define a control engineering benchmark
for testing multi-objective optimisation procedures in an
integral way.

The remainder of this works is organised as follows: in
Section 2 a brief background on multi-objective optimisa-
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tion techniques is provided; in Section 3 the benchmark is
described and in Section 4 an example on how to use and
report results of this benchmark is commented. Finally,
some conclusions are derived and future work commented.

2. THE MULTI-OBJECTIVE OPTIMISATION
PROCESS

As referred in Miettinen (1999), a multi-objective problem
(MOP) with m objectives 1 , can be stated as follows:

min
x

J(x) = [J1(x), . . . , Jm(x)] (1)

subject to:

K(x)≤ 0 (2)

L(x) = 0 (3)

xi ≤ xi ≤ xi, i = [1, . . . , n] (4)

where x = [x1, x2, . . . , xn] is defined as the decision vector
with dim(x) = n; J(x) as the objective vector and K(x),
L(x) as the inequality and equality constraint vectors
respectively; xi, xi are the lower and the upper bounds
in the decision space.

It has been noticed that there is not a single solution in
MOPs, because there is not generally a better solution in
all the objectives. Therefore, a set of solutions, the Pareto
set XP , is defined. Each solution in the Pareto set defines
an objective vector in the Pareto front JP (See Figure 1).
It is important to notice that most of the times we rely
only in Pareto front and set approximations, J∗

P ,X∗
P .

All the solutions in the Pareto front are a set of Pareto
optimal and non-dominated solutions, where:

• Pareto optimality (Miettinen, 1999): An objective
vector J(x1) is Pareto optimal if there is not another
objective vector J(x2) such that Ji(x

2) ≤ Ji(x
1) for

all i ∈ [1, 2, . . . ,m] and Jj(x
2) < Jj(x

1) for at least
one j, j ∈ [1, 2, . . . ,m].
• Dominance (Coello and Lamont, 2004): An objec-

tive vector J(x1) is dominated by another objec-
tive vector J(x2) if Ji(x

2) ≤ Ji(x
1) for all i ∈

[1, 2, . . . ,m] and Jj(x
2) < Jj(x

1) for at least one j,
j ∈ [1, 2, . . . ,m]. This is denoted as J(x2) � J(x1).

To successfully implement the multi-objective optimi-
sation approach, three fundamental steps are required:
MOP statement, the multi-objective optimisation (MOO)
process and the multi-criteria decision making (MCDM)
stage. Such steps are detailed below.

• MOP statement: implies building a parametric model
for optimisation; the design concept definition; design
objectives of interest; constraints and decision vari-
ables; and finally the cost function for optimisation.

• MOO process: implies selecting or coding a desired
algorithm to approximate the Pareto front. The out-
put of the optimisation process is a Pareto front
approximation.

1 A maximisation problem can be converted to a minimisation
problem. For each of the objectives that have to be maximised, the
transformation: max Ji(x) = −min(−Ji(x)) could be applied.

• MCDM stage: implies analysing the approximated
Pareto front, its design alternatives, to ponder their
trade-offs for selecting the most suitable and prefer-
able solution for the problem at hand. It usually
requires methodologies or visualisation strategies for
multi-criteria analysis.

Therefore, any benchmark that tests multi-objective pro-
cedures in control systems must allow to test individually
or altogether those three steps. To this end, here we pro-
pose a benchmark and its guidelines for assessing such an
evaluation.

3. BENCHMARK DESCRIPTION

This section details the proposed benchmark. First, the
process is introduced, followed by the control task. Finally,
the evaluation is presented along with some considerations.

3.1 Process

Th benchmark control problem is based on the Peltier cell
model developed in Huilcapi et al. (2017), presented in
the multi-objective open invited track in 2017. Matlab-
Simulink c© is used as the platform for this benchmark
(See Figure 2). Files are available via the File Exchange
Platform 2 and the ResearchGate site 3 .

The thermal balance of the cold face in the Peltier thermo-
electric module is represented by a set of differential equa-
tions. Such equations are used to simulate a single-input
single-output (SISO) process, to control the temperature
in the cold face, using as input the voltage applied to the
Peltier cell within a range from 0[V] to 6[V] (see Figure
3).

Here-after such set of equations and their Simulink c© im-
plementation will be called (pseudo)-process, given that it
will be considered as the real-process for evaluation pur-
poses. That means that this (pseudo)-process cannot be
used actively in the optimisation process (as a parametric
model or cost function for optimisation). The optimisation
must be carried out using an identified model from this
(pseudo)-process.

3.2 Control task via multi-objective optimisation techniques

The ultimate control task is to tune a controller to achieve
an overall better performance when compared with the one
resulting of the Ziegler-Nichols (ZN) method (Ziegler and
Nichols, 1942). In the multi-objective sense, we are looking
for a controller which will dominate the ZN-controller in
the (pseudo)-model. For this, we will define the identifica-
tion experiment of Figure 4, where a model between the
range [−5, 5]oC is approximated (See Equation (5)).

M =
−6.75

10s + 1
exp (−0.5s) (5)

This lead to the proportional-integral (PI) controller using
the Ziegler-Nichols rule, via its critical gain of Equation 6.
2 https://www.mathworks.com/matlabcentral/fileexchange/

75408
3 https://www.researchgate.net/project/

Control-engineering-benchmarks-and-competitions
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Fig. 1. Pareto optimality and dominance concepts for a min-min MOP. Dark solutions are non-dominated solutions
which approximate (solid line) the Pareto front (dotted line) in the objective space J .

Fig. 2. Simulink c© process

Fig. 3. Open loop test

Fig. 4. Identification experiment.

Czn = −2.3120− 1.4142

s
(6)

This controller with the test in the (pseudo)-process leads
to the performance depicted in Figure 5.

The PI controller is used, given that it is the first control
solution to implement, and any other control structure
and tuning efforts must be capable of getting a better
performance than the PI ZN-controller; furthermore, it
should make a significant difference. Therefore, this con-
troller will be suggested always as a reference controller.
Besides it will be used to normalise the performance of
any other controller. This will lead to an interpretable
and meaningful measure of improvement in each one of
the design objectives.

Roughly speaking, any control engineer will follow the next
steps to tune a controller:

(1) Defining an experiment to get data from the (pseudo)-
process P .

(2) Approximating a model M for tuning purposes.
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Fig. 5. Closed loop test with the pseudo-process, using the
ZN-controller (Equation (6)).

(3) Tuning a given controller C using M .
(4) Testing C in P to validate the controller.

If multi-objective optimisation techniques are used, model
M is used to approximate a Pareto front J∗

P for some
design objectives. Normally, any evaluation on the per-
formance of algorithms used are referred to the Pareto
front approximation of the model M . Nevertheless at the
end, in order to have success in this process, the final
valuation must be performed in the (pseudo)-process P .
Therefore, here we are proposing to evaluate the multi-
objective process by:

• Checking the trade-off coherence of J∗
P in the process,

by evaluating X∗
P in P to get J?

P . This means that
we are going to evaluate how many Pareto optimal
solutions from J∗

P persist when evaluated in the
process to approximate J?

P .
• Verify the decision making policy, in order to check

how many tests are required to get a Pareto-optimal
solution in J?

P , using information from J∗
P .

The above commented leads to a careful choice of the
model for the MOO process; of the MOP statement, for
including robust objectives and constraints that guarantee
internal coherence of the approximated Pareto front J∗

P ;
and of the MCDM stage to get a Pareto optimal solution
J?
P using J∗

P .

At this point it is more important to guarantee trade-
off preservation between a solution performance, when
evaluated in the model and in the (pseudo)-process.

3.3 Evaluation and considerations

Any partial result of this process is valuable and it could
be reported. Nevertheless, essentially, you must report:

(1) Evaluation in the (pseudo)-process of the statisti-
cally significant Pareto front approximation from the
optimisation process. Independently from the design
objectives used in the MOP, normalised integral value
of the absolute error (IAE) and normalised total
variation of control action (TV) must be reported.

Test should be different from the one used in the
optimisation process.

(2) Hypervolume of the statistically significant Pareto
front approximation J?

P generated by the algorithm
used in the (pseudo)-process, using the normalised
IAE and TV.

(3) Ratio of non-dominated solutions versus design alter-
natives in the Pareto front in the (pseudo)-process.

(4) Rank, according to your decision making criteria, to
select a Pareto optimal solution J?

P from J∗
P .

4. BENCHMARK EXAMPLE

Here it follows an example on how to use the benchmark,
by using a simple multi-objective process. All of the three
stages are described: the MOP statement, MOO process
and MCDM.

4.1 MOP statement

Design objectives are calculated via Matlab-Simulink c©,
by implementing a PI controller and an optimisation
model, with a simple step input in the reference. Con-
sidering the control engineering benchmark here defined,
a MOP statement is stated as follows:

• The Model M (Equation (5)) is selected as parametric
model for optimisation.

• Design concept under consideration is a simple PI
controller, having parameters x = [kp, ki] with the
following structure:

C = kp +
ki

s
(7)

• Multi-objective problem statement:

min
x

J(x) = [JIAE(x), JTV (x)] (8)

where:

J1(x) = JIAE(x) =
JIAE(x)

JIAE(xZN )
(9)

J2(x) = JTV (x) =
JTV (x)

JTV (xZN )
(10)

and xZN = [−2.3120,−1.4142] is the ZN-controller
tuned using the model M .

• Constraints are defined as follows:

JIAE(x)≤ 1 (11)

JTV (x)≤ 1 (12)

<
(
eig

(
M · C

1 + M · C

))
< 0 (13)

−5 ≤ xi ≤ 0 , i = [1, 2] (14)

Limits on kp,ki has been selected according to the feasible
space of a PI controller for the Model which guarantees
a closed loop stability. Limits on JIAE(x) and JTV (x)
are imposed for pertinence purposes as well as to guar-
antee controller with better performance than the Ziegler-
Nichols. The last constraint is used to guarantee stability
in the closed loop. A basic penalty technique is employed
as described in Reynoso-Meza et al. (2012).
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Fig. 6. Pareto front approximation after 11 runs (unfilled
diamonds) and the one with the median value of
hypervolume (filled diamonds).

4.2 MOO process

For the optimisation process, the spMODEx algorithm is
used implemented in Matlab c© and available at File ex-
change 4 . The algorithm is used with its standard param-
eters with a linear recombination. A total of 1000 function
evaluations and a total of 11 runs are used. Optimisation
process ran in a standard PC, running Windows c© 10 and
Matlab c© 2016. After 11 runs, the Pareto front with the
median value of hypervolume is selected (see Figure 6).

4.3 MCDM stage

In Table 1, design alternatives of the selected Pareto
front are depicted. Such design alternatives are evaluated
in the (pseudo)-process, resulting in the Pareto front
approximation J?

P in Figure 7. As it can be noticed, just
two solutions are Pareto optimal in the (pseudo)-process.
In the same table, last column specify the ranking of each
solution, according to the TOPSIS criteria (Behzadian
et al., 2012) as a decision making procedure. As it can be
noticed, by following this criteria, Pareto-optimal solutions
J?
P are selected after 17 and 19 tests, from J?

P .

In Figure 8 the time performance of the design alternative
(controller) 18 is shown. The final assessing of the whole
process is depicted in Table 2.

5. CONCLUSION

In this paper a benchmark control problem for multi-
objective controller tuning is proposed. It is based on a
SISO non-linear model of a Peltier cell, where cold face
temperature should be controlled by voltage input.

This benchmark for multi-objective optimisation considers
common practices in the control engineering field, con-
sisting in identifying a model from the process, for the
tuning procedure. This means that the MOP statement
should consider, from the beginning, discrepancies between

4 https://www.mathworks.com/matlabcentral/fileexchange/

65145

Fig. 7. Pareto front approximation J?
P with the (pseudo)-

process (filled diamonds) vs. non Pareto optimal so-
lutions approximated in the J∗

P (unfilled diamonds).

(a) DA18

Fig. 8. Closed loop test of the design alternative 18 in the
(pseudo)-process.

process and model; the MOO optimisation process should
consider that the Pareto front approximated in the model
will be different from the one in the process; finally the
MCDM stage must take into account that many Pareto-
optimal solutions approximated in the model, will not keep
their trade-off coherence when evaluated in the process.

According to the feedback on this benchmark by the
interested community, more definitions and problems will
be defined.
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