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Abstract: A hierarchical control approach for cooperative pick-and-place tasks in a narrow
shared workspace is proposed. A scenario with two robot arms performing pick-and-place tasks
with moving objects while ensuring collision-free planning and execution of their respective
trajectories is specifically addressed. To this end, we consider a hierarchical architecture with
two-layer optimization-based control policies involving task scheduling in the top layer and
path planning, along with the motion constraints, at the bottom one. On the one hand, for task
allocation, a distance minimization algorithm is introduced, leading to an integer optimization
problem with linear constraints and a bilinear cost function. On the other hand, we invoke
model-based collision-free minimum-time planning of robot trajectories. Hereby, inverse robot
dynamics and time scaling appear to be useful tools. The former accounts for the compensation
of nonlinear robot dynamics, while the latter converts the trajectory planning to a fixed-time
optimization problem, thus enabling synchronous robot task executions.
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1. INTRODUCTION

The use of robots on existing assembly or packing lines
aims to increase the flexibility of the production lines, re-
duce the production cost and to maximize throughput and
machine utilization. In order to partially meet these re-
quirements and to minimize the space required for the use
of robots or to enable cooperative tasks to be performed,
multiple robot arms in the same workspace are increasingly
used. Sharing the same workspace by multiple robots can
lead to collisions, so that safe operation can no longer
be guaranteed. In addition to that, more challenges arise
for the task assignments for randomly distributed objects
transported by a conveyor belt and trajectory planning
for grasping moving objects. One way of addressing the
design of operation involving multiple cooperative robots
is splitting it into the task of scheduling and collision-free
trajectory planning.
The research on robot task scheduling has been primarily
focused on minimizing the cycle time by determining the
optimal sequence of a set of unordered static task points
(“way-points”) in the 3D space. A detailed literature re-
view thereof is provided in Section 3.1. There are several
approaches in literature regarding trajectory planning of
a single robot formulated as an optimization problem. For
instance, Schlemmer and Gruebel (1998) considered a pa-
rameter optimization problem for planning of a collision-
free trajectory. Thereby, the time optimality results from
a heuristic adaptation of the final time. For point-to-
point trajectory planning, Ardakani et al. (2015) propose a
model predictive control (MPC) algorithm as a fixed-time

optimization problem, in which the deviation of states and
control inputs are penalized. The real-time implementa-
tion of the algorithm is applied for a convex optimization
problem. A minimum time path planning is also proposed
by Zhang and Zhao (2016), where the travel schedule of
the set points and the path parameters are optimized
simultaneously using a genetic algorithm (GA) in order
to obtain a minimum point-to-point transfer time. In Al
Homsi et al. (2016), a minimum-time trajectory generation
problem involving two robots that share the same working
environment is introduced. The authors propose a hierar-
chical reformulation of a minimum-time mixed-integer op-
timization problem for online trajectory generation of two
Degree of Freedom (DoF) SCARA robots. However, none
of the presented methods deals with cooperative collision-
free trajectory planning and task assignments of dynam-
ically changing operating points or objects for multiple
6 DoF robots. Therefore, scheduling and a time-optimal
MPC (van den Broeck et al. (2009) and Rosmann et al.
(2017)) as an optimization algorithm are considered in this
work, that incorporate these limitations in constraints.
This paper is organized as follows. Section 2 describes a
sample of an associated plant motivated by a practical
application. In Section 3, all components of the proposed
hierarchical architecture are addressed, including the iter-
ative integer programming-based scheduler, the dynamic
model of the robot arms and an MPC-based trajectory
generation and control. Simulation results with moving
objects, randomly distributed over the conveyor belt, are
presented and discussed in Section 4. The paper is finalized
by brief concluding remarks in Section 5.
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2. PLANT DESCRIPTION

Depending on the flexibility and capacity requirements of
a fruit-packing station, fruit-sorting and packing are so far
carried out either manually or fully automated. Although
the fully automated packing systems are characterized by
a high packing throughput, they are very cost-intensive
and regarding the fruit varieties inflexible. An appealing
solution, offering highly automated and flexible packing
plants is attained by facilitating the existing manual pro-
duction with lightweight robot arms as shown in the
scheme with two robot arms in Fig. 1. The limited available
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Fig. 1. Schematic construction of a packing plant for fruit
objects with light-weight robot manipulators perform-
ing time-varying cooperative pick-and-place tasks in
partially overlapping workspaces.

space in conjunction with the necessarily shared common
workspace and the high throughput requirements typically
lead to robots operating close to one another. Furthermore,
the robots need to be supported by a camera system for
measuring / estimating the position, orientation, as well
as possible defects of the fruit objects. For this purpose,
recently, cascaded architectures based on convolutional
neural networks (CNNs) are increasingly getting popular,
e.g., see Giefer et al. (2019). The random distribution of
the fruit objects on the conveyor belt as delivered by the
fruit feeder, together with the continuous transportation of
the fruit objects and the trays to be filled, introduces a co-
operative pick-and-place problem with highly time-varying
targets, necessitating a continuous update of the robot
arm trajectories. Moreover, the objects to be sorted may
lie very close to each other. This essentially increases the
collision potential between the robot arm manipulators.
Thus, the coordinated workflow should be organized in
such a way that the robots fulfill the pick-and-place tasks
in an optimal way by maximizing the packing throughput
without colliding with each other and other obstacles in
the direct environment. Therefore, two main tasks are of
fundamental importance and are elaborated in detail in
the present article. Firstly, a resource allocation problem is
raised by questioning which object is to be picked by which
robot and in which slot of a tray it is to be placed. For this
purpose, a scheduling algorithm for cooperative selection
of non-stationary objects, while additionally taking into
account safety requirements by adding some safety-related
constraints, is presented. Secondly, in order to accomplish
the assigned tasks, an algorithm for model-based planning
and control of collision-free trajectories for robots sharing
a common workspace is proposed. Notice that grasping the
objects by the end effector itself is not addressed in this
study.

3. ROBOT DYNAMICS AND HIERARCHICAL
CONTROL ALGORITHM

In order to optimally fill the objects into the trays, a
hybrid control algorithm is employed, consisting of two
layers. The upper-level deals with the scheduling problem,
while the lower-level includes an MPC planning algorithm
running on top of the computed torque control law. The
scheduler computes the optimal allocation of the objects
and trays (”tasks”) to the robots (”resources”) by mini-
mizing the total traversed euclidean distance between the
objects and trays. The scheduling layer then provides the
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Fig. 2. Schematic illustration of the used control structure.

position set-points to the MPC layer, which computes the
optimal trajectories of the robot manipulators by minimiz-
ing the execution time of the tasks, while accounting for
potential collisions. A schematic depiction of the proposed
control algorithm is shown in Fig. 2. The following sections
address the specific components of this scheme, including
the scheduling algorithm, the dynamic model of the robot
manipulators and trajectory planning utilizing MPC.

3.1 Iterative scheduling

The goal of the proposed overall control structure is
to pick up dynamically moving objects, i.e. the fruit,
and place them into dynamically moving slots in a tray
in a time optimal manner. The decisions that have to
be made by the algorithm include the allocation of the
robots to the objects, i.e. by which robot each object
is picked up, the subsequent assignment of the objects
to slots in the trays, the sequence in which the objects
are picked up and the computation of the corresponding
collision-free trajectories of the robot manipulators in
order to execute these tasks. A highly non-convex mixed-
integer nonlinear programming problem would result if
the discrete scheduling decisions and the dynamics of the
robots were to be included in a monolithic optimization
framework, which would severely limit its practical online
applicability, as the required computation time would be
prohibitively long. In Zhang and Zhao (2016) this problem
is modeled as an extension to the traveling salesman
problem (TSP), and a GA is applied to solve the modified
TSP in order to obtain the optimal traveling schedule for
a 3 DoF robot performing drilling/spot welding tasks.
The transfer path between the task points is realized
by minimizing the transfer time while considering the
dynamic performance of the robot without any collision
avoidance restrictions. Zacharia and Aspragathos (2005)
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Fig. 3. Distance parameters of the scheduling problem.

introduced a GA based method to solve the TSP, which
is adapted to take into account the multiple solutions of
the inverse kinematics. This idea is extended in Xidias
et al. (2010) to the case of a two-robot work cell. The
robots are each modeled as first-degree B-spline curves
in order to derive collision-free motions. Kinematic and
dynamic constraints, as well as collision avoidance with the
environment, are not considered. Another idea involving
two robots is presented in Sutdhiraksa and Zurawski
(1996). Therein, timed Petri nets and the uniform cell
decomposition approach are used to model the robot tasks
and ensure collision-free operation. The applications found
in the literature are mainly concerned with the offline
optimization for repetitive tasks in which the cycle time is
to be minimized. The reported computation times are still
not suitable for an online application with dynamically
moving targets. In order to cope with these practical
difficulties the control structure is split into two layers,
the higher-level scheduling layer and the lower-level time
optimal MPC layer. The goal of the scheduling layer is to
allocate a set of objects n ∈ N to a set of slots s ∈ S
while minimizing the total euclidean distance covered by
the robots r ∈ R to execute all necessary tasks. The slots
are located on a set of trays p ∈ P, where Sp ⊂ S, denotes
the subset of slots located on tray p. The sequence in which
the slots are filled is fixed so as to eliminate the possibility
of collisions during the placement of the objects into the
trays. All slots filled at the same time as slot s belong to
the subset Scs . Slot ŝp is the first one filled in tray p.
In reality, a more appropriate objective would be the time
necessary to execute all tasks. However, the required time
depends on the multiple possible configurations by which
a target can be reached, resulting from the non-unique
solutions of the inverse kinematics problem. Therefore
the exact time can only be modeled by including the
dynamics of the robotic manipulators in the formulation
of the optimization problem. Thus, at this upper level it
is assumed that the time necessary to move between two
spots in the 3D workspace is proportional to the traversed
distance. The exact timing and execution of this movement
is later performed by the MPC layer. The inputs to the
scheduling layer are the positions xn of each object n ∈ N ,
the positions xs of each slot s ∈ S and the positions
xr of each robot r ∈ R (all in Cartesian coordinates),
provided by the camera system. Given these coordinates,
the euclidean distances between all objects and all slots,
dns = ‖xn − xs‖2, all pairs of objects, dnn′ = ‖xn − xn′‖2
and all objects and robots, dnr = ‖xn − xr‖2, can be
computed a priori, as shown in Fig. 3. As the MPC layer
receives its targets (objects and slots) from the scheduling
layer, a poorly chosen sequence of tasks may lead to

unavoidable collisions during the execution of these tasks.
Therefore, collision avoidance has to be accounted for in
the scheduling layer, as well. Collisions while placing the
objects into the trays can be easily avoided by predefining
the sequence in which the slots are filled. If the slots that
are filled at the same time are far enough apart from each
other, no collision can occur. As the sequence in which
the objects are picked up constitutes the main degree of
freedom of the optimization it can not be restricted a
priori. Collisions are avoided by introducing a minimum
distance dmin between simultaneously picked up objects,
which is included in the optimization as a constraint. Note
that the scheduling layer only ensures collision avoidance
while picking up and while placing an object. The potential
collisions during the movements of the robots between the
targets provided by the scheduling layer are addressed by
the MPC layer. The scheduling model is based on the
well established travelling salesman problem (TSP), but
includes two sets of binary variables, Xns which indicates
the allocation of object n to slot s and Wrp which indicates
the filling of tray p by robot r. It is assumed that the
number of object is always larger than the number of slots
(|S| ≤ |N |), since not all trays could be filled otherwise.
In order to avoid collisions during the placement of the
objects in the trays, each tray can only be filled by a single
robot. This can be expressed as a constraint on the binary
robot allocation variables,∑

∀r∈R
Wrp = 1, ∀p ∈ P. (1)

Note that a collision during the placement of objects in
different trays is avoided due to the fixed sequence in
which the slots are filled, as explained above. Similarly,
each robot can only fill a single tray,∑

∀p∈P
Wrp = 1, ∀r ∈ R. (2)

In order to meet the product requirements, each tray has
to be filled with a specified amount of objects, i.e. each
slot in the trays must contain exactly one object. This can
be analogously modelled by using the binary object to slot
allocation variables Xns,∑

∀n∈N
Xns = 1, ∀s ∈ S. (3)

However, since the number of objects is greater than the
number of slots, not every object can be allocated to
a single slot. Nevertheless, each object can at most be
allocated to one slot, but does not necessarily have to be
allocated to a slot at all. This is modelled by an inequality
instead of an equality constraint on the binary object to
slot allocation variables,∑

∀s∈S
Xns ≤ 1, ∀n ∈ N . (4)

To avoid collisions of the robots while picking up objects,
two objects that are picked up at the same time have to
have a minimum distance dmin between them. Two objects
are picked up at the same time if they are allocated to
corresponding slots on the trays, i.e. if they are placed
into the trays at the same time. The minimum distance
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can be enforced by the following constraint,

dnn′ + (2−Xns −Xn′s′) · dmin ≥ dmin,

∀n, n′ ∈ N , n 6= n′, s ∈ S, s′ ∈ Scs . (5)

If objects n and n′ are not allocated to corresponding slots
the constraint is trivially satisfied, since at least one of
the two binary variables is equal to zero. However, if the
objects are allocated to corresponding slots, the second
term in the left-hand side of the inequality vanishes and
the constraint is only satisfied if the distance between the
objects is greater than the minimum distance.
The objective of the optimization is to minimize the total
euclidean distance traversed by the robots. The paths of
the robots can be divided into the initial movement to the
first picked object, the movement from the object position
to its assigned slot and the movement from a slot to the
next object. The total distance can be expressed as a
bilinear function, that is to be minimized,

min
∑
∀r∈R

∑
∀p∈P

Wrp

( ∑
∀n∈N

Xnŝp · dnr

)
︸ ︷︷ ︸

Initial Movement of the Robots

(6)

+
∑
∀n∈N

∑
∀s∈S

Xns · dns︸ ︷︷ ︸
Movement from Object to Assigned Slot

+
∑
∀n′∈N

∑
∀p∈P

∑
∀s∈Sp

Xn′,s+1 · dn′s︸ ︷︷ ︸
Movement from Slot to Next Object

The initial movement depends on the allocation of a robot
to a tray and on the object allocated to the first slot of that
tray. The movement from an object to its assigned slot
can be derived from the binary object to slot allocation
variable. Finally, as the sequence in which the slots are
filled is fixed, the robot has to move from the current
slot s to the object n′ assigned to the next slot s + 1. To
perform the described scheduling algorithm the resulting
integer bilinear programming (IBLP) problem has to be
solved online. After a solution is obtained, the scheduling
layer provides the coordinates of the first picked up object
and of its assigned slot for each robot to the MPC layer.
Since the objects and the trays move on the conveyor
belt, their positions change dynamically. Therefore, after
the first objects of the sequence have been placed into
the trays, the corresponding slots are removed from the
set S, new objects are potentially added to the set N
and the optimization is performed again in an iterative
fashion. This approach is only feasible, if the underlying
optimization problem can be solved within very short
computation times. This issue is further discussed in the
following section. Note that the scheduling optimization
problem does not account for the feasible workspace of
the robots. This could lead to a situation where an
object leaves the range of the robots before being picked
up, resulting in an infeasible optimization problem in
the MPC-layer. To avoid this situation a safety distance
margin is employed, depending on the radius of the robots’
workspace. If an object exceeds this margin, the decision of
the scheduling optimization is overwritten and the object
is picked up instead.

3.2 Dynamic model

The dynamic model of the considered robot manipulator is
derived by means of the Lagrange formalism (Spong et al.,
2006). For the sake of simplicity, viscous and static friction
terms have been neglected, so that the robot equation of
motion in matrix form can be written as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (7)

where τ ∈ Rn denotes the vector of generalized torques,
q ∈ Rn denotes the vector of generalized coordinates (i.e.
the joint angular position), M(q) ∈ Rn×n is the inertia
matrix, C(q, q̇) ∈ Rn×n represents the coefficients of the
centrifugal (proportional to q̇2i ) and Coriolis (proportional
to q̇iq̇j , i 6= j) forces and g(q) ∈ Rn is the vector of grav-
itational torques. For the considered robots n = 6 holds.
Additionally, in order to provide high-quality visualization
of the robots and the experimental setup, a dynamic sim-
ulation model in Simscape has been developed using the
CAD data provided by the manufacturer. The Simscape
model is mainly used for the simulation of the forward
dynamics, whereas the analytically derived equations of
motion are used in feedback control to implement a non-
linear dynamic inversion based controller τ = f(q, q̇, t)
in order to compensate the nonlinear dynamics. Since the
inertia matrix M(q) is symmetric and positive definite,
the nonlinear feedback control law can be chosen as

τ = M(q)aq + C(q, q̇)q̇ + g(q). (8)

When substituting (8) into (7), the combined control
system results in a linear closed loop system of n double
integrators

q̈ = aq, (9)

with the new input aq ∈ Rn. The resulting robot model

d

dt

[
q
q̇

]
=

[
0n×n In×n

0n×n 0n×n

]
︸ ︷︷ ︸

=:Ã

[
q
q̇

]
+

[
0n×n

In×n

]
︸ ︷︷ ︸

=:B̃

aq, (10)

with the dynamic matrix Ã, the input matrix B̃ and the
identity matrix I, consists of a chain of 2n decoupled inte-
grators and contains only kinetic variables (Spong et al.,
2006).
In the proposed hierarchical control approach, a central-
ized MPC algorithm is used for cooperative generation of
collision-free trajectories. Hence, considering two robots
represented by the generalized coordinates q1 and q2, by
introducing a new state vector

ξ = [qT
1 , q̇

T
1 ,q

T
2 , q̇

T
2 ]T

the total continuous time dynamics to be considered in the
centralized MPC algorithm is given by

ξ̇ =

[
Ã 0

0 Ã

]
︸ ︷︷ ︸

=:A

ξ +

[
B̃ 0

0 B̃

]
︸ ︷︷ ︸

=:B

[
aq1

aq2

]
︸ ︷︷ ︸
=:u

, (11)

where A ∈ Rnξ×nξ and B ∈ Rnξ×nu . The model is subject
to robot kinematic constraints, such as angular position,
velocity, acceleration, and additional collision avoidance
constraints, which will be discussed in more detail in
Section 3.3.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9204



3.3 Minimum-time and collision-free trajectory planning

The objective of time optimal MPC is to find the optimal
trajectory subject to minimal transition time, avoiding
self-collision and collisions between the robots. Sharing
one common transition time, means a synchronous task
performance of the two robots, in which both finish a task
at the same final time.

MPC formulation

The prediction of a minimum-time trajectory with a
prediction horizon N ∈ N is mapped from the time t ∈ R
to τ ∈ [0, 1] by the following time transformation

τ :=
t− tk,0
tf − tk,0

, (12)

where k is the time index, and tf and tk,0 denote the
final and current times respectively, yielding a formal
reformulation of the optimization problem within a fixed
scaled-time interval [0, 1]. For simplicity the current time
tk,0 will not be explicitly written in the MPC formulation,
i.e. τ := t/tf . The resulting centralized MPC problem
for recurrent minimum-time trajectory planning with state
vector ξ ∈ Rnξ and control input u ∈ Rnu in a discretized
form reads

min
u

tf (13)

s.t. ξk(j + 1) = Adξk(j) + Bduk(j) (13a)

ξk(j + 1) ≤ diag(I, tfI, I, tfI)ξmax (13b)

ξk(j + 1) ≥ diag(I, tfI, I, tfI)ξmin (13c)

umin ≤ uk(j + 1) ≤ umax (13d)

‖xr1(ξk(j + 1))− xr2(ξk(j + 1))‖2 ≥ rmin (13e)

zk,r1(ξk(j + 1))≥zmin, zk,r2(ξk(j + 1))≥zmin (13f)

ξk(0) = diag(I, tfI, I, tfI)ξ0 (13g)

ξk(N) = diag(I, tfI, I, tfI)ξf (13h)

where j ∈ {0, .., N − 1} is the iteration index of the
prediction horizon, and I ∈ Rn×n the identity matrix. The
position vector in Cartesian space is denoted by xri with
an index i for Robot 1 and Robot 2. The limitation of the
operating space of robots in the z-axis is given by zk,ri in
(13f). The discrete state matrix Ad ∈ Rnξ×nξ and input
matrix Bd ∈ Rnξ×nu in (13a) have the following form

Ad = I + ∆τA

Bd = ∆τt2f (I +
∆τ

2
A)B

(14)

with ∆τ := 1/N . The scheduling algorithm provides initial
x0 and final xf positions to the MPC layer, which are
converted to initial ξ0 and final ξf joint angles and angular
velocities for both robots. The desired state ξf should be
reached by the final time tf in time scale t or at τ = 1 in τ -
scale by the end of the prediction horizon N , formulated in
(13h). The control input u represents the robots’ angular
acceleration limited to a range [umin,umax], see (13d).

Static and dynamic collision avoidance

Self-collision constraints are formulated for the relevant
joint angles qk in (13b), (13c). Due to the fact, that the
robots are working in a work space limited to a conveyor
belt, the joint angles have to be limited to their working

area. These limitations simplify the choice of all possible
inverse kinematic configurations. Moreover, to avoid a col-
lision between a robot and the conveyor belt, a constraint
with minimum operating height in the z-coordinate for
both robots in (13f) is additionally considered. In this pa-
per, for the sake of simplicity, collision avoidance between
the robots is formulated with regard to the robot end
effectors in the Cartesian space by utilizing the concept
of a “distance function”, as formulated in (13e). While
this has been a common approach in practice and a va-
riety of other works in literature, note that additional
constraints addressing the robot links to strengthen the
collision avoidance requirements can be in principle im-
plemented. Therefore, convex hulls around additional links
can be invoked, e.g. in form of ellipsoids. The time optimal
setting guarantees that in each optimization step k, the
desired state ξf is reached at the end of the prediction
horizon k +N , i.e. at τ = 1. The length of the prediction
horizon determines the grade of collision-free predictions.
Indeed, shorter horizons feature coarse prediction capa-
bilities and, therefore, a larger collision potential. And,
vice-versa, larger horizons induce planning outcomes with
higher accuracy in collision avoidance with the downside
of causing higher computational cost. In this sense, a suffi-
ciently large selection of the control horizon N is required
to avoid the collisions. The τ -scale is accordingly divided
in equidistant τ -intervals: τ ∈ {0, 1

N ,
2
N , ...,

N−1
N , 1}. Note

that ∆τ intervals are mapped to increasingly tighter ∆t-
intervals as time t propagates, because tf reduces with
each optimization step. Moreover, the first optimal input
from u∗ shall be applied over the time interval ∆t = t∗f∆τ ,

where t∗f refers to the underlying optimal solution of (13).
The closer the robots approach the target, the smaller the
solution t∗f gets, while the number of control degrees of
freedom remains the same. This leads to a finer prediction
towards the end and eventually, to an under-determined
problem when ∆τt∗f < Ts, where Ts refers to the sam-

ple time. Once, the sample time has been undercut (i.e.
∆τt∗f < Ts), the optimization is stopped. The optimal
inputs from the optimization are applied until the desired
state is reached. If, in this case, further optimization steps
are necessary, the prediction horizon can be reduced to sat-
isfy ∆τt∗f ≥ Ts, or an equivalent input can be calculated,
which is constant over the sampling time.

Grasping a moving object

The desired position xf changes with time due to the
object, that moves along the y−axis with a constant
velocity vobj = [0, vb, 0]T changing its position by xobj,
with vb denoting the velocity of the conveyor belt. The
velocity of the robot at the end should be equal to the
velocity of the object, in order to be able to grasp the
object. At the first optimization step, the desired position
of the end effector is equal to the position of the object, i.e.
xf = xobj. For this, the transition time tf is calculated,
which will be needed to reach the object if it does not
move. But as the object moves, the desired position should
be updated by the time that is left to reach the object.
In the next optimization step the new desired position
changes to xf = xobj + t∗f (1 − ∆τ)vobj. However, in a
practical implementation, camera-based feedback of the
object position is needed, since the object grasping based
on the velocity prediction would not be accurate enough.
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4. SIMULATION RESULTS

The proposed hierarchical approach is implemented and
evaluated on a dynamic simulation model, based on the
CAD data of the robots, objects, and the conveyor belt.
Along with the robot simulation model, a computed torque
controller is designed using the derived equations of mo-
tion. Further, for the interaction of the scheduling layer
operating in Cartesian space with the trajectory gener-
ation layer in the joint space, the inverse and forward
kinematics of the considered robot manipulator are derived
and implemented.
For evaluating the performance of the scheduling and
trajectory generation method, a data set of randomly
distributed points is generated, representing the fruits
on the conveyor belt. By providing the position of the
first 12 objects and the robots to the scheduler, the
optimization described in Section 3.1 is performed, and
the resulting IBLP problem is solved using the gurobi
solver. The minimum distance between two simultane-
ously chosen objects is set to dmin = 0.25 m. According
to the initial scheduling results shown in Fig. 4(a), the
first tray and the object sequence {3, 1, 2, 7, 5, 9} are as-
signed to Robot 1, and the second tray along with the
object sequence {6, 12, 11, 4, 10, 8} to Robot 2. From the
sequences obtained, only the first element is selected. The
remaining objects of the respective sequence, which are
displayed as dashed bars in Fig. 4(a), are not further
considered since the optimization is performed again af-
ter the first two objects have been placed. The selected
objects define the desired final point for the underlying
trajectory generation problem (13), which is solved by
applying the full discretization approach. Following this
approach, the unknown states, control inputs, as well as
the final time are merged into a vector of optimization
variables ζ=[ξT(0) · · · ξT(N) uT(0) · · ·uT(N − 1) tf ]T . Al-
though this method generally leads to a high-dimensional
optimization problem, it has the advantage that the gra-
dient of the cost function and the Jacobian of the con-
straint functions with respect to ζ, as required for the
ipopt solver used here, can be calculated analytically. The
sampling time is set to Ts = 8 ms according to the control
frequency of the used robot arms UR5 from Universal
Robots. The prediction horizon and the belt velocity are
chosen as N = 15 and vb=0.1 m/s. The control horizon Tc
of the obtained optimal inputs has not always the length
Ts of the sampling time, see Fig. 6. In the beginning,
it is larger due to the larger minimum time resulting
from MPC, i.e., Tc=t

∗
f∆τ , and it is decreasing with time

when approaching the targets. To grab the first objects 3
and 6, the end effectors will cover a respective distance
of 0.31 m and 0.41 m within the resulting minimum time
tfr = 0.523 s (see Fig. 4 and 5(a)). All distances related
to this scenario are shown in Fig. 7 with reference to the
base coordinate frame of the first robot. Once the objects
have been grasped, the MPC for trajectory generation is
carried out again, targeting to reach the first slots in the
corresponding trays in the quickest possible time, see Fig.
5(b). After placing the first two objects, the scheduler is
executed again, while maintaining the previous robot-tray
assignment. As shown in Fig. 4, the object sequence for
Robot 1 is not changing compared to the first iteration.
For Robot 2, however, there is a change in the object
sequence resulting in a shorter overall traversed distance.
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Fig. 4. Optimal scheduling for two robots, 12 objects and
two trays relative to the traversed distance, which
is minimized within the optimization problem. The
dashed bars show the planed sequence, which has not
been applied yet, since the optimization is performed
iteratively after each placed object. The white space be-
tween the colored bares indicates the distance covered
by the robot to pick up the next object. The final sched-
ule shows the resulting sequence of the objects placed
in the filled trays after six optimization iterations.
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Robot 1 Robot 2

Fig. 5. Paths of the robots’ end effectors. (a): From the
starting points to the first objects according to the
scheduler results; (b),(d),(f): From the objects to the
slots in the corresponding trays; (c),(e): From the
slots to the next objects selected by the scheduler. As
desired, two simultaneously chosen objects do not lie
next to each other.
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Fig. 6. Optimal input for the third joints when moving
the end effectors from the start position to the first
objects. The time-resolution of the input signals is
increasing when moving closer to the targets.

Contrary to the initial plan, the next object to be picked
up by Robot 2 is object 12, which is located at a shorter
distance than object 11. With the two selected objects, 1
and 12, MPC is performed again, leading the end effectors
from the current slots to the objects, see Fig. 5(c). In this
way, MPC and scheduler are executed alternately until
the trays are filled. The final sequence of selected objects
after six optimization iterations is displayed in Fig. 4(c). In
the subsequent optimization iteration, each robot is then
assigned an object sequence and a tray.
The feasibility of the scheduling model depends mainly on
the value of the minimum distance parameter dmin and the
related constraints (5). Larger values for dmin, as may be
preferred for safety reasons, reduce the solution space and
the performance of the optimization problem. However,
the minimum distance is related to the geometry of the
robots and cannot be chosen arbitrarily small. Hence, for
larger dmin values, the number of slots |S| should be much
smaller than the number of objects |N | to reduce the re-
quired amount of feasible combinations. The feasibility of
the trajectory generation problem depends mainly on the
length of the prediction horizon N , as it is required that
the robots reach the desired configuration in N steps in the
scaled time τ . Shorter prediction horizon would reduce the
solution space and may lead to infeasible solutions. On the
other hand, a larger prediction horizon would increase the
computational effort.
The optimization algorithms are implemented in Matlab
on a standard PC with Intel Core i5−6600 Processor and
3.30 GHz clock rate. The gurobi solver needs, on average,
about 0.084 s and 30 simplex iterations to solve for an
IBLP problem. On the other hand, minimum-time tra-
jectory computation takes on average about 12 iterations,
which corresponds to a CPU time of 0.53 s per MPC step.

5. CONCLUSION

Optimization-based algorithms for cooperative pick-and-
place tasks, involving two robots and moving targets are
discussed. The hierarchical structure enables an interac-
tion of a scheduling algorithm with a time optimal MPC
algorithm for individual robots, that perform the assigned
tasks in a synchronous way. For the safe robot tasks
execution in a narrow shared workspace, safety-related
constraints have been particularly considered in both the
scheduling and the trajectory planning layer. Future work
will involve the consideration of real-time requirements
and validation of the proposed framework in an experi-
mental setup.
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Fig. 7. Distance of the end effectors and the first objects
according to the scheduler. Accordance to the result-
ing synchronous pick-and-place task performance, the
robots reach their targets simultaneously.

REFERENCES

Al Homsi, S., Sherikov, A., Dimitrov, D., and Wieber,
P.B. (2016). A hierarchical approach to minimum-time
control of industrial robots. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2368–
2374. IEEE.

Ardakani, M.M.G., Olofsson, B., Robertsson, A., and
Johansson, R. (2015). Real-time trajectory generation
using model predictive control. In Q.S. Jia (ed.),
2015 IEEE Int. Conference on Automation Science and
Engineering (CASE), 942–948. IEEE, Piscataway, NJ.

Giefer, L., Arango C., J.D., Babr, M.M., and Freitag, M.
(2019). Deep learning-based pose estimation of apples
for inspection in logistic centers using single-perspective
imaging. Processes, 7(7), 424.

Rosmann, C., Makarow, A., Hoffmann, F., and Bertram,
T. (2017). Time-optimal nonlinear model predictive
control with minimal control interventions. In First
Annual IEEE Conference 2017, 19–24.

Schlemmer, M. and Gruebel, G. (1998). Real-time
collision-free trajectory optimization of robot manipu-
lators via semi-infinite parameter optimization. The
International Journal of Robotics Research, 17(9), 1013–
1021.

Spong, M.W., Hutchinson, S., and Vidyasagar, M. (2006).
Robot modeling and control. Wiley, Hoboken, N.J.

Sutdhiraksa, S. and Zurawski, R. (1996). Scheduling
robotic assembly tasks using petri nets. In Proceedings
of IEEE International Symposium on Industrial Elec-
tronics, 459–465. IEEE.

van den Broeck, L., Diehl, M., and Swevers, J. (2009).
Time optimal MPC for mechatronic applications. In
I. Staff (ed.), 2009 48th IEEE conference on Decision
and Control, 8040–8045. IEEE, Shanghai, China.

Xidias, E.K., Zacharia, P.T., and Aspragathos, N.A.
(2010). Time-optimal task scheduling for two robotic
manipulators operating in a three-dimensional environ-
ment. Proceedings of the Institution of Mechanical En-
gineers, Part I: Journal of Systems and Control Engi-
neering, 224(7), 845–855.

Zacharia, P.T. and Aspragathos, N.A. (2005). Op-
timal robot task scheduling based on genetic algo-
rithms. Robotics and Computer-Integrated Manufactur-
ing, 21(1), 67–79.

Zhang, Q. and Zhao, M.Y. (2016). Minimum time path
planning of robotic manipulator in drilling/spot welding
tasks. Journal of Computational Design and Engineer-
ing, 3(2), 132–139.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9207


