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Abstract: This paper studies a newsvendor problem in which the retailer can set both the
selling price and the quantity ordered. The demand is stochastic and price-dependent and the
retailer has the possibility to sell his unsold units at the end of the sales season. We present an
analytical model of the retailer optimization process and show the conditions that the retailer
can find optimal quantity and price simultaneously, then we use numerical methods to reveal the
properties of retailer’s behavior. The existing results of price-setting newsvendor do not include
buyback and our work brings a new condition on the lost sales rate elasticity for the computation
of an optimal solution. Our results show that return policies can improve the profit of retailer
and that this effect increases with the volatility of the demand. This observation reveals a crucial
point for the supplier to design their contract according to demand uncertainty, allowing them
to influence the retailer’s decision on price and order quantity by offering buy-back for unsold
products.

Keywords: Supply chain, price-dependent, newsvendor, return policy.

1. INTRODUCTION

Independent retailers play a vital role in the distribution
channel of products, and the suppliers in different indus-
tries are relying on them to optimize the distribution of
their products thanks to their superior knowledge about
the market, economies of scale, reputation, among other
reasons (Emmons and Gilbert (1998)). As a consequence,
it is essential to understand retailers’ behavior when they
receive a contract from the suppliers, from which they can
derive their ordering decisions. In this regard, retailers
should integrate the features of the contract into their
decision-making process, together with their (private or
public) information on the demand, the market price and
their correlation. In this study we consider a profit max-
imizing retailer who has the possibility to set his retail
price besides his order quantity. In particular, an increase
in price can lead to a decrease in demand, reducing in
turn his order quantity. The challenge for the retailer is
therefore to find an optimal price and quantity in order to
maximize his profit.

1.1 Motivation of this work

The features of market demand and its relation with price
is a cornerstone in retailers’ reactions to the different

? This work was partially supported by the French National Re-
search Agency and this is the project ANR-17-CE10-0001-01 called
FILEAS FOG.

contracts. When the suppliers choose their return policy
to buy back the unsold of products of the retailers by
the end of selling season, the question is, can they decide
about return policies only based on the features of market
demand? The answer to this question lies down on the
behavior of retailers.
The sequence of events we consider is as follows: At
time 0, the retailer receives a take-it-or-leave-it wholesale
price contract with buy-back. The retailer reacts to the
supplier’s contract by simultaneously setting an order
quantity and a retail price, which has negative effect on
demand size. Note that the retailer can reject the contract,
in which case both parties make zero profit. However, if the
retailer accepts the contract, he decides both the order
quantity and the retail price. All of the above decisions
occur in the first stage at time 0. At the end-of-the-sales
season, the demand is realized, the retailer returns unsold
products to the supplier and receives the salvage value for
each unit of returned product. Timeline of events is shown
in Figure 1.
We model the demand faced by the retailer during the
selling season as a decreasing function of the price, which
means that increasing the price may reduce the profit of
the whole supply chain. The retail price can be influenced
by changes in the exogenous parameters, the wholesale
price or salvage value of the products. If the wholesale
price increases, the retailer may choose to increase the
retail price, which will lead to a decrease of the demand,
inducing a decrease of the retailer’s order quantity. Hence
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it is crucial for the suppliers to understand the reaction of
the retailer to different contracts.

1.2 Notation and Assumptions

We consider a simple supply chain composed of one
retailer, who receives from his supplier a contract including
a wholesale price w (the retailer ordering cost) and a buy-
back price s, which he can use to return unsold units
at the end of the sales season. The retailer has a single
opportunity to order q units from the supplier before
the sales season to satisfy an uncertain future demand.
In addition, the retailer also controls the retail price p,
which has a negative effect on the stochastic demand. We
model this effect by defining the demand as a function
d(p, Z), decreasing in p and strictly increasing in Z, where
Z is random variable with price-independent cdf Φ, pdf
φ and complementary cdf Φ̄. To shorten the notations,
we will often write D(p) = d(p, Z) to refer to the price-
dependent random variable corresponding to the final
customer demand with respect to price p. The support
of D(p) is [0,+∞) for all p ≥ 0 and we also assume that
d(p, z) is twice differentiable in p and Z. In this study, we
restrict our attention to a linear additive demand model.
In this particular case, the demand function has the form:

D(p) = Z − bp, (1)

where b is a strictly positive constant. Intuitively in the
additive demand model, price moves the location of dis-
tribution, i.e. an increase in retail price induces a decrease
in customers’ demand, without affecting the shape of the
demand distribution. The retailer is a profit-maximizing
firm who seeks to optimize its order quantity and retail
price decisions. Note that if w ≥ p, the retailer cannot
expect any profit by selling units, therefore he does not
order any product. In addition if w ≤ s, the retailer
earns a risk-less profit by ordering as much as possible.
As a consequence to avoid trivial cases, we assume in the
remainder of this paper that:

p > w > s ≥ 0. (2)

The notations and symbols are summarized in Table 1.

2. STATE OF THE ART

In this paper we construct a model for the retailer’s
reaction to the offered contract to satisfy a stochastic
demand, then we examine the effect of return policies on
his optimal decisions.The contracts with return policies
are commonly used in many industries such as fashion
apparel, publishing, and cosmetics (He et al. (2009))and
in such industries, the retailers need to decide the retail
price before the selling season. Emmons and Gilbert (1998)

studied the effect of return policies on both retailer’s and
manufacturer’s profit under a multiplicative demand case
in a price-setting newsvendor problem. They illustrate that
for a given wholesale price, the offer of buying-back excess
products from the retailer would increase the whole sup-
ply chain channel and manufacturer profit. Petruzzi and
Dada (1999) analyze the newsvendor problem when order
quantity and retail price are decided simultaneously.They
show that in a stochastic additive demand model, optimal
price is always lower than the deterministic case and in a
stochastic multiplicative demand model, the optimal price
would always be higher than deterministic one. They state
that the optimal decisions depend on how uncertainty is
introduced in the model. Yao et al. (2008) show that the
profit of the retailer and the manufacturer both decrease
when demand variability increases in an additive demand
model. The same effect is examined by Xu et al. (2010),
who explain that less variable demand leads to higher price
in the additive demand model and lower price in the mul-
tiplicative demand model, but induces a higher expected
profit in both cases. Kocabıyıkoğlu and Popescu (2011)
proposed a new concept, called the lost sales rate (LSR)
elasticity which corresponds to the percentage change in
the rate of lost sales with respect to the percentage change
in price for a given quantity. They proposed sufficient
conditions on LSR elasticity for the uniqueness of opti-
mal solutions in both sequential and simultaneous price-
inventory optimization for the revenue function. General
conditions to compute the optimal price are also proposed
by Xu et al. (2011) in the multiplicative demand case and
by Rubio-Herrero et al. (2015) under additive case for risk-
averse and risk-seeking retailers without return policies
consideration. In particular, the conditions proposed by
Xu et al. (2011) impose that the random part of the
demand has an increasing generalized failure rate (IGFR),
while the mean demand has an increasing-price elasticity
(IPE). Luo et al. (2016) consider more general demand
model which is an additive-multiplicative demand. They
show that the unimodality of expected profit function
holds when the stochastic term of demand model has
an IFR distribution and the demand function satisfies
certain concavity conditions. They reveal the negative
relation between optimal price and order quantity. Lu and
Simchi-Levi (2013) studied the shape of profit function for
price/quantity determination models and show that it is
log-concave for many stochastic demand functions. They
addressed a conjecture proposed in Petruzzi and Dada
(1999) stating that when demand volatility decreases in
price while the coefficient of variation of demand increases
with price, a stable relation emerges between optimal price
in stochastic and deterministic models.
Ye and Sun (2016) considered price-setting newsvendor

Symbol Description
s Salvage of value of each unsold product.
w Supplier’s wholesale price.
p Retailer’s selling unit price of the product.
q Retailer’s order quantity.
Z A random variable.
d(p, Z) Customers demand of the product at time T , as a function of p and Z.
φ(.) The probability density function (pdf) of Z.
Φ(.) The cumulative density function (cdf) of Z.
Φ̄(.) The complementary cumulative density function of Z.

Table 1. Notations and symbols
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Fig. 1. Timeline of the events.

problem with strategic consumers who may decide to post-
pone their purchase to possibly buy the product on the
salvage market. They show that all strategic consumers
buy the product immediately. Kyparisis and Koulamas
(2018) analyze the price-sensitive newsvendor problem
with non-negative linear additive demand. They show
that the problem still has an optimal solution (possibly
nonunique), that can be computed for the certain distri-
butions when the expected profit function is quasi concave.
Basu et al. (2018) investigate hedging demand uncertainty
in a supply chain under a buy-back contract in quantity
decisions. They analyze the results for both observable and
unobservable risk types of the retailer, and they proposed
a new contract (option buyback contract) for unobservable
case, to maximize total supply chain profit.
In this paper, we model a retailer’s profit function under an
additive demand model that includes a salvage value for
unsold products. We generalize the approach introduced
by Kocabıyıkoğlu and Popescu (2011) to determine condi-
tions for the profit function to be jointly concave in price
and quantity. Next, we show numerically that the optimal
price, quantity and profit under an additive stochastic
demand is always lower than in the deterministic model.
Finally we examine how return policies can mitigate the
effect of demand uncertainty on the optimal decisions of
the retailer.

3. MODEL DESCRIPTION

Recall that at the beginning of the planning horizon, the
retailer is offered a contract (w, s) upon which he can
optimize his expected profit. Knowing the expression of
the demand function, the retailer needs to optimize jointly
p and q in order to maximize his profit. For a given
realization z of the r.v. Z, we can distinguish between two
scenarios:

(1) The realized demand is lower than the order quantity
(Z ≤ q + bp), then the profit of the retailer is the
following:

πr(p, q) = p(z − bp) + s(q − z + bp)− wq
= (p− s)(z − bp)− (w − s)q.

(2) The realized demand is higher than the order quantity
(Z > q + bp), in which case the profit of the retailer
is expressed as follows:

πr(p, q) = (p− w)q.

Taking the expectation over these two cases, we obtain the
following expression for the expected profit of the retailer,
as a function of p and q:

Πr(p, q) = E
[
pmin(q,D(p)) + s(q −D(p))+

]
− wq

= s(q + bp) + (p− s)
∫ q+bp

0

Φ̄(u)du− wq − bp2.

(3)

For a given price p, as the expected profit function is
concave with respect to q, we can compute the optimal
quantity as a function of p from the first derivative of the
expected profit function to q:

q∗(p) = Φ−1(
p− w
p− s

)− bp. (4)

Kocabıyıkoğlu and Popescu (2011) say that without loss
of generality, one can focus on prices p greater that a value
p̂L, with:

p̂L ≥ arg max

{
d

(
p,Φ−1

(
p− w
p− s

))
: p ≥ w

}
,

which in our case reduces to:

p̂L ≥ arg max

{
Φ−1

(
p− w
p− s

)
− bp : p ≥ w

}
. (5)

Note that the lower bound on p̂L corresponds to the price
greater than the wholesale price w that maximizes the
optimal quantity q∗(p) ordered by the retailer. As the

expected profit is concave in p (∂2Πr

∂p2 < 0), the optimal

price for a given quantity q can be obtained from the first
derivative of the expected profit with respect to p:

∂Πr

∂p
=

∫ q+bp

0

Φ̄(u)du+ b(p− s)Φ̄(q + bp)

+ b(s− 2p) = 0.

(6)

Definition 1. The B-LSR (buy-back lost sales rate)elasticity
for a given price and order quantity is defined as:

Es(q, p) = −(p− s)
∂Φ̄(p,q)

∂p

Φ̄(p, q)
. (7)

As the retailer can return any unsold unit to the supplier
and receive its salvage value, the difference between the
price and salvage value is the only one subject to a risk
from demand uncertainty. Hence we call p−s the risky part
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of price. The buy-back lost sales rate (B-LSR) elasticity
is the percentage change in the rate of lost sales with
respect to the percentage change in the risky part of
price for a given quantity. If there is no salvage value for
unsold products, the B-LSR elasticity is equal to the LSR
elasticity defined by Kocabıyıkoğlu and Popescu (2011).

E0 = −p
∂Φ̄(p,q)

∂p

Φ̄(p, q)
.

Proposition 1. In the linear additive stochastic demand
model, if Es ≥ 1

2 then Πr(q, p) is jointly concave in p and
q.

The condition in Proposition 1 ensures that the Hessian of
Πr(q, p) is semidefinite negative for all q ≥ 0 and p ≥ P̂L.
As a consequence Πr(q, p) is concave with respect to p or
q and we can find a maximum of Πr(q, p) for both p and
q.

Proposition 2. If the random variable Z in the demand
function has an IFR (increasing failure rate) distribution,
there exists a price p̃L such that for all q ≥ 0 and p ≥ p̃L
the Hessian matrix of Πr is semidefinite negative and there
exists q∗, p∗ maximizing Πr.

Proof. We use a method similar to the one of Ko-
cabıyıkoğlu and Popescu (2011) and prove that the profit
function is jointly concave in p and q if the determinant of
its Hessian matrix is positive :

|H| = 2b(p− s)φ(q + bp)− (Φ̄(q + bp))2.

Since Z has an IFR distribution, we can show that
|H(p, q∗(p))| is an increasing function in p. Recall that
we are only interested in values of p ≥ w, hence from
|H(w, q∗(w))| = −1 and limp→∞ |H(p, q∗(p))| ≥ 0 we show
that there exists a price p̃L (|H(p̃L, q

∗(p̃L))| = 0), such
that for any price p ≥ p̃L, |H| is positive. Therefore there
exists a unique solution (p∗, q∗) on [p̃L,+∞) × R+ that
maximizes the expected profit.
2

We can introduce a lower bound on p from p̂L in the
equation 5 and p̃L defined in Proposition 2 as below:

pL = max {p̂L, p̃L : p ≥ w} . (8)

Specifically, pL denotes the minimum price above which
one can use the concavity of Πr to jointly compute an
optimal price and quantity. In the next section, we analyze
the behavior of the profit function for different sets of
parameters with numerical experiments.

4. NUMERICAL ANALYSIS

In this section, we first describe experimental parameters
used in numerical solution and solve them through the
integration. We consider Z follows a normal distribution
(IFR distribution as we required) with known mean,
variance (µ = 70, σ = 10) and given wholesale price w
and salvage value s (w = 20, s = 50%w).

Figure 2 shows the relation of determinant of the Hessian
with changing price and for five different values of b,
coefficient of the price in the demand function (0 ≤ b ≤ 4).
It shows that the Hessian is always increasing function of
p, even when b is equal to zero. The effect of b is revealed
on the slope of this function (by increasing the value of

Fig. 2. Hessian with the different coefficients of price

b, the slope of the function increases). The value of the
determinant of the Hessian matrix starts from −1 when
the price equals the wholesale price (p = w) and increases
with price p until it becomes positive (except when b = 0),
so we can spot the price p̃L above which the determinant
of the Hessian matrix becomes positive.

Fig. 3. Expected profit of the retailer

Figure 3 shows how the influence of the price on the
demand impacts the expected profit for different values of
b (1 ≤ b ≤ 2.5). It shows that there always exists a unique
price that maximizes the profit function which decreases
when b increases. For large values of b, the negative effect
of the price on the demand becomes too prominent for the
retailer to make any positive and he does not order any
units. It is also worth mentionning that in this additive
demand setting that b has a similar impact the lower
bound p̃L, therefore when b increases the range of values
of p for which we can jointly optimize p and q widens.

Fig. 4. Expected profit of the retailer b=2.45

Figure 4 illustrates the effect of p̃L on the graph of
profit function with b = 2.45 (close to extreme value
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of b). It shows for prices close to w the expected profit
function is convex, but it becomes concave and has a
unique maximum beyond some point p̃L, as stated in
Proposition 2. Similar experiments were also conducted
for other IFR distributions, such as Gamma and logistic,
and we obtained similar results in all cases.

4.1 Effect of volatility on optimal price and quantity

Our numerical results also confirm what has already been
observed by Yao et al. (2008) and stated by Petruzzi and
Dada (1999): In the additive demand model, the optimal
price decreases as demand uncertainty increases and hence
is always less than the one obtained in the deterministic
case. For instance, Figure 5 displays the expected profit
when Z follows a Logistic distribution for different values
of the scale parameter (0 < sc < 10), with known mean
(µ = 60), fixed wholesale price (w = 20) and fixed
price coefficient in the demand model (b = 1.5). The
suggests that increasing volatility leads to the decrease
of the optimal price and expected profit. Table 2 shows

Fig. 5. Expected profit with different sc

the changes in expected profit, optimal quantity, and price
when the scale parameter varies. The empirical conclusion
is therefore that the volatility of the demand has a negative
effect on the profit of the retailer and also decreases his
optimal order quantity. As it is mentioned by Petruzzi and

Optimal price Expected profit Optimal quantity sc

30 148.09 14.93 0.1
29.6 129.24 14.79 1.1
29.2 110.83 14.57 2.1
28.8 92.89 14.25 3.1
28.3 75.46 13.94 4.1
27.8 58.60 13.49 5.1
27.3 42.44 12.90 6.1
26.7 27.14 12.18 7.1
26.1 12.98 11.23 8.1
25.3 0.32 9.96 9.1

Table 2. Effect of scale parameter on optimal
price and quantity.

Dada (1999), the optimal price in the stochastic additive
demand setting is always lower than its deterministic
counterpart. As the volatility decreases, the optimal price
increases and get close to the solution of deterministic
demand case (D = a− bp).

4.2 Effect of salvage value on optimal price

We conduct another numerical experiment, in order to
capture the effect of return policies on the optimal price
and quantity. We assume that Z is a Logistic distribution
with known mean and scale parameter (µ = 60, sc = 6).
Wholesale price(w = 20) and price coefficient in the
demand model (b = 1.5) are fixed. Figure 6 shows the
graph of expected profit for seven different salvage value
(0%w ≤ s ≤ 90%w). Table 3 shows the effect of the

Fig. 6. Expected profit with different s and relatively high
volatility

salvage value on the expected profit, optimal quantity and
price It is shown that by increasing s, all three parameters
also increase. Increasing the salvage value incentivizes the

Optimal price Expected profit Optimal quantity s

27.4 44.02 12.93 0%w
27.7 55.16 13.70 15%w
28.0 57.52 14.64 30%w
28.3 66.57 15.86 45%w
28.7 78.13 17.45 60%w
29.1 93.79 19.94 75%w
29.6 117.77 25.01 90%w

Table 3. Effect of salvage value on optimal
price and quantity.

retailer to order a greater quantity and increase its selling
price. In that case, some portion of the uncertainty risk
is absorbed by the salvage market, allowing the retailer
to adopt a riskier behaviour without facing all its financial
consequences. The interesting point in this scenario is that
both the optimal price and quantity increase. In particular,
a higher price does not lead to a lower ordering quantity
from the retailer.
However, the effect of the salvage price on retailer’s behav-
ior is mitigated as demand volatility decreases. Figure 7
reveals that for a low scale parameter sc = 0.1, changing
the salvage value has almost no effect on the retailer’s
decisions and profit. Table 4 shows the effect of the salvage
value on the expected profit, price and quantity when the
uncertainty in demand is low. As it is revealed in the
numerical experiments, when the volatility of demand is
relatively high, the return policies play a crucial role in the
expected profit of the retailer, and with a higher salvage
value, retailer’s optimal price and quantity are higher. In
case that the volatility of demand is relatively low, the
effect of return policies becomes minor.
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Fig. 7. Expected profit with different s and relatively low
volatility (sc = 0.1)

Optimal price Expected profit Optimal quantity s

30.0 148.09 14.93 0%w
30.0 148.22 14.95 15%w
30.0 148.37 14.97 30%w
30.0 148.55 14.99 45%w
30.0 148.76 15.02 60%w
30.0 149.04 15.06 75%w
30.0 149.46 15.16 90%w

Table 4. Effect of salvage value on optimal
price and quantity with small volatility.

5. CONCLUSION

In this paper, we focus on the retailer’s reaction to the
wholesale price contract with return policies in case of
price-dependent stochastic demand. First, we analytically
show the conditions of retailer’s expected profit function
concavity for choosing optimal price and quantity simulta-
neously and examine it numerically. Then we numerically
show that benefits of return policies depend on the volatil-
ity of demand. In case of relatively stable demand market
(low volatility), the effect of the return policies is very
mild, and in contrast if the demand volatility is relatively
high, return policies are playing a considerable role.

The uncertainty of demand leads to lower profit and in case
of additive stochastic demand, it reduces the optimal price
and quantity. The management insight is on designing
contracts in which the return policies can help mitigate
the effect of demand uncertainty. On the market demand
with relatively high volatility the retailer’s profit function
and his decisions can be improved with buy-back policies
from the suppliers, but it is not the case when demand
market is stable or has low variability.

There are many related areas that need to be further
explored. Firstly we have to examine these conditions
and relations for a more general demand model, such as
multiplicative-additive demand. The relation between the
demand variability and return policies can be examined
analytically and by introducing the supplier in the model,
it can reach to a more general model. The effect of dual
channel supply chain is an interesting direction for future
investigation on this model, as Li et al. (2017) studied this
effect on quantity decision of supply chain. Another inter-
esting area that can be added to the model is financing con-
ditions for the players and information asymmetry about
market demand as Wagner (2015) shows the necessity of
information asymmetry in stochastic demand system. It

illustrates that the market information advantage may not
necessarily lead to a higher profit of the firm and even can
be the cause of reduction in profit.
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