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Abstract: This paper presents a distributed adaptive control law for large-scale systems
with unknown interconnection parameters. An adaptive control law is designed to follow-up
a model reference for a network through a controller that adjusts its parameters according to
the dynamics of the reference, the neighborhood and the physical interconnection. This work
presents a Model Reference Adaptive Control methodology for heterogeneous systems, such
that the synchronization of the agents in the network is achieved even in the case where the
interconnection is unknown. Stability properties of the proposed control law are validated via
Lyapunov methods and boundedness of the synchronization errors is guaranteed. The authors
propose a validation scheme of adaptive control for different references in a context of level
control in tank networks and a synchronization analysis of the estimated constants.
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1. INTRODUCTION

Network systems have been extensivelystudied in a wide
variety of applications and under different perspectives.
In local and decentralized models, each system acts ac-
cording to the available information, without considering
the external dynamics of its environment (Tian and Liu
(2008)). Centralized control strategies, widely used in sys-
tems with a leader-follower topology, share performance
leader information based on their dynamics (Jadbabaie
et al. (2003)). In a distributed network system, each agent
acts according to the information shared with its neigh-
bors, unlike centralized or local controllers, which do not
share information through the entire network, losing online
changes of the parameters of each agent. Networks that
present physical communications are commonly known as
large-scale systems, and it is a fairly common modelling
strategy in power systems, air systems, hydraulic systems,
car traffic among many other applications, as in Yucelen
and Shamma (2014); Ghafoor et al. (2018); Mauser and
Bach (2009); Suzumura and Kanezashi (2012).

Recently, a major challenge of interconnected systems is
the synchronization of the network’s agents to some ref-
erence model, under unknown interconnection parameters.
The calculation of these constant gains under limited infor-
mation (i.e. data is only available from an agent’s own dy-
namics and its interactions with neighbors) is a nontrivial
task. In Nguyen (2018), Model Reference Adaptive Control
(MRAC) is presented as a useful tool, widely used in
network systems and a wide variety different applications.
This method allows starting from some matching condi-
tions to replicate the dynamics of a system concerning with
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a reference (Jadbabaie et al. (2003)). The applications of
this technology are diverse such as in transport, water,
power systems, among others (Baldi et al. (2018); Saagi
et al. (2016); Nguyen et al. (2018)).

An extension of the control theory derived from the MRAC
is for distributed control, where not all the nodes of the sys-
tem have direct communication with the reference model
(Baldi et al. (2018)). In this case, it is necessary to estimate
the reference as a virtual reference through communication
between neighbors. The adaptive parameters are then es-
timated from the neighborhood for the synchronization
of the entire network. This problem can be approached
as a state regulation or output regulation type strategy,
according to the characteristics of the network topology
(Baldi and Frasca (2019)).

Some researches have focused on the development of adap-
tive control laws based on a reference model for large-scale
systems with unknown communication parameters, but
without the presence of uncommunicated agents with the
reference (Lymperopoulos and Ioannou (2018), Yucelen
et al. (2011)). Similarly, distributed adaptive control laws
have been developed for unknown agent dynamics and
without considering system interconnection terms associ-
ated with the network (Baldi et al. (2018); Jadbabaie et al.
(2003)).

In this work, we analize the impact of the presence of
physical interconnection on a case study of a tank network
to develop a novel adaptive law to synchronize a network
consisting of a layer of wireless and physical communi-
cation based on a reference model, where the reference
can be isolated just with some system nodes. First, the
basic concepts of MRAC are exposed in conjunction with
the scenario of known interconnection parameters in the
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system. Next, we consider the case where these parameters
are unknown and should be estimated from an adaptive
law. In both cases, a control law that guarantees network
synchronization error boundedness is proposed and vali-
dated through Lyapunov Theory.

The paper is organized as follows. In Section 2 the formu-
lation of the problem is presented. Section 3 presents the
distributed control law for known interconnection param-
eters. In Section 4, we include unknown interconnection
terms for the proposed control law. Section 5 describes
the numerical example of an interconnected tank network,
while in Section 6 conclusions and future work are out-
lined.

Notation. In this work, the notation used is fairly standard.
R denotes the real number set. X and x denotes matrices
and vectors respectively. For a matrix, the Euclidean norm
of a signal is defined as ∥X∥2 = ∑

n
i=1 ∣xi∣

2. X⊺, x⊺ and X−1
and x−1 describe the transpose and the inverse of a matrix
or a vector respectively. The trace of a square matrix X is
defined as tr(X).

To model the interconnections of the system, graph theory
is adopted. A directed graph is defined as the pair (V,E),
where V is the nodes set of the graph, and E ∈ V ×V is the
communication edges set. The degree of each node depends
on the number of neighbors it has. The adjacency matrix
is defined as A = [aij], where aii = 0 and aij = 1 if (j, i) ∈ E ,
with i ≠ j .

2. PROBLEM FORMULATION

This section contextualizes the problem of synchronizing a
network of linear systems based on a reference model and
in the presence of nodes that lack direct communication
with the reference and have unknown interconnection
parameters. Consider a network consisting of N nodes
(subsystems) with dynamics:

ẋi = Aixi + biui +
N

∑
j=1

Aijxj , i ∈ [1, ...,N] , (1)

where xi ∈ Rn denotes the agent i states, Ai is an unknown
matrix related to the agents states, bi are known vectors
with possibly heterogeneous agents (Ai/=Aj and bi/=bj ), ui
∈ Rp represents the control input of the i agent. xj ∈ Rn

denotes the state of the neighboring agent and Aij is the
interconnection matrix. The reference model is described
as

ẋ0 = A0x0 + b0r, (2)

where x0 ∈ Rn denotes the state, r ∈ Rp represents the
reference, and A0 and b0 denotes the matrices of the
reference model.

Problem. Consider N agents with dynamics (1), and ref-
erence model (2). Then, the objective of the control is to
guarantee that all closed-loop synchronization error signals
are bounded.

3. DISTRIBUTED MRAC WITH KNOWN
INTERCONNECTION

In this section, we define the distributed control law for
the problem formulated for nodes that communicate with
the reference and for nodes that do not, in the case of

known interconnection parameters. Initially, we validate
the control strategy based on a reference model for one
system. The following assumptions are standard in MRAC
and are required in order to guarantee convergence the
tracking errors in both the reference and its neighbors.

Assumption 1. The vector k∗mi and the scalar k∗ri exist and
are defined as the solution to the following

A0 = Ai + bik
∗⊺
mi,

b0 = bik
∗
ri. (3)

Constants in (3) are known as feedback matching condi-
tions.

Assumption 2. The vector k∗mij and the scalar k∗rij exists
and are defined such that

Ai = Aj + bjk
∗⊺
mij ,

bi = bjk
∗
rij . (4)

Constants k∗mij and k∗rij in (4) are known as coupling
matching conditions.

Assumption 3. The communication graph is acyclic and
must contain at least one spanning tree where the leader
is connected Baldi and Frasca (2019).

Proposition 1. Considering the system (1) without inter-
connection parameter based on model reference adaptive
control methodology (Tao (2003)), that means Aij = 0∀j,
with Assumptions 1-3 verified, it is possible to synchronize
node 1 to a reference model by the controller

u1 = k
⊺
m1x1 + kr1r,

and the adaptive laws

k̇⊺m1 = −sgn (kr1
∗
)γ b⊺0P (x1 − x0)x

⊺
1

k̇r1 = −sgn (kr1
∗
)γ b⊺0P (x1 − x0) r, (5)

where the scalar γ > 0 is the adaptive gain, and P is a
positive definite matrix satisfying

PA0 +A
⊺
0P = −Q, Q > 0.

Proof. It follows from Nguyen (2018).

For a large-scale system, the extension of the control
theory based on a reference model is carried out.

Proposition 2. The synchronization of an agent that is
connected to a reference model is done through the fol-
lowing control law

u1 = k
⊺
m1x1 + kr1r +

N

∑
j=1

a1jk
∗
1jxj ,

with adaptive laws (5) and k1j chosen based on Lemma
1 of Lymperopoulos and Ioannou (2016) to minimize the
effect of closed-loop interconnections ∥A1 −B1k1j∥ .

Proof. It follows from Lymperopoulos and Ioannou (2018).

From these propositions, it is possible to extend the theory
in a distributed way and including agents that lack direct
communication with the leader.

Theorem 3. Consider N systems with dynamics (1), where
only the node 1 has direct communication with the refer-
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ence as in Proposition 2. The other systems employ the
following control law

ui = α
⎛

⎝

N

∑
j=1

aijk
⊺
mijxj + kmi

N

∑
j=1

aij(xi − xj) + . . .

. . . +
N

∑
j=1

aijkrijuj +
N

∑
j=1

aijk
∗
ijxj

⎞

⎠
,

(6)

with α = 1
∑N

j=1 aij
. The other terms are the result of the

following adaptive laws

k̇⊺mij = − sgn(k∗ri)γ b
⊺
0P

⎡
⎢
⎢
⎢
⎣

N

∑
j=1

aij(xi − xj)
⎤
⎥
⎥
⎥
⎦
x⊺i ,

k̇⊺mi = − sgn(k∗ri)γ b
⊺
0P

⎡
⎢
⎢
⎢
⎣

N

∑
j=1

aij(xi − xj)
⎤
⎥
⎥
⎥
⎦
. . .

. . .
⎡
⎢
⎢
⎢
⎣

N

∑
j=1

aij(xi − xj)
⎤
⎥
⎥
⎥
⎦

⊺
,

k̇rij = − sgn(k∗ri)γ b
⊺
0P

⎡
⎢
⎢
⎢
⎣

N

∑
j=1

aij(xi − xj)
⎤
⎥
⎥
⎥
⎦
uj . (7)

Then, the control law (6) guarantees that all synchroniza-
tion errors are bounded.

Proof. The aim is to guarantee that the synchronization
error between each node tends to zero, regardless of
whether there is direct communication or not with the
reference model, the following equation is defined

V (eij , k̃mi, k̃ri, k̃ij , k̃rij) =
N

∑
i=1

⎛

⎝

N

∑
j=0

aijeij
⎞

⎠

⊺
P . . .

. . .
⎛

⎝

N

∑
j=0

aijeij
⎞

⎠
+

N

∑
j=1

tr
⎛

⎝

k̃⊺mik̃mi

γ ∣k∗ri∣
⎞

⎠
+ . . .

. . . +
N

∑
i=1

N

∑
j=1

aij tr
⎛

⎝

k̃⊺mij k̃mij

γ ∣k∗ri∣
⎞

⎠
+

N

∑
i=1

N

∑
j=1

aij tr
k∗⊺ij k

∗
ij

γ ∣k∗ri∣
+ . . .

. . . +
N

∑
i=1

N

∑
j=1

aij
k̃2ri
γ ∣k∗r ∣

, (8)

where j = 0 is used as a representation of the reference. The
error dynamics is represented as ei = xi−x0 or eij = xi−xj
in short notation, and in long notation as

ėij = A0(xi − xj) + bj[uj − k
∗⊺
mijxi − k

∗⊺
mieij − k

∗
rijui + k

∗
ijxj],

ėij = A0eij + bj[k̃
⊺
mijxi + k̃

⊺
mieij + k̃

⊺
rijui + k

∗
ijxj], (9)

with k̃mij = kmij − k
∗
mij ; k̃mi = kmi − k

∗
mi; k̃rij = krij − k

∗
rij .

The derivative of (8) along (9) can be obtained as

V̇ =
N

∑
i=1

⎛
⎝

N

∑
j=0

aijeij
⎞
⎠

⊺

(PA0 +A⊺0P )
⎛
⎝

N

∑
j=0

aijeij
⎞
⎠ + . . .

. . . + 2
⎛
⎝

N

∑
j=0

aijeij
⎞
⎠

⊺

Pbi . . .

. . .
⎛
⎝

N

∑
j=0

aij k̃
⊺

mijxi + k̃⊺mi

N

∑
i=1

aijeij +
N

∑
i=1

aij k̃rijui +
N

∑
i=1

aij k̃ijxj
⎞
⎠ + . . .

. . . +
N

∑
i=1

tr
⎛
⎜
⎝
k̃⊺miγ

−1 ˙̃kmi

∣k∗ri∣
⎞
⎟
⎠
+

N

∑
i=1

tr
⎛
⎜
⎝
k̃⊺mijγ

−1 ˙̃kmij

∣k∗ri∣
⎞
⎟
⎠
+ . . .

. . . +
N

∑
i=1

N

∑
j=1

aij
k̃rijγ

−1 ˙̃krij

∣k∗ri∣
, (10)

and reducing the Lyapunov equation as

V̇ = −
N

∑
i=1

⎛

⎝

N

∑
j=0

aijeij
⎞

⎠

⊺
Q

⎛

⎝

N

∑
j=0

aijeij
⎞

⎠
,

Then, (10) is bounded, which implies by Barbalat’s

Lemma that lim
tÐ→∞ V̇ = 0 (Khalil (2002)). Thus, lim

tÐ→∞ eij =
0 ∀i, which we can proof that all the synchronization errors
eij are bounded. ∎

The proof of this theorem allows validating the distributed
control strategy for interconnected systems with known
parameters. However, in real cases not all of these param-
eters are available for the control design. In the following
section the estimation used in case of lack of knowledge of
the parameters is presented.

4. DISTRIBUTED MRAC WITH UNKNOWN
INTERCONNECTION

In this section, the theory is again extended in a more
realistic way, including unknown parameters of the in-
terconnection, in this case the unknown parameters are
those directly associated with the interconnection, and
the matrix A of the reference model and and neighbor-
ing agents. The objective is to design a control law that
guarantees the synchronization in a boundary way and
estimates adequately those interconnection gains exposed
in the previous section kij .

Theorem 4. The adaptive laws (7) are assigned in the
same way for the synchronization of agents (1) with the
reference model (2) and with its neighbors. Therefore,
constant kij is a result of the adaptive law

k̇⊺ij = −
N

∑
j=1

sgn(k∗ri)γ b
⊺
0P [aij(xi − xj)]x

⊺
j , (11)

then the control law (6) with adaptive laws (7) and (11)
guarantees that all synchronization errors are bounded.

Proof. The objective of this test is to validate that
Closed-loop error signals are bounded even in the presence
of unknown parameters in the interconnection of the
network, the following equation is taken
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V (eij , k̃mi, k̃ri, k̃ij , k̃rij) =
N

∑
i=1

⎛

⎝

N

∑
j=0

aijeij
⎞

⎠

⊺
P . . .

. . .
⎛

⎝

N

∑
j=0

aijeij
⎞

⎠
+

N

∑
j=1

tr
⎛

⎝

k̃⊺mik̃mi

γ ∣k∗ri∣
⎞

⎠
+ . . .

. . . +
N

∑
i=1

N

∑
j=1

aij tr
⎛

⎝

k̃⊺ij k̃ij
γ ∣k∗ri∣

⎞

⎠
+

N

∑
i=1

N

∑
j=1

aij tr
⎛

⎝

k̃⊺ij k̃ij
γ ∣k∗ri∣

⎞

⎠
+ . . .

. . . +
N

∑
i=1

N

∑
j=1

aij
k̃2ri
γ ∣k∗r ∣

. (12)

The error dynamics is represented equally as ei = xi −x0 o
eij = xi − xj in short notation, and in long notation as

ėij = A0(xi − xj) + bj[uj − k
∗⊺
mijxi − k

∗⊺
mieij − k

∗
rijui + k

∗
ijxj],

ėij = A0eij + bj[k̃
⊺
mijxi + k̃

⊺
mieij + k̃

⊺
rijui + k̃ijxj], (13)

with k̃ij = kij − k
∗
ij . The derivative of (12) along (13) can

be obtained as

V̇ =
N

∑
i=1

⎛
⎝

N

∑
j=0

aijeij
⎞
⎠

⊺

(PAm +A⊺mP )
⎛
⎝

N

∑
j=0

aijeij
⎞
⎠ + . . .

. . . + 2
⎛
⎝

N

∑
j=0

aijeij
⎞
⎠

⊺

Pbi . . .

. . .
⎛
⎝

N

∑
i=1

aij k̃
⊺

mijxi + k̃⊺mi

N

∑
i=1

aijeij +
N

∑
i=1

aij k̃rijui +
N

∑
i=1

aij k̃ijxj
⎞
⎠ + . . .

. . . +
N

∑
j=0

tr
⎛
⎜
⎝
k̃⊺miγ

−1 ˙̃kmi

∣k∗ri∣
⎞
⎟
⎠
+

N

∑
i=1

tr
⎛
⎜
⎝
k̃⊺ijγ

−1 ˙̃kij

∣k∗ri∣
⎞
⎟
⎠
+ . . .

. . . +
N

∑
i=1

tr
⎛
⎜
⎝
k̃⊺mijγ

−1 ˙̃kmij

∣k∗ri∣
⎞
⎟
⎠
+

N

∑
i=1

N

∑
j=1

aij
k̃rijγ

−1 ˙̃krij

∣k∗ri∣
, (14)

where reducing is found that

V̇ = −
N

∑
i=1

⎛

⎝

N

∑
j=0

aijeij
⎞

⎠

⊺
Q

⎡
⎢
⎢
⎢
⎣

N

∑
j=0

aijeij
⎤
⎥
⎥
⎥
⎦
,

then, (14) is bounded, this implies that V̇ ≤ 0, and by Bar-
balat’s Lemma we can proof that all the synchronization
errors eij are bounded for tÐ→∞ (Khalil (2002)). ∎

Theorems 3 and 4 allow to validate the inclusion of an
adaptive distributed control based on a reference model
for network systems with known and unknown intercon-
nection parameters. These strategies can be validated
through a numerical example where the synchronization
of a network is guaranteed and the estimation of the
interconnection parameters in the controller is developed.

5. NUMERICAL EXAMPLE

In this section, simulation results are presented taking the
theorems described in the previous sections to verify the
effectiveness of the proposed control laws. Consider the
system of couple water tanks where each agent consist of
two tanks and the agent presents physical interconnection
as it is shown in Fig. 1. It is common in the design of large-
scale control water transportation networks the use of
virtual tanks for oriented-control modeling by Garćıa et al.

agent 1 agent 2 agent 3 agent n

h11 h21 h31

h12 h22 h32

hn1

hn2

v1 v2 v3 vn

Fig. 1. Application case interconnected water network.

(2015). Based on Johansson (2000) Jalal and Rasmussen
(2016), we can deduce the differential equation of each
agent through Bernoulli’s law and mass balances as

ḣi1 = −
qi1(t)

Ai1
+
Fi

Ai1
,

ḣi2 = −
qi2(t)

Ai2
+

1

Ai2

N

∑
i=1

N

∑
j=1
, αijqi1(t)

where qis = bis(2ghis(t))
1/2 with s ∈ {1,2} are the inlet and

outlet flow rates, Fi = kivi, correspond to inlet flow rates
from pumps, his(t), bis , and Ais refer to the water level,
cross-section of the outlet hole, and cross-sectional area of
tank i, respectively. Each agent is linearized in a operation
point with xi = [hi1 − h

0
i1 hi2 − h

0
i2] and ui = vi − v

0
i the

linear model is given by

ẋi = [
a1i 0
0 a2i

] xi + [
b1i
0

]ui +
N

∑
j=1

Aijxj ,

where

a1i =
bi1
Ai1

√

g/2h0i1, a2i =
bi2
Ai2

√

g/2h0i2, bi1 = ki/Ai1,

with Aij depending of the interconnections. We choose
different scalar values for each system to considered het-
erogeneous nodes. The graph of the system is shown in
Fig. 2, where the physical interconnection layer of blue
color and the layer of the wireless communication graph
of green color are observed.

Fig. 2. Leader-follower physical and communication net-
work graph.
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The simulation parameters used are shown in Table 1.
Note that these parameters are unknown and are used only
for simulation, not for control design.

Table 1: Agents coefficients and initial conditions

a1 a2 b1 x0
A0 -0.25 -0.5 1 [1 − 1]⊺
A1 -1.25 -1 0.5 [1 0]⊺
A2 -0.5 -2.5 0.75 [−1 0.5]⊺
A3 -0.75 -2 1.5 [1 0]⊺
A4 -1.5 -2.5 1 [−1 1]⊺
A5 -1 -2 1 [−0.5 1]⊺
A6 -0.75 -1 0.5 [0 − 1]⊺

All agents dynamics are stable in open loop, including the
reference model. For simulation purposes, the following ad-
ditional parameters are necessary: γ = 10,Q = diag(100,1).
All the adaptive control laws are initialized to zero. From
the validation of the Assumptions 1-3, in Fig 3 the result
of the simulation is presented with known interconnection
parameters of the form kij = [k1i k2i]. The interconnection
matrices parameters Aij of each system are described in
the Table No.2 with the parameters defined as

Aij = [
Aij1 Aij2

Aij3 Aij4
] .

It is observed that along simulation time, the network
converges to the reference model states, which leads to
the synchronization error tending to zero satisfactorily.

Table 2: Coefficients system interconnection matrices

Aij1 Aij2 Aij3 Aij4

A21 1.05 3 3 2
A32 0.35 1 1 1.85
A41 1.85 1.5 1.7 0.9
A43 0.5 0.4 0.3 1
A51 1 1 0.4 0.45
A65 2 1 0.8 2

Fig. 3. Agents synchronization with known interconnection
parameters.

In Fig. 4, the response of the same system with the un-
known interconnection parameters is observed. The adap-
tive gain (11) is included and it is observed that, as in
the previous case, the system presents a synchronization
in the dynamics of its agents with respect to the reference
model. In Fig. 5 the estimation error between the adap-
tive constants associated with the interconnection of the

system and those obtained in Theorem 3 is presented. It
is observed that all the constants tend to their estimate
effectively.

Fig. 4. Agents synchronization with unknown interconnec-
tion parameters.

Fig. 5. Synchronization error system interconnection con-
stants.

The reference of the model is modified to a sinusoidal
signal, and in Fig. 6 its result is observed, as in the
previous cases, the system achieves a convergence to the
states of the reference model even with the change in
the slope of control signal. The simulation results show

Fig. 6. Agents synchronization with unknown interconnec-
tion parameters in a sinusoidal reference.

a synchronization in the distributed network with known
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and unknown parameters, validating the convergence of
the interconnection parameters and the estimation error
with zero trend.

6. CONCLUSIONS AND FUTURE WORK

This work presents the development methodology of a
distributed and adaptive controller for interconnected sys-
tems in the presence of unknown parameters. The prob-
lem contextualized to a tank networks is solved based
on a distributed MRAC synchronization problem, where
all the systems seek to have the same behavior from a
reference model. Using adaptive control laws, it is possible
to synchronize a system even in the presence of unknown
interconnection parameters, making estimation and mon-
itoring of the reference. The development of a control
strategy based on a reference and distributed model allows
extending the theory of interconnected systems for those
networks where not all the agents present communication
with a reference like industrial networks. This strategy
proposes the synchronization through the estimation of
network parameters through the information transmit-
ted between neighbors. The estimation of parameters of
interconnection in a network improves the operation of
distributed systems by avoiding the faults present in the
modeling of these parameters through adaptive control.
More realistically the problem is addressed and allows a
complete field of application in all interconnected systems.

For future work, we propose the extension of the the-
ory to systems with nonlinear uncertainty, for its esti-
mation through optimal control strategies or neural net-
works methodology, and likewise, the definition of this
synchronization as an output regulation problem in similar
contexts.
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