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Abstract: In this paper, a cooperative platoon-based gap opening controller is developed. The
intended application is gap creation in cooperative platoons to accommodate merges with spatial
restrictions. Therefore, the main objective is to execute the maneuver in a predefined time.
The controller design is based on a regular cooperative adaptive cruise control algorithm with
an additional feedforward term for a desired gap. Experimental validation of the controller is
performed with small mobile robots. The proposed control strategy is capable of opening the
gap in a predefined time. In future work, this strategy can be used in the design of a merging
algorithm specifically for CACC platoons.
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1. INTRODUCTION

Connected automated vehicles (CAV) can play an impor-
tant role in tackling some current transportation challenges.
For example, CAVs may reduce fuel consumption, emissions,
and traffic congestion by using cooperative adaptive cruise
control (CACC) (Rios-Torres and Malikopoulos (2016)).
Vehicles utilizing CACC can drive closely together in a
string while communicating their control input. Such a
string of vehicles is often referred to as a platoon. The
advantage of communication is that vehicles can drive closer
together while string stability is maintained. String stability
is a notion describing the mitigation of disturbances down
the string. If disturbances dampen, the platoon is said
to be string stable. Without this property, longitudinal
disturbances of the leader vehicle cause larger excitations
at the back of the string.

Loss of string stability may be caused by communication
delays between the vehicles. String stability despite these
delays can be achieved by using a velocity-dependent
inter-vehicle distance. In essence, the desired inter-vehicle
distance is a headway time multiplied by the vehicle’s
velocity. A constant stand still distance may be added,
which essentially is a coordinate transformation and does
not effect the dynamics. Experimental results using this
control strategy have been presented in Ploeg et al. (2011).
Due to the proven practical capabilities, this controller will
be the basis of the controller design in this paper.

? This work is part of the research program i-CAVE with project num-
ber 14893, which is partly financed by the Netherlands Organisation
for Scientific Research (NWO).

For practical implementation of CACC, the platoon for-
mation needs to be controlled. Adding a new vehicle to
the platoon while driving has been a topic of interest in
recent research. An overview of the current research can be
found in the survey of Rios-Torres and Malikopoulos (2016).
Platooning-specific techniques are discussed but are not
the main focus of this survey. The examples of platooning
in the survey do not employ a velocity-dependent inter-
vehicle distance. However, two platoons utilizing a velocity-
dependent inter-vehicle distance were merged during the
Grand Cooperative Driving Challenge (GCDC). The pla-
toons employed a heuristic control strategy in which the
vehicles linearly switch their target vehicle (Hult et al.
(2018)). At the end of this maneuver all vehicles thus drove
at a correct distance from their new preceding vehicle.
However, during this alignment the following of the desired
trajectory cannot be guaranteed. This may affect the timely
opening alignment of the vehicles.

This paper focuses on the gap creation in a platoon as it
is a fundamental part of the merging maneuver. Previous
research regarding gap creation often focused on the desired
longitudinal trajectory rather than the vehicle control
(Ntousakis et al. (2016), Wang et al. (2017)). However,
to accommodate scenarios with spatial constraints, such
as highway on-ramps, a timely execution of the maneuver
is required. Therefore, a longitudinal controller is designed.
The proposed controller maintains the benefits of a regular
CACC controller while opening the gap in a timely fashion.
The controller was experimentally validated using small
robots. The vehicle model and controller designs are
discussed in Section 2, which is concluded with simulations.
Section 3 elaborates on the design of the experiments and
shows their results. The paper is concluded in Section 4.
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2. CONTROL STRATEGY

The proposed control strategy is based on the vehicle model
and controller of Ploeg et al. (2011). This strategy can be
used for regular CACC driving and varying the inter-vehicle
distance. The vehicle model and controller design are both
discussed in this section. Furthermore, the controller is
analyzed and simulations are performed.

2.1 CACC and Inter-vehicle Distance Control

The longitudinal dynamics of each vehicle is described using
q̇i(t) = vi(t) (1)
v̇i(t) = ai(t) (2)

ȧi(t) =
1

τ
ui(t)−

1

τ
ai(t). (3)

Where qi, vi and ai are the 1-D position, velocity and
acceleration of the ith vehicle. The control input is denoted
with ui and the driveline dynamics are represented using
time constant τ . It is assumed that τ is equal for all vehicles.

An example of a platoon is shown in Figure 1 which consists
of vehicle i and i−1. The distance between the front bumper
of vehicle i and the rear bumper of vehicle i− 1 is denoted
with di. The vehicles are equipped with radar therefore
vehicle i can measure di and its derivative ḋi = vi−1 − vi.
Wireless communication allows for data transfer between
the vehicles.

A controller aims to keep the vehicle at a desired inter-
vehicle distance

dr,i(t) = hvi(t) + r + γ(t). (4)
Where h and r denote the headway time and the stand still
distance. The purpose of r is to maintain a safe distance
at low velocities. The additional gap is denoted with γ,
which is zero during normal driving. The error is defined
as ei = di − dr,i, with the corresponding error states
[e1,i e2,i e3,i] = [ei ėi ëi]. This yields the error dynamics

e1,i = di − dr,i (5)
e2,i = vi−1 − vi − γ̇ − hai (6)

e3,i = ai−1 − ai
(
1− h

τ

)
− γ̈ − h

τ
ui (7)

ė3,i = −
1

τ
e3,i +

1

τ
ui−1 −

1

τ
ξi, (8)

where
ξi = hu̇i + ui + γ̈ + τ

...
γ . (9)

Based on (8) a function of ξ is designed that controls the
error dynamics and compensates for ui−1, such that

ξi = [kp kd]

[
e1,i
e2,i

]
+ ui−1. (10)

Where scalars kp and kd are control parameters. Now (9)
and (10) yield the control law

i i− 1
dr;i(t)

vi(t) vi−1(t)

r hvi(t)L L

Fig. 1. Definition of the platoon during steady state driving.

u̇i =
1

h

(
[kp kd]

[
e1,i
e2,i

]
+ ui−1 − ui − γ̈ − τ

...
γ

)
. (11)

This control law can be used for gap opening. However,
the designed trajectory of gap distance γ must have C2

continuity such that
...
γ can be obtained at all times.

The stability of the individual vehicle’s error dynamics is
investigated. These dynamics are investigated by writing
them in the formė1,iė2,i
ė3,i
u̇i

=


0 1 0 0
0 0 1 0
−kp
τ

−kd
τ
−1

τ
0

kp
h

kd
h

0 − 1

h


e1,ie2,i
e3,i
ui

+

0 0
0 0
0 0
1

h

−1
h


[
ui−1
γ̈ + τ

...
γ

]
.

(12)
This system has an equilibrium in the origin for ui = 0
and γ̈ + τ

...
γ = 0. Similar to Ploeg et al. (2011) the Routh-

Hurwitz stability criterion can be applied to the state
matrix. It follows that the error dynamics are stabilized for
h > 0 and any kp > 0 and kd > 0 that satisfy kd > kpτ .

2.2 Controller Analysis

The proposed controller is compared to two feedback
control strategies, which do not consider γ̈ and

...
γ in the

computation of ui. The feedback controllers differ in their
computation error e2,i. One controller uses the derivative
γ̇ in the error computation. The other assumes γ constant
and computes e2,i by only using measurements vi−1 − vi
and ai. The three controllers are referred to as feedforward
controller, feedback controller assuming a differentiable γ,
and feedback controller assuming a constant γ respectively.
They will be discussed separately in this section.

Feedforward controller (FF) The feedforward controller
is designed in the previous section. It is subject to control
law (11) and requires a γ-trajectory with C2 continuity.
To isolate the influence of the gap opening maneuver, it is
assumed that the preceding vehicle is driving at a constant
velocity vnom . In essence, vi−1 = vnom , ai−1 = 0, and
ui−1 = 0. Now define states x and outputs y as

x = [ei, vi − vi−1, ai, ui, γ̇, γ̈]T (13)

y = [ei, vi − vi−1, ai]T , (14)
the system can be written in the form

ẋ =



0 −1 −h 0 −1 0
0 0 1 0 0 0

0 0 −1

τ

1

τ
0 0

kp
h
−kd
h
−kd −

1

h
−kd
h
− 1

h
0 0 0 0 0 1
0 0 0 0 0 0


x+



0
0
0

− τ
h
0
1


...
γ (15)

y =

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]
x. (16)

Using this linear time invariant model, the system can be
analyzed in frequency domain. First, the frequency domain
transfer function between the requested γ and error ei is
investigated. The influence of γ rather than input

...
γ is

examined because the units of γ and ei are both meters.
The relation is described using transfer function
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ei(s)

γ(s)
= s3

ei(s)...
γ (s)

= 0. (17)

It can thus be concluded that ei is not influenced by
changing γ if this control law is used if the initial conditions
are all zero. Therefore, the vehicle will maintain the
requested inter-vehicle distance for any C2 continuous γ-
trajectory without creating an error.

The inter-vehicle distance (di) of the vehicle in relation
to the desired gap γ is another performance indicator.
This shows the longitudinal behavior for changes in γ. It
can be noted that di(s)

γ(s) = −vi(s)
γ̇(s) = −ai(s)

γ̈(s) . The response
in distance is thus strongly related to the response in
velocity and acceleration. These responses can be obtained
using input

...
γ and output vi or ai with the formulas

di(s)
γ(s) = −s2 vi(s)...

γ (s) = −s
ai(s)...
γ (s) . This yields transfer function

GFF (s) =
di(s)

γ(s)
=

1

1 + hs
. (18)

The transfer functions can be seen as a low-pass filter. Since
h > 0 the maximum gain of the functions is 1. In other
words, the high frequency excitations of di are dampened
versions of excitations in γ. This behavior can be explained
using (4). If a gap is opened by increasing γ the vehicle
slows down, this decreases the distance hvi. Thus, at a
time t1 during a gap opening maneuver starting at time t0,
γ(t1) − γ(t0) ≥ dr,i(t1) − dr,i(t0). Therefore, di may still
be changing at the end of the γ-trajectory as the vehicle
is still adjusting its velocity. However, a suitable gap is
available for the new vehicle when the γ-trajectory ends.

Feedback controller assuming a differentiable γ (FBD)
The feedback controller reacts to changes in the error and
does not directly use the planned trajectory of γ. In essence,
the control law (11) is replaced by

u̇i =
1

h

(
[kp kd]

[
e1,i
e2,i

]
+ ui−1 − ui

)
. (19)

However, e2,i as described by (6) does contain the term γ̇.
It can be obtained by using knowledge of the designed γ
trajectory or through an observer. Using the states of (13)
the state dynamics can then be written as

ẋ =



0 −1 −h 0 −1 0
0 0 1 0 0 0

0 0 −1

τ

1

τ
0 0

kp
h
−kd
h
−kd −

1

h
−kd
h

0

0 0 0 0 0 1
0 0 0 0 0 0


x+


0
0
0
0
0
1


...
γ . (20)

Using these equations and (16), the transfer function
between γ and ei is found to be

ei(s)

γ(s)
= s3

ei(s)...
γ (s)

= − s2 + τs3

kp + kds+ s2 + τs3
. (21)

At low frequencies this transfer function has a small gain,
the gain will go to 1 at high frequencies. In essence, at low
frequencies the γ-trajectory can be followed closely and
thus the error remains close to 0. At high frequencies the
γ-trajectory cannot be followed and thus the error has the
same amplitude as the γ. The exact behavior is dependent
on the system parameters. This behavior is confirmed by
investigating the transfer function
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(a) Headway h = 0.5 seconds.
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(b) Headway h = 1.5 seconds.

Fig. 2. supω∈R |GFBD(jω)| with τ = 0.1 for different values
of kp, kd and h.

GFBD(s) =
di(s)

γ(s)
=

kp + kds

kp + kds+ s2 + τs3
1

1 + hs
. (22)

The gain of this transfer function is close to 1 at low
frequencies and goes to 0 at high frequencies. Thus, the
additional inter-vehicle distance is approximately equal to
γ at low frequencies. At high frequencies this distance will
be close to 0. The maximum gain of this transfer function is
dependent on parameters kp, kd, h and τ . In the controller
design, parameters kp, kd and h can be tuned. However,
τ is a system property and cannot be adjusted. For this
reason, the influence of kp, kd and h have been analyzed
for a given τ . The results of the analysis are shown in
Figure 2. The maximum gain for some parameter sets is
greater than 1. Therefore, γ-trajectories may be amplified
in the di signal. For a large headway time the maximum
gain decreases and may even go to 1. However, the headway
time can be constrained by other factors and this solution
may thus be infeasible.

Feedback controller assuming a constant γ (FBC) With-
out knowledge of γ̇, the feedback control law of (19) can
be combined with the error definition

e2,i = vi−1 − vi − hai. (23)
The system with this controller can be written in the form

ẋ =



0 −1 −h 0 −1 0
0 0 1 0 0 0

0 0 −1

τ

1

τ
0 0

kp
h
−kd
h
−kd −

1

h
0 0

0 0 0 0 0 1
0 0 0 0 0 0


x+


0
0
0
0
0
1


...
γ . (24)

Using this system, the transfer function between ei and γ
is found to be

ei(s)

γ(s)
= s3

ei(s)...
γ (s)

= − kds+ s2 + τs3

kp + kds+ s2 + τs3
. (25)

This equation is similar to (21) with an additional kds term
in the numerator. The general behavior is thus similar, this
is confirmed by the transfer function

GFBC (s) =
di(s)

γ(s)
=

kp
kp + kds+ s2 + τs3

1

1 + hs
(26)

which is comparable to (22). The difference becomes
apparent when analyzing the maximum gain. The analysis
for this system is shown in Figure 3. A maximum gain
of 1 is obtainable with a larger parameter set using this
controller. Since γ̇ is ignored the γ-trajectory is followed less
aggressively. Thus, an overshoot in distance less probable.
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Fig. 3. supω∈R |GFBC (jω)| with τ = 0.1 for different values
of kp, kd and h.

2.3 Transient Behavior

For a timely execution of the gap opening maneuver, the
transient behavior of the controllers is investigated. First,
the impulse response of the FF algorithm is analyzed using
(18). This transfer function can be written as

ẋ =

[
−1
h

]
x+ [1]u, y =

[
1

h

]
x. (27)

Using the standard A, B, and C matrix notation in this
model, the impulse response g(t) can be computed as

g(t) = CeAtB =
e

−t
h

h
. (28)

The impulse response shows how the vehicle will return to
a constant velocity vi−1 after the maneuver. Furthermore,
it is apparent that this return is dependent on headway
time h. Since g(t) > 0 ∀ t ∈ R no overshoot of the desired
gap is expected.

A similar analysis is performed for the FBD and FBC
controllers using (22) and (26) respectively. Their impulse
response is dependent on parameters kp, kd, τ and h.
Therefore, a numerical example is used for this investigation,
where kp = 0.2, kd = 0.7, τ = 0.1 s and h = 0.5 s.

The corresponding A-matrix is equal for the FBD and
FBC, in this numeric example its eigenvalues have strictly
negative real parts. Therefore, the impulse response of (28)
can be bounded as

‖g(t)‖ ≤ ce−λt. (29)

All eigenvalues of A have multiplicity equal to 1. Thus λ
can be chosen as the absolute value of the largest real part
of the eigenvalues of A (Hespanha (2009)). The chosen
value of λ is 0.3660, the value of c is estimated numerically
to be 0.9842 and 0.9464 for the FBD and FBC respectively.
The resulting impulse responses of all controllers using the
previously mentioned parameters can be found in Figure 4.

The impulse response of the FF is largest at t = 0, since
the system reacts directly to changes in γ. Furthermore,
there is no overshoot in di, since g(t) > 0 is satisfied. The
impulse response of FBD has a larger overshoot than that
of FBC. The bound on the impulse response for FBC is
slightly stricter than that of FBD. A comparison using a
time simulation is provided at the end of this section to
highlight the difference in behavior.

0 2 4 6 8 10
−0.5

0

0.5

1

Time [s]

g
(t
)

Fig. 4. The di
γ impulse response of the FF ( ), FBD

( ) and FBC ( ), and the corresponding bounds
for the FBD ( ) and FBC ( ).

0 1 2 3 4
−5

0

5

10

Time [s]

γ
,
γ̇
,
γ̈
,

... γ
Fig. 5. Example γ-trajectories from 0 to 10 meters in 4

seconds and their derivatives. With γ [m] ( ), γ̇
[m/s] ( ), γ̈ [m/s2] ( ), and

...
γ [m/s3] ( ).

2.4 Trajectory Design

One way to obtain a smooth trajectory that satisfies
constraints on the derivatives is the usage of a polynomial.
A fifth order polynomial can be used to describe a C2

continuous γ-trajectory, such that
γ(T ) = c1 + c2T + c3T

2 + c4T
3 + c5T

4 + c6T
5. (30)

Where T is the time starting from the initiation of γ.
Constants c1 till c6 are parameters used to give γ the desired
behavior. Primarily, γ(T ) is designed to reach the gap size
γend at time Tend , where Tend is the desired timespan of the
gap opening maneuver. The trajectory of γ(T ) is designed
such that γ̇(Tend) = 0 and γ̈(Tend) = 0. Initial values γini ,
γ̇ini and γ̈ini are considered such that the trajectory can
be redesigned at any time. These conditions are fulfilled
by selecting the constants
c1 = γini , c2 = γ̇ini , c3 = 0.5γ̈ini

c4 =
20 (γend − γini)− 3Tend (4γ̇ini + Tend γ̈ini)

2T 3
end

c5 =
−30 (γend − γini) + Tend (16γ̇ini + 3Tend γ̈ini)

2T 4
end

c6 =
12 (γend − γini)− Tend (6γ̇ini + Tend γ̈ini)

2T 5
end

.

(31)

An example γ-trajectory for gap opening is shown in
Figure 5. The parameters for the γ-trajectory, such as γend ,
in this graph are chosen purely for illustrative reasons and
do not bear any significance. Every derivative of γ is a
polynomial one order lower than previous derivative.

For parameterization of the γ-trajectory, consider an ego
vehicle opening the gap behind a preceding (pre) vehicle.
The γ-trajectory should be such that it can accommodate
a new vehicle when the pre vehicle is at a location
qend,pre . The time constraint of the γ-trajectory should
thus correspond with a spatial constraint using
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Fig. 6. Simulation results of the gap opening maneuver us-
ing three different controllers. With reference hvnom +
r + γ ( ), and the results for the FF ( ), FBD
( ) and FBC ( ) algorithm, with Tend ( ).

γend = hnewvpre + Lnew + rnew (32)

Tend =
qend,pre − qpre

vpre
. (33)

Where Lnew is the length of the new vehicle, and subscripts
pre and new denote the vehicle to which a symbol belongs.
It is assumed that the vpre is approximately constant and
vnew (Tend) = vpre(Tend).

2.5 Simulations

Simulations using this γ-trajectory with the different
algorithms are performed using a numerical example. This
simulation represents a merging maneuver on a highway
on-ramp with a tiny vehicle. Here vpre = 20 m/s, r =
rego = rnew = 1 m, Lnew = 3 m, h = hego = hnew = 0.5
s, τ = 0.1 s, kp = 0.2, kd = 0.7 and Tend = 5 s. The
control parameters are taken from Ploeg et al. (2011).
Based on vpre and Tend there is approximately 100 meters
to open the gap. Distance dego and error eγ = dego −
vegoh− r − γend are shown in the top and bottom graph
of Figure 6 respectively. In essence, eγ = 0 implies that
dego can accommodate the merge of a new vehicle such
that di = vih + r ∀ i ∈ {ego,new}. If eγ < 0 the gap is
too small and if eγ > 0 there is additional space. In some
literature, the merge is started if |eγ | ≤ εd where εd is a
predefined threshold (Hult et al. (2018)).

The results using the FF control algorithm show that
dFF (Tend) < hvnom(Tend) + r + γ, and eγ,FF (Tend) = 0.
This is because vego,FF (Tend ) < vnom , the new vehicle can
thus be accommodated but dego < dnew . For a feedback
controller, FBD algorithm reaches eγ ≥ 0 earliest. However,
it overshoots the desired gap and thus has large excitations.
The FBC algorithm reaches eγ ≥ 0 later. The new vehicle
may thus not be accommodated close to Tend . It is therefore
concluded that the usage of the FF controller is beneficial
because it reaches eγ = 0 at Tend without an overshoot.
The benefit of the FF controller is especially apparent
when threshold εd is considered in the merging strategy.

Fig. 7. One of the robots used in this experiment (left) and
the arena (right).

3. EXPERIMENTAL SETUP AND RESULTS

3.1 Experimental Setup

Experiments are performed using small differential-wheeled
nonholonomic mobile robots (e-pucks 1 ) in a confined arena.
The e-pucks were developed by Mondada et al. (2009) and
an example is shown in Figure 7. Their left and right wheel
are both connected to a stepper motor and can be actuated
individually. Their control commands are computed on an
external PC and transmitted wirelessly. The PC measures
the vehicle poses using a camera above the arena. This
localization system uses identifiers on top of the e-pucks as
developed in Caarls (2009). The arena setup was previously
used in Bayuwindra et al. (2020), where a more detailed
description of the setup can be found.

Two distinct types of γ-trajectories are investigated.
Namely, a polynomial shape described by (30), and a
linear shape where γ is not C2 continuous. The polynomial
trajectory is used to illustrate the desired behavior of
the controller. It is expected that this controller behaves
similarly when any other C2 continuous trajectory is used.
The linear trajectory starts at γ(0) = 0 and ends at
γ(Tend ) = γend . γ̇ is well-defined throughout the trajectory,
but γ̈ and

...
γ are not well-defined at T = 0 and T = Tend.

This example of a non C2 continuous γ-trajectory illus-
trates the effect on the error dynamics. The feedforward
(FF ) and feedback (FB) control strategies are analyzed.
The FBC algorithm was used as feedback controller.

The proposed gap opening algorithm is intended for
automotive applications. Therefore, the control is based on
different longitudinal dynamics than those of the e-pucks.
The velocity of the e-pucks can be controlled directly. Thus,
the longitudinal dynamics of (2) and (3) are considered in
the computation of the control input. In essence, modeled
accelerations and driveline dynamics are computed and
stored on the PC to obtain the desired velocities.

The vehicles utilize a simple path following algorithm to
drive laps around a specified path with a straight. The
maneuvers are executed on the straight. Therefore, the
lateral dynamics of the e-puck are not critical for the
accurate modeling of an automotive application. Further-
more, a coordinate transformation is used to measure qi,
vi, and ai along the path. Due to this transformation ui is
adjusted. Furthermore, it is considered that the experiments
have a centralized control setting. Meaning, a central PC
computes the control inputs for all vehicles. However, the
intended application of the algorithm is a decentralized
1 Further information can be found at http://www.e-puck.org.
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Fig. 8. Error e1,fol for the different γ trajectories during
the gap opening maneuvers. For FF Poly ( ), FB
Poly ( ), FF Lin ( ) and FB Lin ( ).

platoon where each vehicle computes its own control inputs.
The available knowledge of the vehicles is considered in
the software on the PC. Moreover, communication delays
are simulated by holding the control input upre for one
computation step. The system operates at approximately
25 Hz, thus the communication delay is around 0.04 seconds.
All experiments were conducted using τ = 0.1 s, kp = 0.2,
kd = 0.7 h = 0.5 s and r = 0.1 m.

3.2 Experimental Results

For spatial or time-restricted merging scenarios, such as
highway on-ramps, the timely execution of the gap opening
maneuver is the primary objective. Error e1,ego is used as
an indicator of the maneuver completion because e1,ego = 0
implies dego = dr,ego .

Experiments were conducted for a gap opening maneuver
starting at t = 50 and ending at t = 60. The pre vehicle is
driving at 0.05 meters per second. Furthermore, γ grows
from 0 to 0.1 meters during the maneuver. The algorithms
are denoted with Poly or Lin when a polynomial or linear
γ-trajectory is used respectively.

Figure 8 shows the error during the gap opening maneuver.
The error when using the FF Poly algorithm remained
close to 0. The FF Lin strategy introduces errors at t = 50
and t = 60, because γ̈ and

...
γ are not determined. However,

the error goes to 0 when γ̈ = 0 and
...
γ = 0. It is shown that

at t = 60 the position error is zero but the velocity differs
from the preceding vehicle. The FB control algorithms
caused larger errors.

When error e1,ego 6= 0 it is implied that the inter-vehicle gap
is not the correct size. Therefore, only the FF Poly strategy
has a timely maneuver execution. The other strategies
do not satisfy the objective as the maneuver ends at
approximately 67 seconds. Thus there is no significant
difference in timeliness of these algorithms. In the context
of a merge maneuver this means that only the FF Poly
strategy would result in a gap with the correct size at the
predefined time. This is important to satisfy the spatial
constraints of a highway on-ramp environment.

4. CONCLUSION

Research on merging of CAVs does not often consider
CACC platoons. In prior research the merging strategies
for CACC platoons generally used heuristic methods for
the vehicle alignment. However, there is no focus on the
fulfillment of time and spatial restrictions. In the current
work we aimed to start the development of a cooperative
platoon-based merging strategy by tackling the problem
of gap opening. The main objective was to execute the
maneuver in a predefined time. Experimental validation is
performed with small mobile robots.

A gap opening strategy was developed to merge maneuvers
with spatial constraints, such as highway on-ramp scenarios.
A corresponding controller was designed to ensure the gap
is opened in a predefined time. In future work, the desired
trajectory of the gap may be optimized. Furthermore, these
results can be used in the design of a merging algorithm
specifically for CACC platoons.
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