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Abstract: This paper considers the remote state estimation with multiple sensors. Each sensor
transmits its sensing data to a remote estimator over a shared channel, where simultaneous
transmissions are allowed. Regrading the transmission of other sensors as interference signals,
the system designer should coordinate the sensors appropriately in order to maximize the overall
estimation performance. Motivated by microeconomics, we treat sensors as self-interested power
buyers under different unit prices announced by the system designer. Accordingly, the strategic
interactions among sensors are formulated in a non-cooperative game, upon which the existence
and uniqueness of a pure equilibrium solution are proved. Even if the game admits a conflict of
interests among sensors, under well-designed prices, the game outcome aligns with the global
optimal solution. We also devise an algorithm to compute these prices with simple iterations,
which is given in explicit forms for ease of implementation. Numerical examples are given to
demonstrate the developed results.

1. INTRODUCTION

As the next generation control systems, Cyber-physical
systems (CPSs) employ communication and information
technologies to improve the performance of underlying
physical processes, for example the robustness to unex-
pected disturbance. The incorporation of communication
networks, however, poses a number of technical challenges
in the control system design. An urgent problem is to tailor
the utilization of communication resource to fit control
requirements. Generally, the employment of communica-
tion networks brings CPSs two inevitable issues: first,
sensing, computation and transmission power are limited
as replacing or recharging batteries may not always be
possible for some off-the-shelf devices (Derler et al., 2012);
second, critical signal interference will be encountered in
large-scale sensor networks under limited communication
bandwidth. These two issues increase packet dropping and
further deteriorate the estimation/control performance.

In communication theory, there are several representa-
tive methods to improve energy efficiency and alleviate
signal interference, such as code division multiple access
(CDMA), see (Tse and Viswanath, 2005). Differently, our
work focuses on dynamic systems and emphasizes the
state estimation performance. In particular, we consider a
simple scenario where multiple sensors send their sensing
packets to remote estimator through a shared communica-
tion channel. This simultaneous transmission may induce

data collision and packet dropout. Aiming at high-quality
estimation performance at the remote estimator, we look
for an efficient allocation of restricted transmission power
among these sensors.

A considerable amount of literature has been published on
sensor transmission scheduling to achieve accurate estima-
tion under limited energy constraints (Ren et al., 2014, Shi
et al., 2011). However, many of them focus on the one-
sensor case and model the sensor scheduling as a Markov
decision process (MDP) problem. This framework becomes
difficult when taking multiple sensors into account due to
curse of dimensionality. To avoid signal interference, some
preliminary works considering multi-sensor structure only
allow one sensor to transmit packet at each time step,
e.g., periodic selections of sensors investigated in (Orihuela
et al., 2014, Zhao et al., 2014). In contrast with these
time-based scheduling, (Gatsis et al., 2015) selected active
sensor according to the current channel condition, which
is also termed as state-based scheduling. However, these
approaches are inapplicable in our problem as at each time
step we allow all sensors to send data but with different
packet-dropout rates. Moreover, to compute the optimal
period or state-based decision condition, the system de-
signer requires a complete knowledge of the system, espe-
cially the dynamics parameter or the current state of every
sensor. This is nonscalable and too computational costly in
large-scale network, and the information acquisition may
also violate the privacy of each sensor.
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To relieve these troubles, we resort to a distributed solu-
tion to our remote estimation problem, which has been
studied in the context of game theory. The work (Li
et al., 2014) treated each sensor as a self-interested deci-
sion maker with estimation performance being its utility,
and a noncooperative game among sensors was developed.
The distributed power allocation is a Nash equilibrium
(NE) solution of the game, which induced an inefficient
outcome compared with the centralized solution of the
global power-allocation problem. To improve the perfor-
mance of each player at an equilibrium, a correlated policy,
along with the notation of correlation equilibrium (CE)
was proposed in (Ding et al., 2017), which still failed
to achieve the global optimal performance. An important
issue which has not been taken seriously in previous works
is that the design of local sensor utilities can be effective
tool to reduce equilibrium inefficiency. Motivated by this,
here we use system designer to publish a price profile of
transmission power for each sensor, under which a power
cost is added into the utility of each sensor. Under a well-
designed price profile, we found that the resulting game
equilibrium achieves the global optimum. Compared with
previous works, the main contributions of our work are
summarized as follows:
(1) We establish an equivalence between the global
power allocation problem in Definition 3.1 and the non-
cooperative game played among sensors in Definition 3.2
by the aid of price concept. Moreover, we validate the exis-
tence and uniqueness of a pure NE for the game (Theorem
1), and devise a distributed algorithm (Algorithm 1) with
a recursive form to design the price profile.
(2) The estimation performance (or utility) of the sensor is
heavily coupled with each other since its packet transmis-
sion depends on the interference signal launched by others.
Hence, the global objective function (J(·) in Definition
3.1) can not be separated directly. By investigating its
structure, we build a matrix-form relation between the
price profile and Lagrangian multipliers. It is different
from most price-based works using primal-dual decompo-
sition (Palomar and Chiang, 2006), in which the prices are
exactly the same as Lagrangian multipliers.

Outline. Mathematical models of the system are de-
scribed in Section 2. We introduce the global power-
allocation problem and the multi-player non-cooperative
game in Section 3, and conclude it with the problems of
interest. In Section 4, we demonstrates the main theoret-
ical results and propose the pricing algorithm. Simulation
results are shown in Section 5.

Notations. N is the set of positive integers. k is the time
index. For functions f, f1, f2 : Sn+ → Sn+, f1 ◦ f2 is defined

as f1 ◦ f2(X) , f1

(
f2(X)

)
. 1(·) is the indicator function.

∆(·) represents a set of probability measures and “w.r.t.”
means “with respect to”.

2. MODEL SETUP

As depicted in Fig. 1, the state information of different
processes is sent to a remote estimator through one shared
channel. The simultaneous data transmission may lead
to network collision and packet dropout, which further
deteriorate remote estimation performance.
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Fig. 1. System Architecture.

2.1 Local Kalman Filter

Consider a networked system containing N sensors, which
separately monitor different processes: for i ∈ {1, . . . ,N}
xi(k+1) = Aixi(k)+wi(k), yi(k) = Cixi(k)+vi(k), where
at time k, the state vector of process i is xi(k) ∈ Rnx , and
the noisy measurement observed by corresponding sensor
i is yi(k) ∈ Rmy . For each process i, the process noise
wi(k) ∈ Rnx and the measurement noise vi(k) ∈ Rmy are
zero-mean i.i.d. Gaussian random variables with variances
E[wi(k)wi(j)

>] = δkjQi with Qi ≥ 0, E[vi(k)vi(j)
>] =

δkjRi with Ri > 0, and covariance E[wi(k)vi(j)
>] =

0, ∀j, k. The initial state xi(0) is a zero-mean Gaus-
sian random vector with variance Σi(0) ≥ 0, and it is
uncorrelated with wi(k) and vi(k). For each process, we
assume the time-invariant pair (Ai, Ci) is detectable and
pair (Ai,

√
Qi) is stabilizable. Moreover, we use sensor i

and process i interchangeably hereafter without ambiguity.
Here, “smart” sensor i computes the optimal estimate
of state xi(k) via running a Kalman filter locally. The
obtained minimum mean-squared error (MMSE) estimate
of state xi(k) is given by x̂si (k) = E[xi(k)|yi(1), . . . , yi(k)],

with the estimation error covariance defined as P si (k) ,
E[(xi(k) − x̂si (k))(xi(k) − x̂si (k))>|yi(1), . . . , yi(k)]. These
terms are computed recursively following the standard
Kalman filter equations, and the iteration starts from
x̂si (0) = 0 and P si (0) = Σi(0). For notational simplicity,
we define the Lyapunov and Riccati operators hi(·) and

gi(·) : Snx
+ → Snx

+ as hi(X) , AiXA
>
i +Qi, gi(X) , X −

XC>i [CiXC
>
i + Ri]

−1CiX. Due to the detectability of
pair (A,C) and stability of (A,

√
Q), the estimation error

covariance P sk converges exponentially to an unique fixed

point P i of gi ◦ hi (Anderson and Moore, 1979). Without
loss of generality, we ignore the transient periods and
assume that the Kalman filter at each sensor has entered
steady state; i.e.,

P si (k) = P i, k ≥ 1. (1)

As mentioned in (Ding et al., 2017), the steady-state error
covariance P i satisfies the monotonic property:

Tr[P i] ≤ Tr[ht1i (P i)] < Tr[ht2i (P i)], for 0 ≤ t1 < t2. (2)

2.2 Communication Interference

When sensor i transmits its local estimate x̂si (k) as a
data packet to the remote estimator, the communication
channel may be occupied by other sensors. This simul-
taneous transmission may directly affect the information
delivery of sensor i. In this work, we assume the shared
channel has independent Additive White Gaussian Noise
(AWGN), and measure the channel quality for sensor i by
the signal-to-interference-and-noise-ratio (SINR) (Tse and
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Viswanath, 2005), in which the signals of other sensors are
modeled as interfering noises. For sensor i ∈ {1, . . . ,N}, its
SINR at time k is defined as:

γi(k) = L
hiai(k)∑

j∈{1,...,N}\{i}
hjaj(k) + σ2

(3)

in which ai(k) ≥ 0 represents the transmission power
taken by sensor i. The extra term

∑
j 6=i

hjaj(k) in the

denominator of (3) is due to the interference from other
sensors, and σ2 is the channel noise. The parameter hi ∈
(0, 1),∀i ∈ {1, . . . ,N} is the channel gain from sensor i
to the remote estimator, and L is the spreading gain of
the communication system. Moreover, we characterize the
packet-dropout for sensor i by an independent Bernoulli
process, denoted by ηi(k). Let ηi(k) = 0 denotes the loss of
packet x̂si (k), and ηi(k) = 1 otherwise. The packet-dropout
rate for sensor i depends on its SINR and is defined using
a general, continuous, secondly differentiable function as
follows: Pr(ηi(k) = 0) = f(γi), ∀i ∈ {1, · · · , N}, where
in general f(·) decreases in γi and f(γi = 0) = 1. Its
specific formula depends on the channel characteristic and
the modulation schemes.

2.3 Remote State Estimation

In regard to process i, let x̂i(k) denote the MMSE estimate
of its state xi(k) generated by the remote estimator,
with the error covariance matrix Pi(k). Similar to (Ding
et al., 2017), for each sensor, we define a random variable
τi(k) ∈ Z as the holding time:

τi(k) , k − max
0≤l≤k

{l : ηi(l) = 1}, (4)

which represents the intervals between the present moment
k and the most recent time when the data packet x̂si (k)
received by the remote estimator successfully. Accordingly,

Pi(k) = h
τi(k)
i (P i), and the iteration of the holding time

τi(k) is given by

τi(k + 1) = (1− ηi(k))(τi(k) + 1). (5)

In summary, at time k, under a transmission power profile
a , {a1, · · · , aN} employed by all sensors, the estimation
performance for process i is defined by its expected error
covariance at time k + 1:

ui(a, k) , −Tr{E[Pi(k + 1)]} = f(γi)ci(k)− Tr[P i], (6)

in which ci(k) , Tr[P i − h
τi(k)+1
i (P i)] is independent of

γi (or action profile a), and ci(k) < 0 derived from (2).
Hence, function ui(a, k) is partially increasing in ai and
decreasing in aj ,∀j 6= i. It verifies the intuition that larger
inference signals caused by other sensors may deteriorate
the estimation performance for process i more greatly.

3. PROBLEM FORMULATION

With the consideration of signal interference introduced
above, system designer should allocate the transmission
power among sensors wisely in order to maximize the total
estimation performance. In this section, we first formulate
system designer goal with a constrained optimization
problem and propose a pricing mechanism to solve it.
Under this, the sensors are treated as selfish players and
we elaborate this multi-sensor game afterwards. Last, we
summarize this section with two key questions of this work.

3.1 System Designer Goal

We adopt a slotted medium access control (MAC) proto-
col, where the operation of system is divided into equal
time slots. Then, for each time k system designer tries to
obtain a proper power allocation by solving the following
problem.

Definition 3.1. (Global System Designer Goal). For each
time k, system designer copes with the following con-
strained optimization problem:

max
a

J =

N∑
i=1

ui(a, k) (7)

s.t.

N∑
i=1

ai ≤ Θ, (8)

ai ≥ θi > 0,∀i ∈ R, (9)

where the optimal total/global estimation performance is
denoted by J? with the optimal power allocation a?.

More specifically, the constraint (8) suggests that the
total power assignment for packet transmission should falls
below an upper-bound, denoted by Θ. The constraint (9)
shows that the power for each sensor should be positive
in order to establish a data transmission connection. Since
we focus on solving (7) for each time slot, in the rest of this
paper, we will omit the variable k of τi(k), γi(k), ui(a, k)
and ci(k) when the underlying time index k is obvious
from the context; otherwise, it will be indicated.

If the feasibility of the optimization problem in Definition
3.1 is guaranteed, the existence of an optimal solution a? is
obvious since the constraint is compact and the objective
function is continuous. Nevertheless, to solve this problem,
the designer requires a complete information of the net-
worked system, for example, the model parameters of the
processes, channel parameters and especially the online in-
formation, the instantaneous holding times. This not only
increases the requirement of storage space, but also the
information acquisition may invade the privacy of sensors.
Furthermore, note that the estimation performance for
sensor i contains a ratio of two linear functions on variable
a (i.e., the SINR term γi), and the objective function (7)
is a sum of functions of ratios. Solving this optimization
problem is, however, NP-hard (Freund and Jarre, 2001).
Last, in order to provide a real-time power control service
for the multi-sensor system, system designer should resort
to distributed optimization techniques instead of solving
problem in Definition 3.1 directly.

To cope with above concerns, we motivated by eco-
nomics (Mas-Colell et al., 1995) propose a pricing mech-
anism capturing the cost on power usage for each sen-
sor. More specifically, the designer announces the price of
transmission power, and the sensors will be charged for
a fee depending on its power actions. See Figure 2 for
an illustration of the pricing mechanism. Note that each
sensor is charged a personalized per-unit price pi ≥ 0 for
the power resource, and we assume sensors to be price-
takers. Hence, informed of the price, each sensor acting as
self-interested buyers, will select the best power actions to
maximize their benefits, and at last a spontaneous power
allocation among sensors is developed.
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Fig. 2. System Structure under Prices.

3.2 Interference Game

Under the announced price, the sensors will compete with
each other for the power resources. Denote by G the
game among sensors and it is characterized by a triplet
< I,B,R > with
Players: I = {1, . . . ,N} is the set of (rational) players, in
which i ∈ I represents sensor i.
Actions: B = {Bi, i ∈ I} illustrates the set of power
actions for each player i with Bi = [θi,Θ]. Let bi ∈ Bi
denote the power action (or pure strategy) taken by player
i. Moreover, define b = {b1, . . . , bN} as the action profile
played by the overall players. Alternatively, b = {bi,b−i},
with b−i the action profile excluding that of player i.
Reward: R = {ri, i ∈ I} is the reward set and ri
represents the reward function for player i with ri :
B → R. As discussed previously, each sensor focuses
on improving its own estimation accuracy ui(·) under a
charge incurred by packet transmission. It motivates us
to formulate the reward function using a concept from
microeconomics (Mas-Colell et al., 1995), the quasilinear
utility model : ri(bi,b−i) = ui(b) − pi ln(bi), in which
different from conventional linear cost function, the charge
is logarithmic in power.

Definition 3.2. (Interference Game). In the multi-sensor
game G, each player deals with:

max
bi∈Bi

ri(bi,b−i), ∀i ∈ I. (10)

3.3 Problem of Interest

With the purpose to solve the global optimization problem
in Definition 3.1, we introduce the pricing method to
coordinate sensors. Under the announced prices, each
sensor will make the best decision reacting to the behaviors
of others. Hereinafter we seek to answer the two questions:
given the prices for each sensor, does there exist a stable
solution to the multi-sensor game in Definition 3.2? If so,
how to design the prices such that the game outcome b is
in concordance with the global optimal solution a?.

4. MAIN RESULT

4.1 Best-response Update

In game theory, a common solution concept is Nash
equilibrium (NE). For this game G in Definition 3.2, the
action profile b? = {b?1, . . . , b?N} is a (pure) NE if for any
player i ∈ I, ri(b = b?) ≥ ri({bi = b,b−i = b?−i}), ∀b ∈
Bi. Based on this, we restate the representation of NE in
terms of best-response correspondences. For any b−i ∈

B−i, the best-response correspondence of player i is given

by φi(b−i) , {b ∈ Bi|ri(b,b−i) ≥ ri(b
′,b−i) ∀b′ ∈ Bi}.

Consequently, the NE b? , {b?i , b?−i} can be reformulated
as follows: b?i ∈ φi(b

?
−i), ∀i ∈ I. We define the joint

correspondence Φ : B ⇒ B such that for all b ∈ B,
Φ(b) = [φi(b−i)]i∈I . The NE is then equivalent to a fixed
point of the correspondence Φ(·).
To prove the existence of NE, we introduce an assumption
on the packet drop-out rate f(·), that is, f(ex) is convex in
x. This assumption is milder than that f(γ) is convex in
γ, e.g., f(γ) = ln(γ) = x is convex in x but concave in γ.
From communication theory, the packet dropout rate for
wireless fast fading channel is f(γ) ∝ γ−c0 with constant
c0 > 0, which satisfies the assumption. Recall that f(·)
is continuous and secondly differentiable. Based on the
form of reward function ri(·), we can obtain the explicit
representation of the best-response for sensor i, given by,

φi(b−i) = min{max{b0, θi},Θ} (11)

where b0 =

∑
j 6=i

hjbj+σ2

Lhi
(f̃)−1(pici ) with f̃(γ) = f ′(γ)γ.

Hence, for any b ∈ B, the correspondence Θ only contains
one element, and we summarize the NE result:

Theorem 1. The game G admits an unique pure NE, of
which each sensor maximizes its reward by taking power
action b?i = φi(b

?
−i) for all i ∈ I.

Proof. To prove the existence of a NE, we resort to
Kakutani’s fixed point theorem and verify its conditions
orderly. The uniqueness of pure NE is proved as the
correspondence Φ(·) contains one element. We omit the
proof details here due to limited space. �

Note that f(ex) is convex in x and we can prove that

f̃−1(·) is a non-decreasing function. As ci < 0 and pi ≥ 0,
we can further conclude that for each sensor a higher
price pi will induce a less purchase of transmission power,
which meets the market phenomenon. Consider a special
scenario with pi = 0. The corresponding NE leads to an
inefficient outcome, called “tragedy of the commons”, in
which the optimal response for each sensor is to transmit
its packet at it maximum power level Θ. This situation
is less desirable because each sensor suffers the worst
signal interference. To improve the power efficiency and
also achieve satisfactory quality of estimation, the price
pi should be designed carefully by system designer, which
would be addressed subsequently.

4.2 Price Design

Note that (7) is non-convex in a even if we assume
the packet dropout rate f(γi) is convex in ai. Here, we
first resort to variable transformation to “convexify” the
global problem in Definition 3.1. By applying the strictly
increasing and differentiable transformation ai = esi ,∀i ∈
I, we obtain the transformed global problem as follows:

max
s

J =

N∑
i=1

ui(s) s.t.

N∑
i=1

esi ≤ Θ, si ≥ ln(θi), ∀i ∈ I,

where s , {s1, . . . , sN}. It is sufficient to prove that the
object function is concave in s-domain and the feasible
set is convex and details are omitted here. Then, we
involve new variables t = {t1, . . . , tN} and add new
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constraints that ti = si,∀i ∈ I. Regarding these equality
constraints, denote the Lagrangian multiplier as qi, i ∈ I
and the Lagrangian function is given by L1(s, t,q) =∑N
i=1 ui(s)+qi(ti−si).Accordingly, the transformed global

optimization problem can be decoupled into two problems
in terms of variables s and t.

Definition 4.1. (Decoupled Problems). The global optimiza-
tion problem is decoupled into:

max
t

J1(t) ,
N∑
i=1

qiti s.t.

N∑
i=1

eti ≤ Θ. (12)

max
s,si∈[θi,Θ]

J2(s) ,
N∑
i=1

ui(s)− qisi. (13)

Note that function J1(t) in (12) can be regarded as the
benefit for system designer by “selling” power resources to
sensors and qi is the per-unit price. The solution of (12) is
summarized as follows:

Proposition 4.2. Problem (12) admits an unique optimal
solution t? with a closed form given by,

t?i = ln(
qi∑N
i=1 qi

Θ), ∀in ∈ I. (14)

It follows the intuition that system designer aiming to gain
more monetary benefit would allocate more power to the
sensor providing a higher per-unit price. The proof details
are omitted here.

On the other hand, the problem (13) cannot be further
decoupled into N sub-problems (alike to the game in
Definition 3.2) via simply setting pi = qi. Because the
reward of sensor j will be affected by the action of sensor
i and the reward function ui(s) are coupled with each
other. However, there exists a decoupling in the fractional
structure of SINR, e.g., the numerator of γi only depends
on bi (or si) and the denominator is a function of b−i.
By aid of this, we hope to develop a relationship between
multiplier qi and price pi. Under a pair of parameters
(pi, qi, i ∈ I), it is desirable that the NE b? of game G is
also the optimal solution of (13), i.e., b? = es

?

. Hence, we
derive from the first order derivative of the reward function
∂ri(s)
∂si

= 0 that ∂ui(s)
∂si

= cif
′(γi)

∂γi
∂si

= ∂ui(s)
∂γi

γi = pi. Also,

we compute the first order derivative of objective function
J2(s), given by

∂J2(s)

∂si
=
∂ui(s)

∂si
+
∑
j 6=i

∂uj(s)

∂si
− qi

=pi −
∑
j 6=i

hibi
I(b)− hjbj

pj − qi = 0, ∀i ∈ I,

in which I(b) ,
∑N
i=1 hibi + σ2. The above equations can

be written in a matrix form:
1 − h1b1

I(b)−h2b2
· · · − h1b1

I(b)−hNbN

− h2b2
I(b)−h1b1

1 · · · − h2b2
I(b)−hNbN

...
...

. . .
...

− hNbN
I(b)−h1b1

− hNbN
I(b)−h2b2

· · · 1



p1

p2

...
pN

 =


q1

q2

...
qN


Denote the constructed matrix on the left hand side to be
Π(b), and then we have p = Π−1(b)q.

In summary, we start with the global problem in Definition
3.1 and decompose it into two sub-problems, which can be

Algorithm 1 Pricing Design and Optimal Power Alloca-
tion

1: Input: Channel parameters hi, L and σ2, power con-
straints θi and Θ.

2: Output: Optimal power allocation a?(k) of the global
problem in Definition 3.1 for each time slot k.

3: Initialization:
4: k = 0 and initialize the holding time to be zero for

each sensor.
5: While time k ≥ 0
6: Set the initial iteration n = 0, and the centralized

platform announces initial price pi(n) to each sensor.
7: While ||[pi(n+ 1)]− [pi(n)]|| ≤ ε
8: For sensor, it will repeatedly observe the current

channel state, the announced price pi(n), the holding
time via the feedback acknowledgment (ACK) packet,
and then report to system designer its optimal request
b?i (n+ 1) obtained by (11).

9: For system designer, it first reacts the multiplier qi(n)
with the optimal allocation et

?
i (n + 1) according to

(14). Then, based on the collected power request, it
updates the multiplier and price according to

q(n+ 1) = q(n)− α(n)[t?(n+ 1)− ln (b?(n+ 1))],

p(n+ 1) = [Π (b?(n+ 1))]
−1

q(n+ 1).

and spreads pi(n+ 1) to sensors.
10: n := n+ 1 until end
11: Each sensor transmits estimation packets following

the optimal power allocation, and then updates their
holding times according to (5).

12: k := k + 1 until end

Sensor Ai Qi Ci Ri

i = 1

(
1.1 1
0 1

) (
1 0
0 4

) (
1 0
)

1

i = 2

(
1.2 1
0 1

) (
1 0
0 2

) (
1 0
)

1

i = 3

(
1.1 1
0 1.3

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
implemented by system designer and the sensors, respec-
tively. We summarize in Algorithm 1 the pricing design
in an explicit recursive form and the power allocation for
sensors, in which || · || is the induced norm and ε represents
the termination condition. First, as the algorithm is based
on the dual-primal decomposition and the best-response
Φ(·) admits an unique fixed point, it is obvious that if
the step size α(k) is sufficient small, Algorithm 1 will
converge to a power allocation a? = b? solving the global
problem. Second, the updates of prices p(n) only depend
on the iterations of q(n) and the collected power request
b?(n) from the sensors. Hence, there is no need for system
designer to know the current holing time and process
parameters. This protects the information privacy for each
sensor.

5. SIMULATION

We consider an example with three processes and the dy-
namics parameters are shown in above table. Assume that
the channels are wireless fast-fading channels with packet
dropout rate f(γ) = 1

4 (γ)−1. The background noise for

the channel is σ2 = 0.2, and channel gains [ h1 h2 h3 ] =
[ 0.3 0.6 0.9 ]. Some parameter setting for constrains, the
step size and convergence condition of algorithm are listed
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(a) Power Allocation a1. (b) Power Allocation a2. (c) Power Allocation a3.
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Fig. 4. Convergence result of q iterations.

aa follows: Θ = 8, θi = 1
40 , ∀i, α = 0.1 and ε = 10−5.

Take the triple of holding times τi = 1,∀i as an exam-
ple, and we have [ c1 c2 c3 ] = [−42.88 −28.78 −11.70 ]
accordingly. The evolution of multipliers q is depicted
in Figure 4 and the algorithm converges within 50 it-
erations. The optimal prices, the resulting power allo-
cation and the packet dropout rates for sensors are as
follows: [ p1 p2 p3 ] = [ 16.13 14.38 10.73 ] , [ a1 a2 a3 ] =
[ 5.01 2.09 0.90 ] , [ f(γ1) f(γ2) f(γ3) ] = [ 0.38 0.50 0.91 ] .
Intuitively, as ci measures the current estimation per-
formance of sensor i and c1 is the minimum one, the
transmission task w.r.t. sensor 1 is most emergent for
system designer in order to improve the overall perfor-
mance. The resulting optimal power allocation verifies this
intuition with a1 > a2, a1 > a3. Moreover, we plot the
optimal power allocation a for different triples of holding
times in Figures 3(a), 3(b) and 3(c). As depicted in the
color bar, the gradation of color represents the amount
of transmission power. From Fig. 3(a), we find that a1

is partially increasing in τ1, which meets the intuition
that current local estimate x̂i(k) containing more valuable
information requires a larger power resource. Furthermore,
a1 is partially deceasing in (τ2, τ3). It reveals that in
order to achieve higher total estimation performance, it is
preferable for system designer to sacrifice sensor 1 since
the current data packets for sensors 2 and 3 are more
important.

6. CONCLUSION

This work investigates a case where multiple sensors trans-
mit their data packets to a remote estimator over a shared
communication channel. Considering alleviating the signal
interference, we propose a pricing method to coordinate
the sensors so as to achieve the optimal estimation perfor-
mance, and provide an algorithm to design the prices for

each sensor. Even though the convergence of algorithm is
analyzed in this work, further investigation is required to
speed it up.
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