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Abstract: Toothed belt drives are used in manifold automation applications. But only if the
belt tension is properly adjusted, optimal working conditions are ensured. A loss of efficiency
or even breakdowns might be the consequences otherwise. For this reason, tension monitoring
reduces operation costs and may prevent failures. In order to meet industrial requirements, the
monitoring is supposed to rely on standard sensor data. From this data, features are extracted
in time and frequency domain which are passed on to a random forest. For further improvement,
a segmentation of the frequency spectrum is performed beforehand. In this way, interval-based
spectral features can be extracted to capture small distinctive parts in the frequency domain.
For this purpose, two different segmentation procedures are compared in a random forest
regression. A belt drive powered by a 1.9 kW synchronous servomotor is used to evaluate the
proposed approaches in two different industrial scenarios. The experimental results show that
both segmentation methods enhance the performance of a tree-based regression and offer a
reliable tension prediction.

Keywords: Fault detection and diagnosis, Machine learning, Industrial production systems,
Time series modeling, Segmentation

1. INTRODUCTION

Condition monitoring is a widespread solution for many
industrial applications to detect failures during operation.
Monitoring of electrical drives mainly focuses on the motor
where extensive work has been done to identify faulty con-
ditions including bearing faults (e.g. Prieto et al. (2013)),
rotor faults (e.g. Gyftakis et al. (2013)) and winding faults
(e.g. Filho et al. (2014)). An overview of the field is given
by Riera-Guasp et al. (2015). However, failures in belt
drives can also force an entire production line to stop re-
sulting in high expenses. But preventing downtimes is not
the only issue. To keep the wear of involved components
at a minimum and to increase efficiency to a maximum,
it is necessary to tension the belt properly. If pretension
is set too high, cord fatigue and tooth wear might be
the consequence. If the belt is too loose, the tooth load
increases. Both cases lead to early failures and non-optimal
operation conditions. For this reason, a tension monitoring
system helps to keep belt drives close to their optimal
working point.

1.1 Effects of Belt Tension on Measurement Data

The basis for distinction of different tension conditions is
finding patterns in the sensor data that are changing as
the belt tension is increased or decreased. In industrial
applications, the proper belt tension is determined by eval-
uating the first mode natural frequency of the transverse

belt oscillations. When considering the belt as a vibrating
string, the belt tension F is given by

F = 4f2l2m. (1)

Besides the frequency f , the tension, therefore, depends on
the belt’s mass per length m and its length l. This rela-
tionship is often used in fault detection and tension moni-
toring, leading to the need to measure the belt’s transverse
frequency during operation. Khazaee et al. (2017) and
Ucar et al. (2014) obtained vibration signals by employing
an optical laser that captures the belt’s transverse motion
to classify different failures. Musselman and Djurdjanovic
(2012) utilized strain gauges to monitor belt tension. Hu
et al. (2016) capture belt oscillations using an electrostatic
sensor. All these approaches require external sensors which
are not always available in industrial applications due
to cost and place restrictions. Therefore, it is desirable
to build a monitoring system that only requires data
from standard sensors. Motor current signature analysis
(MCSA) is a very popular procedure in fault diagnosis
because the motor current is commonly available. It is used
to classify belt failures like crack and wear by Kang et al.
(2018). Picot et al. (2017) distinguish four different belt
tension levels based on motor current.

1.2 Principles of Belt Tension Monitoring

This work presents a data-driven procedure using conven-
tional machine learning techniques to monitor the preten-
sion of a toothed belt drive relying only on measurement

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 756



data that is accessible in common servomotors. To get
a better understanding of the system’s behavior under
changing belt tension, a frequency spectrum, which is
averaged over multiple velocity measurements is shown in
Fig. 1. It highlights different belt states ranging from ”crit-
ically loose” to ”strongly tightened”. At critically low ten-
sion the magnitude constantly decreases as the frequency
grows and no peaks are visible. If the belt is properly
tensioned, several peaks shifting dependent on the tension
can be observed. This differs from other fault diagnosis
applications where a certain failure changes the system’s
behavior significantly. Following this consideration, the
algorithm must be capable of detecting small changes in
the frequency spectrum in order to achieve a high quality.
Thus, one might assume that it is beneficial to focus only
on distinguishable parts. During feature extraction, which
is described in section 2, an effort is made to take frequency
shifts into account by using interval-based features. A
distinction is made between a random segmentation and
an optimized segmentation. Section 3 provides an overview
of the experimental setup. The procedure to determine
all relevant hyperparameters is presented in section 4 and
subsequently the results are shown in section 5.

2. FEATURE-BASED BELT MONITORING

In this work, belt tension monitoring is realized by a
random forest regression. With a view to capture even
small changes, supplementary features are extracted from
intervals of the frequency domain. The segmentation pro-
cedure is done in two different ways compared throughout
this work. First all subsequences are chosen randomly and
second, a global optimization algorithm is run to find an
optimal placement.

2.1 Random Forest Regression

Bagnall et al. (2016) recommend among others a ran-
dom forest as a benchmark predictive model. Although it
achieves high quality in many applications it is a compar-
atively simple model, which is advantageous over copious
advanced black box techniques. Therefore a random forest
is chosen in order to meet industrial requirements.

In this study binary decision trees are used to construct the
random forest based on the ”Classification and Regression
Tree” (CART) algorithm described by Breiman (2001).
Each tree is created on a bootstrap sample of the original
data combined with a random feature selection at every
node. Finally the overall decision is done by averaging over

Fig. 1. Comparison of averaged velocity frequency spec-
trums for different belt tensions.

all trees in the ensemble. The mean squared error (MSE)
between actual output y and predicted output ŷ averaged
over N observations

MSE =
1

N

N∑
i=1

(ŷi − yi)2 (2)

is chosen as quality criterion.

2.2 Feature Extraction

Time series data can be expressed as a pair of input xi

and related output value yi for each observation i. Trans-
formed to frequency domain each observation consists of
amplitudes ai and the related frequencies f i. The obtained
phase data is omitted. The raw data in time and frequency
domain is not appropriate for conventional machine learn-
ing algorithms like a random forest. A common way to
overcome this problem is to extract features from the raw
data, which are passed to the learning algorithm. In this
way, the prediction is done by evaluating a feature-based
representation of the data rather than the raw data. Hence,
the quality of a machine learning algorithm crucially de-
pends on the feature engineering performed beforehand.
During this stage, domain knowledge can be incorporated
to improve the results. Therefore, features that aim at
capturing small displacements in the frequency domain
are created. For that reason, the usage of interval-based
spectral features is investigated in this work. Unlike global
features that are affected by the entire data length, local
features are extracted from smaller subsequences.

There are numerous off-the-shelf functions proposed in the
literature to extract features from time-series data (see
e.g. Fulcher and Jones (2014)). An overview of selected
functions that are applied to time and frequency domain
data is shown in table 1. These are mainly statistical
functions quantifying properties of the data distribution
like skewness (F3 and F10) or kurtosis (F4 and F11).
Functions like the weighted mean frequency (F14) are
selected to cover among others a shift of peaks. Note that
each time series is first standardized to zero mean and unit
standard deviation before extracting features.

In literature, segmentation is discussed in order to omit
noisy data parts and focus on distinctive ones to enhance
feature quality. These methods are mainly applied to time
series data but they are not restricted to it and can be
used for any kind of sequential data (Fu (2011)). The
segmentation requires to find suitable split points first to
define the sections. Second, a procedure to extract features
needs to be defined once all segments are selected.

For the sake of simplicity, all segments are treated the
same and every function introduced before is used to create
summary features. Numerous procedures are applicable to
obtain a segmentation of the spectrum. In the following
two ways are analyzed concerning their performance in the
given application. They mainly distinguish in the way the
interval limits are chosen. First a random segmentation
adapted from the time series forest proposed by Deng
et al. (2013) is presented. Subsequent the location of
subsequences is further investigated and all boundaries are
optimized utilizing a Bayesian optimization algorithm. In
the following, the first approach of random sequences is
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Table 1. Functions to extract features from a
signal of L and K samples respectively.

Time domain Frequency domain

F1 = 1
L

∑L

i=1
xi F8 = 1

K

∑K

i=1
ai

F2 = 1
L

∑L

i=1
(xi −F1)2 F9 = 1

K

∑K

i=1
(ai −F8)2

F3 =

∑L

i=1
(xi−F1)

3

L·F3
2

F10 =

∑K

i=1
(ai−F11)

3

k·F3
9

F4 =

∑L

i=1
(xi−F1)

4

L·F4
2

F8 =

∑K

i=1
(ai−F9)

4

K·F4
9

F6 = 1
L

∑L

i=1
|xi| F12 =

∑K

i=1
a2i

F7 =

(
1
L

∑L

i=1

√
|xi|
)2

F13 =

∑K

i=1
ai·fi∑K

i=1
ai

referred to as random segmentation forest (RSF) and the
latter as optimized segmentation forest (OSF).

2.3 Random Segmentation Forest

The biggest issue when using interval-based features is
where to split the sequential data. One easy way to do so is
to randomly select boundaries. Deng et al. (2013) describe
an approach to create a time series forest (TSF) based on
features from random subsequences. As the name implies
it is a random forest approach where each tree is trained
on an individual set of interval-based features. During
training stage, a set of b

√
mc subsequences is defined

individually for each tree where m is the length of dataset.
All split points are chosen randomly leading to different
features as well. Summary functions are applied to every
subsequence to obtain local features. For comparability the
same feature functions described in table 1 are chosen.
This leads to a set of 14 times b

√
mc features which are

used to train each tree. For further information on the
algorithm refer to Deng et al. (2013).

There are two main hyperparameters to tune a TSF
namely the number of trees NT and the minimum interval
length Lmin. The number of trees influences the amount
of intervals and by this the size of the related feature sets.
Therefore, the computational time for feature extraction
and regression learning increases as the number of trees
grows. To ensure a level of information in every subse-
quence its minimum length Lmin can be set externally.

2.4 Optimized Segmentation Forest

A random splitting leads to a vast amount of different
intervals which are only evaluated during the random
forest training. In order to find an optimal solution with
only a few good intervals, the segmentation is expressed
as an optimization problem. Each interval is defined by
a starting point and an endpoint giving two parameters
per section that need to be optimized. All points are
only constrained by the frequency range of the sampled
data. Since the location of a subsequence highly affects
the features, the prediction result directly depends on it
as well. Therefore, the quality of segmentation is evaluated
based on the performance in a tree-based regression. For
this reason, a random forest is trained and the mean
squared error of a 3-fold cross-validation is calculated
to determine the loss of a parameter combination. A

Bayesian optimization algorithm (BOA) is used to run
the optimization. For information on the algorithm refer
for example to Snoek et al. (2012). To avoid a high-
dimensional parameter space only one subsequence is
optimized per run. The number is then gradually increased
by keeping previous subsequences constant. By this, the
optimization problem is split into numerous smaller ones
leading to lower computational costs. On the other hand
the performance is not found to be significantly lower than
a one step optimization.

3. EXPERIMENTAL SETUP

The validation is conducted on a test bench depicted in
Fig. 2. It comprises of three triangularly arranged belt
pulleys connected by a toothed belt (AT-5 profile) with
a total length of l = 0.975 m. The lower right pulley is
linked to a synchronous servomotor with a rated torque
of M0 = 5.5 Nm and a rated power of P0 = 1.9 kW. The
setup’s control topology is characteristic of applications in
automation consisting of a programmable logic controller
(PLC) and a servo inverter which feeds the motor. The
servomotor is equipped with an encoder to measure its
position.

A roller can be moved up and down by a spindle drive
allowing a continuous adjustment of the belt tension. A
potentiometer is attached to the spindle drive to measure
the roller’s position and thereby the distance used for
pretension. At this point, it should be noted that measure-
ment data obtained from the potentiometer is not used to
predict the belt tension but for labeling purposes only.

3.1 Measurement Data

The data acquisition is done by a PLC at a frequency of
fs = 1000 Hz which is a typical setup in many industrial
applications. The employed servomotor is not equipped
with additional sensors and thus only provides data that
is available in off-the-shelf motors, which is:

• position (and derivatives),
• torque and
• temperature.

Because the belt tension can not be measured directly it
is represented by the spindle drive’s position. The first
mode natural frequency of the belt transverse oscillation
is acoustically measured to determine the tension based on
(1). Although the belt’s behavior is non-linear the relation
between position and belt tension can be linearly described

Fig. 2. Front view of the test bench.
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(a) MFE (b) Jerk-limited trajectory

Fig. 3. Time domain representation of the excitations.

in the considered range. The position is be varied from
y = 0 cm (F ≈ 0 N) at the upper end of the potentiometer
where the roller barely touches the belt to a maximum of
y = 5 cm (F = 230 N) where a tension higher than desired
is induced.

An excitation is needed to predict the actual belt tension.
In general, any random motion that is applicable in
an automation industry environment can serve for this
purpose. But the recorded time series data and by that the
prediction quality highly depends on it. Furthermore the
excitation determines the operation conditions in practice.

Fault detection approaches can generally be divided into
active and passive (see e.g. Punčochář and Škach (2018)).
The excitations assessed throughout this work are chosen
in a way that they cover both groups:

1. jerk-limited positioning trajectory (JLT)
2. multifrequency sinusoidal excitation (MFE).

A jerk-limited trajectory is a typical positioning movement
in industrial settings and is therefore available during
normal operation. It consists of matching set values of
position, velocity, and acceleration, that are generated
during path planning. As a result, all available sensor
signals are logged during motion and the belt monitoring
can be done without disturbing the normal operation.

In the second scenario an auxiliary signal is injected
into the system to evaluate the belt tension. For this
purpose a MFE signal is chosen, which is often used for
parameter identification (see e.g. Evans et al. (1992)). It is
a superposition of NF sinusoidal functions with different
angular frequency ωi and phase shift ϕi. The torque set
value M(t) which is applied can be described by

M(t) =

NF∑
i=1

sin(ωit+ ϕi). (3)

During the excitation the system’s velocity response is
examined leading to a time series with a fixed number
of samples that is used for feature extraction. Due to
its design it excites many frequencies in a certain range.
By that it is assured that the system characteristics are
comprehensively visible. A time-domain representation of
the resulting torque for both excitations is depicted in
Fig. 3(a) and 3(b) to highlight the differences.

4. HYPERPARAMETER TUNING

This section focuses on the adaption of hyperparameters
that are directly connected to the extraction of interval-
based features. All other parameters especially those of
underlying decision trees are not tuned and globally kept
constant.

4.1 Random Segmentation Forest

The main parameters of a TSF are the number of trees
and the minimum length of a subsequence. The maximum
number of trees is set to NT = 20 to limit the compu-
tational costs. A grid search over both parameters with
a step size of ∆Lmin = 5 samples and ∆NT = 2 trees is
carried out. The results are shown in Fig. 4. In general, a
small number of trees leads to a slightly higher prediction
error while no significant tendency can be observed for
the minimum length. The minimum MSE is at a number of
NT = 14 trees and a minimum length of Lmin = 30 samples
and thus chosen as hyperparameter combination.

4.2 Optimized Segmentation Forest

The total number of subsequences is determined by grad-
ually increasing it during segmentation optimization as
described in section 2.4. The quality is evaluated based on
the MSE that is achieved in a random forest regression.
It can be seen from Fig. 5 that the MSE decreases as
the number of subsequences grows. The maximum number
of subsequences is set to Nseq = 10 because for both
excitations no significant improvement is observed beyond
that point.

Since the loss function depends on the train-test split it
is subject to scattering. Hence, the segment boundaries
slightly vary from run to run but the overall performance
is almost constant. To illustrate the general optimization
results a characteristic example segmentation is shown in
Fig. 6 for the MFE. The frequency spectrum shown at
the beginning in Fig. 1 is plotted to clarify the findings.
The segment width ranges from small to almost across the
entire spectrum. A concentration of starting and endpoints
can be seen close to peaks in the spectrum which supports
the initial intention to recognize their shift.

5. RESULTS OF TENSION MONITORING

The tension monitoring algorithms are tested under two
aforementioned excitations. In order to obtain meaningful
results, the training, validation and test dataset are treated
separately. Training and validation dataset are used for
model creation and determination of hyperparameters.
The training dataset contains 900 measurements for both
excitation movements. A uniform distribution over the
output y is intended to eliminate data imbalances as a
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Fig. 4. Result of the TSF hyperparameter grid search
where X marks the minimum.
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(a) MFE (b) Jerk-limited Trajectory

Fig. 5. Investigation of the number of subsequences for
interval-based features.

reason for differences in performance. All results shown in
this section are based on the test dataset which is recorded
separately from the training. A random forest where all
interval features are omitted and only global features are
kept is used as a reference to evaluate the interval-based
approaches.

For the MFE a comparison of the actual output with the
predicted output for each sample in the test dataset is
shown in Fig. 7. The reference results which are depicted
in Fig. 7(a) show an occasional offset where the predicted
value differs from the actual output. A further improve-
ment can be observed for both segmentation forests shown
in Fig. 7(b). Almost no deviation between predicted and
actual output is visible resulting in a low MSE.

The MFE can be considered more suitable for monitoring
since it is optimized to excite a broad spectrum of frequen-
cies while the JLT is simply a typical movement during op-
eration in the automation industry. This is reflected in the
achieved results depicted in Fig. 8. Especially the reference
performance drops compared to the MFE as demonstrated
in Fig. 8(a). Many predicted samples have a clear deviation
from the actual value. Especially at lower belt tension a
larger improvement compared to the reference is accom-
plished for a JLT by employing a segmentation. At higher
belt tension several outliers remain in either case.

As pointed out earlier the quality varies due to differences
in the segmentation. Therefore, the results of 30 runs
are determined and the mean and standard deviation are
given in table 2 for both excitations. The active fault
detection approach of using a MFE leads to significantly
better regression results in all cases. Even a global feature
approach yields a lower MSE than every procedure for a
JLT. Furthermore it can be concluded that both segmenta-
tion procedures lead to an improvement in both scenarios.
The optimization (OSF) does not lead to a significant

Fig. 6. Distribution of optimized subsequences (gray) for
a MFE.

(a) Reference algorithm with global features

(b) Segmentation forest with interval-based features

Fig. 7. Results of tension monitoring during MFE excita-
tion.

performance gain but reduces the number of intervals
(Nseq,OSF = 10) compared to the RSF (Nseq,RSF = 286)
and the standard deviation of the MSE.

6. CONCLUSIONS

In this work, a segmentation procedure is proposed, which
was tested in two industrial scenarios. A test bench where
the belt tension can be adjusted is utilized to validate the
approaches. By applying a MFE the entire frequency range
is excited and even a basic approach like a random forest

(a) Reference algorithm with global features

(b) Segmentation forest with interval-based features

Fig. 8. Results of tension monitoring during JLT excita-
tion.
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Table 2. Mean µ and standard deviation σ of
the MSE over multiple runs.

MFE JLT

Global
features

µ = 87.2N2 µ = 982.9N2

σ = 8.5N2 σ = 27.6N2

Random
segmentation

µ = 9.9N2 µ = 478.9N2

σ = 1.1N2 σ = 50.7N2

Optimized
segmentation

µ = 9.5N2 µ = 472.2N2

σ = 1.1N2 σ = 33.5N2

based on global features leads to an acceptable prediction
quality. A JLT as excitation results in a much higher pre-
diction error for all approaches. It can be concluded that
the excitation has a larger impact on the monitoring qual-
ity than the algorithm itself. The active approach (MFE),
where an auxiliary signal is injected into the system, is
considerably superior to the passive approach (JLT) using
measurements form normal operation. However, we could
demonstrate that a segmentation of the frequency spec-
trum yields an improvement regardless of the procedure.
On average the optimized segmentation yields a slightly
higher prediction quality over a random segmentation.

A passive approach offers the possibility to monitor the
belt tension by collecting data during normal operation.
In this way, there is no interaction between the monitoring
system and the plant. On the contrary, an active approach
intervenes in the normal operation to apply the auxiliary
signal and analyze the belt tension. In the present case this
leads to a significantly higher prediction accuracy as shown
before. However, in industrial applications, it might not be
necessary to predict the tension with high accuracy, but a
warning if it drops below a certain threshold is sufficient.
In this case, a trade-off needs to be done to select the
appropriate monitoring procedure.
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