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Abstract: The integration of reinforcement learning (RL) and model predictive control (MPC) is
promising for solving nonlinear optimization problems in an efficient manner. In this paper, a digital
receding horizon learning controller is proposed for continuous-time nonlinear systems with control
constraints. The main idea is to develop a digital design for RL with actor-critic design (ACD) in the
framework of MPC, to realize near-optimal control of continuous-time nonlinear systems. Different
from classic RL for continuous-time systems, the actor adopted is learned in discrete-time steps, while
the critic evaluates the learned control policy continuously in the time domain. Moreover, we use soft
barrier functions to deal with control constraints and the robustness of the actor-critic network is proven.
A simulation example is considered to show the effectiveness of the proposed approach.

Keywords: Reinforcement learning, receding horizon strategy, sampled-data control, continuous-time,
nonlinear system

1. INTRODUCTION

In real-world applications, many systems are characterized by
nonlinear dynamics, and the system state evolves in continuous
time. The control for such nonlinear continuous-time systems
is non-trivial, especially for the variable constrained case. In
principle, continuous-time model predictive control (MPC) can
be used to solve the prescribed problem in view of its capability
in dealing with constraints explicitly and of the well-developed
theoretical developments, see Qin and Badgwell (2003); Mayne
et al. (2000). In real industrial applications, the control systems
are usually performed in discrete-time with control action being
piece-wise constant in each sampling interval, which is the
motivation of the digital control algorithm. In this scenario, the
sampled-data based MPC and its robust version with resorting
to tube-based robust control framework have been developed
in Magni and Scattolini (2004); Farina and Scattolini (2012).
In the underlying optimization problem, the control signal is
regarded as a piece-wise constant decision variable, while the
value function is minimized continuously with time to go. Com-
pared with continuous-time MPC, sampled-data based MPC is
more computationally efficient. Nevertheless, the control per-
formance might still be hampered by high dimension and non-
linearity of the considered system.

As an alternative to MPC, reinforcement learning (RL) and ap-
proximate dynamic programming (ADP) are widely studied for
solving nonlinear optimization problems. Among the notable
contributions, algorithms with actor-critic designs (ACDs) usu-
ally utilize an actor network and a critic network for control pol-
icy and value function approximations. In this setting, the com-
putational complexity of online optimization can be reduced
especially for nonlinear optimization problems. For the past
decades, many algorithms have been proposed to solve infinite-
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horizon optimization problems for continuous-time nonlinear
systems, see in Vamvoudakis and Lewis (2010); Liu et al.
(2014) and linear systems, in Jiang and Jiang (2012). In this re-
spect, some works have been extended to solving finite-horizon
optimization problems, see for instance Cheng et al. (2007);
Heydari and Balakrishnan (2012); Li et al. (2015); Zhao et al.
(2013). Different from that with infinite-horizon, the ACD with
finite horizon results in an open-loop control problem, where
the value function approximate network is time-dependent. To
realize closed-loop control, recent efforts have been put on the
developments with ACDs according to the receding horizon
strategy like MPC. Among them, in Xu et al. (2018), a learning-
based predictive controller has been proposed for perturbed
discrete-time systems, where the process is learned in an itera-
tive batch mode way. An ADP based functional nonlinear MPC
has been developed in Dong et al. (2018) for nonlinear discrete-
time systems with control saturation.

Motivated by prescribed works, a digital receding horizon
learning controller (RH-LC) is proposed in this paper for
continuous-time nonlinear systems. The main idea is to utilize
the digital control realization of ACD in the receding horizon
framework to realize near-optimal control. Different from clas-
sic ACDs for continuous-time systems, the actor adopted is
learned in discrete-time steps, in the sense that the output of the
actor is computed at each discrete-time instant and held to be
piece-wise constant in each sampling interval, while the critic
evaluates the learned policy continuously in time domain. Note
that, different from the works in Xu et al. (2018); Dong et al.
(2018) for discrete-time systems, the proposed approach aims at
digital control for continuous-time systems, thus the techniques
adopted are different. Moreover, we use soft logarithmic barrier
functions to deal with control constraints. The robustness of the
actor-critic network are proven. A simulation study for the reg-
ulation of a Van der Pol oscillator system is performed, which
shows the potentiality of the proposed approach in control
performance improvement compared with the classic infinite-
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horizon Heuristic Dynamic Programming (HDP), and in terms
of computational complexity reduction than the sampled-data
based MPC.

The rest of the paper is organized as follows. Section II intro-
duces the control problem and preliminary works. In Section
III the value function reconstruction for the proposed approach
is first introduced, while the main idea of the proposed RH-LC
is described in Section IV. Section V presents the simulation
results on a Van der Pol oscillator. Conclusions are drawn in
Section VI, while proofs to the main results are given in the
Appendix.

Notation: We use ⊗ to denote the Kronecker product and use
Im to represent identity matrix with dimension m. For a square
matrix X , we use λmin(X) and λmax(X) to denote the minimal
and maximal eigenvalues respectively. For a given set of vari-
ables si ∈Rqi , i= 1,2, . . . ,M, we define the form (s1,s2, · · · ,sM)
= [s>1 s>2 · · · s>M ]> ∈Rq, where q = ∑

p
i=1 qi. Finally, a ball with

radius ρεi and centered at the origin in the Rdim space is defined
as follows

Bρεi
(x̄) := {x ∈ Rdim : ||x|| ≤ ρεi}.

2. CONTROL PROBLEM AND PRELIMINARY
SOLUTIONS

Consider the following nonlinear continuous-time system de-
scribed by

ẋ(t) = F(x(t),u(t)) = f (x(t))+g(x(t))u(t), x(0) = x0 (1)
where t is the continuous-time index, x(t) ∈ Rn and u(t) ∈
U ⊆ Rm are the state and input variables respectively. U =
{u|∑p

i=1 a>i u ≤ bi}, is a compact convex set containing the
origin in the interior. Functions f (x) and g(x) are lipschitz
continuous and differentiable in the domain (x, u) ∈ Rn×U .
Along the same line with Magni and Scattolini (2004), we
assume the system is linearizable at the origin, that is

F(x,u) =
∂F
∂x
|x,u=0δx+

∂F
∂u
|x,u=0δu+ρ(δx,δu)

= Acδx+Bcδu+ρ(δx,δu)

where ‖ρ(δx,δu)‖→ 0, as ‖(δx,δu)‖→ 0.

The control scope concerned in this paper is to steer the state-
input pair (x,u) to the origin according to an infinite-horizon
integral cost described as

J∞(x0, u(·),0) =
∫

∞

τ=0
l(x(τ),u(τ))dτ

where the stage cost l(x,u) = x>Qx+u>Ru, Q ∈Rn×n and R ∈
Rm×m are symmetric positive-definite matrices. The control ac-
tion requires to be computed and operated piece-wise constant
in each sampling interval. Specifically, fix a sampling interval T
and define a generic discrete-time index k corresponding to the
continuous-time index tk, such that tk = kT . The control action
to be applied in each interval is

u(t) = ubt/Tc, for t ∈ [tk, tk+1)

where and in the rest of this draft, we use the notation with a
subscript index, e.g., zk, to denote the variable in discrete time.
Assumption 1. For any finite initial condition x0 ∈ Rn, there
exists a policy u(0 : ∞) ∈U ∞ such that J∞ < ∞.

For latter use, we also define the discrete-time version of (1) as
xk+1 = fd(xk)+gd(xk)uk

Definition 1. The Lipschitz constants L f and Lg are such that
‖ fd(z)− fd(y)‖ ≤ L f ‖z− y‖ (2a)
‖gd(z)−gd(y)‖ ≤ Lg‖z− y‖ (2b)

for any z,y.

To solve the prescribed problem, a MPC problem can be stated
similar to the approach in Farina and Scattolini (2012) at any
discrete-time k, i.e.,

min−→u k:k+N−1

J(xk, tk) (3)

subject to:

1) the system dynamics (1)
2) the control constraints

u j ∈U for j = k, · · · ,k+N−1,
3) the terminal constaint

x(t f ) ∈X f

where

J =
N−1

∑
j=0

L(xk+ j,uk+ j)+ J f (x(t f ))

and where L(x j,u j) =
∫ t j+1

τ=t j ‖x(τ)‖
2
Qdτ +T‖u j‖2

R, ∀ j = k, · · · ,
k+N−1, the terminal cost J f (x(t f )) = ‖x(t f )‖2

P. The symmet-
ric matrix P is the solution of the Lyapunov equation

F>PF−P =−Q̄
where K is chosen such that F = A + BK is Schur stable,
and where A = Ad(T ), B = Bd(T ), Ad(τ) = eAcτ , Bd(τ) =∫

τ

η=0 eAc(τ−η)Bcdη . The matrix Q̄ =
∫ T

τ=0 Ad(τ)
>QAd(τ)dτ +

T K>RK. According to Magni and Scattolini (2004), there ex-
ists a positive scalar α and sampling interval T such that X f =

{x|‖x‖2
P ≤ α} and, for any xk ∈ X f with system evolution

constraint xk+1 = Axk +Buk, given uk = Kxk ∈U , it holds that

‖xk+1‖2
P−‖xk‖2

P ≤−‖xk‖2
Q̄ (4)

Assume the constrained problem (3) is feasible and denote−→u k:k+N−1|k as an optimal solution. The first control action is
held to be piece-wise constant and applied to system (1) as

u(t) = ubt/Tc|k for t ∈ [tk, tk+1).

Then at the subsequent time tk+1, the optimization problem (3)
is computed repeatedly according to the receding horizon strat-
egy. Note that, (3) might be computationally expensive for
systems of high dimension and non-linearity, which leads to
the MPC algorithm being not applicable for real-time control
implementations with fast control commitment. Motivated by
the above reasons, in that follows we propose an RH-LC algo-
rithm to solve the prescribed nonlinear constrained optimiza-
tion problem with sampled-data control orientation. We design
a digital version of ACD in the receding horizon framework
to achieve near-optimal control policy. To realize digital-based
control, the weight associated with the actor is updated in each
discrete-time instant and held to be piece-wise constant in each
sampling interval, while the weight associated with the critic is
learned in continuous-time so as to evaluate the learned control
policy continuously. In this way, the control design can be
simplified and the computational load can be reduced. Also,
to realize constraint satisfaction, the hard control and terminal-
state constraints are transformed into soft ones with logarithmic
barrier functions and integrated into the value function to be
optimized.
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3. VALUE FUNCTION RECONSTRUCTION WITH
BARRIER FUNCTIONS

As described previously, we use continuous and differentiable
barrier functions to transform the hard control and terminal
state constraints into soft ones and integrate them into the value
function to be optimized. To this objective, we introduce fol-
lowing definitions about barrier functions in terms of ellipsoidal
and polyhedral constraints.
Definition 2. For any variable z∈Z, where Z= {z=(z1 · · · ,zp)

|a>i z≤ bi,∀i = 1, · · · , p} is a polyhedron, the barrier function is
defined as

B̄(z) =

−
p

∑
i=1

log
(
bi−a>i z

)
z ∈ Int(Z)

+∞ otherwise.

Definition 3. For any variable z ∈ Z, where Z = {z|z>Zz ≤ 1}
is an ellipsoid, and where Z is a symmetric positive-definite
matrix with suitable dimensions, the barrier function is defined
as

B̄(z) =

{
−log

(
1− z>Zz

)
z ∈ Int(Z)

+∞ otherwise.

Note however that in the above definitions B̄(0) is not guaran-
teed to be zero, leading to the optimal value function Jo

(
0, 0
)
6=

0. For this reason, the pair (x,u) might not be able to converge
into the neighbor of origin. To circumvent this problem, we in-
troduce the following Lemma about barrier functions according
to Wills and Heath (2004); Zhang et al. (2019).
Lemma 1.

(1) Let Bc(z) = B̄(z)− B̄(0)−5B̄(0)>z be a gradient re-
centered barrier function of B̄(z), then Bc(z) is differen-
tiable and convex for all z ∈ Int(Z), and Bc(0) = 0;

(2) Let the relaxed barrier function for polyhedral constraint
be defined as

B(z) =
{

Bc(z) ν̄ ≥ κ

γ(z, ν̄) ν̄ < κ
(5)

where the small positive scalar κ is the relaxing factor,
νi = bi−a>i z, i = 1, · · · , p, ν̄ = min{ν1, · · · ,νp}, the func-
tion γ(z, ν̄) : (−∞,κ) is strictly monotone and differen-
tiable such that B(z) is differentiable at any z that ν̄ = κ ,
and52γ(z, ν̄) is smaller than ∑

p
i=1 ‖ai‖κ−2 , then there ex-

ists a positive-definite matrix H ≥ 1
2 ∑

p
i=1 ‖ai‖2

κ−2 such that
B(z)≤ z>Hz≤ Bmax(z), where Bmax(z) = maxz∈Z z>Hz.

Now we reconstruct the value function with soft barrier func-
tions as

J(xk, tk) =
N−1

∑
i=0

L̄(xk+i,uk+i)+ J f (x(t f ))+µB f (x(t f )) (6)

where L̄(xk+i,uk+i) = L(xk+i,uk+i)+ µT B(uk+i), and where µ

is a positive scalar, B f (z) = Bc(z).

The terminal penalty matrix P is modified as

F>PF−P =−Q̄−µT K>HK, (7)

where H is computed according to Lemma 1.2 with a presumed
value of κ in (5) for U .

4. DIGITAL RECEDING HORIZON LEARNING
CONTROLLER

In this section, the main idea and implementing details of the
proposed digital RH-LC is described.

4.1 Digital HJB equation

Under the assumption that f and g are Lipschitz continuous, the
infinitesimal version of (6) in continuous-time is given as

∂J(x(t), t)
∂ t

+
∂J(x(t), t)>

∂x(t)
[ f (x(t))+g(x(t))u(t)] =

−l(x(t),u(t))−µB(u(t))
where J(x(t f ), t f ) = J f (x(t f ))+µB f (x(t f )).

At any sampling time instant tk, the continuous-time HJB
equation along the prediction horizon is rewritten as

∂J(x(t), t)
∂ t

+
∂J(x(t), t)>

∂x(t)
[ f (x(t))+g(x(t))u(t|tk)]+

l(x(t),u(t|tk))+µB(u(t|tk)) = 0
(8)

where t ∈ [tk, t f ]. For any predictive time interval [t j, t j+1] ⊆
[tk, t f ], integrate both-sides of (8) with time yielding∫ t j+1

τ=t j

∂J(x(τ),τ)
∂ t

+
∂J(x(τ),τ)>

∂x(τ)
[ f (x(τ))+g(x(τ))u(τ|tk)]+

l(x(τ),u(τ|tk))+µB(u(τ|tk))dτ = 0
(9)

Recall that the control input is piece-wise constant, i.e.,
u(t|tk) = ubt/Tc|k, for t ∈ [t j, t j+1). Taking derivative of both-
side of (9) with respect to u leads to the optimal control policy
satisfying

2T Rut j |tk +µT
∂B(ut j |tk)

∂ut j |tk
=−

∫ t j+1

τ=t j

g(x(τ))>
∂J(x(τ),τ)

∂x(τ)
dτ

(10)
It is difficult to solve the above HJB equation (8) analytically
with (10) due to non-linearity of the adopted system. For this
reason, we utilize the actor-critic structure to solve the control
problem in each prediction horizon.

4.2 Actor-critic network approximations

Define the value function with a neural network with infinite
nodes, that is

J(x(t), t) =
r

∑
i=1

φi(x(t), t)wi +
∞

∑
i=r+1

φi(x(t), t)wi

=W>c hc(x(t), t)+ εc,N(x(t), t)
(11)

where Wc = [w1 · · · wr]
> ∈ Rr is the weighting vector, hc =

[φ1 · · · φr]
> ∈ Rr is the vector of basis functions, and

εc,N(x(t), t) is the residual error. For practical reasons, to obtain
near-optimal control policies, we first define the value function
as the output of neural network with finite nodes:

Ĵ(x(t), t) = Ŵ>c hc(x(t), t) (12)

where Ŵc ∈Rr×1. Provided sufficient number of nodes, one can
achieve Ŵc→Wc. From (12), we write

∂ Ĵ(x(t), t)
∂ t

= Othc(x(t), t)>Ŵc (13a)

∂ Ĵ(x(t), t)
∂x(t)

= Oxhc(x(t), t)>Ŵc (13b)
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where the notations Ot and Ox are the gradient with respect to
time and x respectively. With (13), the HJB equation can be
rewritten as

σ
>
1 Ŵc + l(x(t), û(t|tk))+µB(û(t|tk)) = e(t)

where σ1 = σt + σx, σx = Oxhc[ f (x(t)) + g(x(t))û(t|tk)],
û(t|tk) = ûbt/Tc|k, σt = Othc, the latter will be defined in (15).
Aslo, denoting e f = Ŵ>c hc(x(t f ), t f )− J(x(t f ), t f ), at any time
belonging in the prediction horizon t ∈ [tk, t f ), the objective to
be minimized is defined as Ec =

1
2 (e(t)

>e(t)+ e>f e f ). Hence,
the update rule of Ŵc can be compute:

˙̂Wc = −α1
{ σ1(

σ>1 σ1 +1
)2

(
σ
>
1 Ŵc + l(x(t),u(t|tk))+

µB(u(t|tk))
)
+

σ2(
σ>2 σ2 +1

)2

(
σ
>
2 Ŵc− J(x(t f ), t f )

)}
(14)

where σ2 = hc(x(t f ), t f ).

According to (10) and in view of (11), the optimal control
policy at any discrete-time j can be rewritten as

2RTu j|k +µT
∂B(u j|k)

∂u j|k
=

−
∫ t j+1

τ=t j

g(x(τ))>
∞

∑
i=1
Oxφi(x(τ),τ)widτ

As the estimated value function is defined in (12), it is reason-
able to define the desired control policy as

2RTud
j|k +µT

∂B(ud
j|k)

∂ud
j|k

=

−
∫ t j+1

τ=t j

g(x(τ))>Oxhc(x(τ),τ)>Ŵc(τ)dτ =: G(ud
j|k)

Similar to that with the value function, we define
ud

j|k =W>a, jha(x j, j)+ εa(x j, j)

where Wa, j ∈ Rr×m, ha ∈ Rr, εa(x j, j) is the residual error. To
approximate the desired control policy, we define the actor as

û j|k = Ŵ>a, jha(x j, j) (15)
Different from classic ACDs, in order to minimize the distance
from û j|k to ud

j|k, we optimize the difference of G(û j|k) =:

2RT û j|k + µT
∂B(û j|k)

∂ û j|k
with G(ud

j|k) in Euclidean basis. To be

specific, we define Ea, j = 1/2(G(û j|k)−G(ud
j|k))

>(G(û j|k)−
G(ud

j|k)) as the objective function. The update rule of Ŵa in
discrete-time is given as

Ŵa, j+1 = Ŵa, j−α2
∂Ea, j

∂Ŵa, j
(16)

To prove the robustness of the actor-critic structure, we require
the following assumptions.
Assumption 2.

(1) The approximate errors of the neural networks in (11) are
such that

‖εc,N‖ ≤ ε̄c,‖εa‖ ≤ ε̄a (17a)
(2) We also need the mild assumption about hc(x, t), i.e.,

‖hc(x, t)‖ ≤εh (17b)
Assumption 3. The signal σ1 and σ2 are persistently excit-
ing over the interval [tk, t f ], i.e., there exist positive scalars

γ1 ≤ γ1, γ2 ≤ γ2, such that γ1 ≤
∫ t f

τ=tk σ>1 σ1dτ ≤ γ1, and γ2 ≤∫ t f
τ=tk σ>1 σ2dτ ≤ γ2.

Theorem 1. Define the Lyapunov function as
Vj =Vc, j +Va, j

where Vc, j = W̃>c, jα
−1
1 W̃c, j, Va, j = tr(W̃>a, jα

−1
2 W̃a, j), and where

W̃c, j = Wc− Ŵc, j, W̃c, j = Wa, j − Ŵa, j. Consider the weighting
update rule defined in (14) and (16), if T and α2 are such that

c(T )< 0,
where c(T ) will be defined in (A.4), then Vj keeps decreasing
along the discrete-time instant till W̃c, j and W̃a, j reach

‖W̃c, j‖ ≥
√

errort√
T λmin(σ̄1)

,

‖ξa, j‖ ≥
√

errort√
λmin(−c1(T ))

.

where ξa, j = W̃>a, jha(x j, j), σ̄2 > 0 is such that σ̄2 + σ̄1 = σ̄ ,
c1(T ) > c(T ), for σ̄1 > 0, σ̄ and errort will be introduced
in (A.1) and (A.6).

5. LEARNING CONTROL SIMULATION FOR A VAN
DER POL OSCILLATOR

The proposed RH-LC is used to regulate a Van der Pol oscilla-
tor. The continuous-time system model is represented as{

ẋ1 = x2
ẋ2 = 1− x2

1x2− x1 +u (18)

where the physical variables x1 and x2 represent the position
and speed respectively, while u is the control force. The con-
trol constraint is to be verified, i.e., −5m2/s ≤ u ≤ 5m2/s.

0 2 4 6 8 10
-0.2

0

0.2

0.4

State evolution of the controlled system

RH-RL ADP MPC

0 2 4 6 8 10
Time (s)

-0.6

-0.4

-0.2

0

RH-RL ADP MPC

Fig. 1. State evolution of the controlled system.

To design the learning controller, first model (18) has been
linearized at the origin, and the sampling interval has been
chosen as T = 0.05s to compute the discrete-time linear model.
The tuning parameters Q and R have been selected as Q = I2,
R = 0.1. The feedback gain matrix K has been obtained via
solving a discrete-time LQ problem. With this choice, the pa-
rameter Q̄ has been computed. µ has been selected as 0.001,
and the relaxed scalar κ = 0.1. The terminal penalty has been
obtained according to (7), i.e.,

P =

[
2.46 −1.06
−1.06 1.71

]
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Fig. 2. The control variables of the controlled system.
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Cumulative cost of the controlled system
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Fig. 3. The cumulative cost of the actor-critic with the RH-LC.
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12
Weights of the actor-critic with RH-RL

0 2 4 6 8 10

2.8

3

3.2

3.4

Fig. 4. The weights of the actor-critic with the RH-LC.

The parameter α has been obtained as 0.088. The learning
rates are selected as α1 = 100, α2 = 10. Starting from ini-
tial condition x0 = (0.5,−0.5), the RH-LC has been imple-
mented with Nsim = 200 steps and with random weight initial-
ization. Also, the traditional HDP algorithm with infinite hori-
zon in Vamvoudakis and Lewis (2010) and sampled-data based
MPC in Magni and Scattolini (2004) have been adopted for
comparisons. In the HDP and MPC, the control parameters, as
well as the learning rates, are selected coincident with that in the
proposed RH-LC. All the simulations have been performed in a
Laptop with Intel Core i7-8550U CPU@1.8GHz installed with
Win 10 operating system. All the three approaches have been
tested in the Matlab 2019a environment, also the sampled-data
based MPC has used an external CasADi toolbox described
in Andersson et al. (2019). The simulation results have been
presented in Fig. 1-4. It can be seen from Fig. 1-2 that the state
and control of the RH-LC converge to the origin significantly
faster than that with the HDP and slightly faster than that with
the MPC. The cumulative cost V =

∫ NsimT
τ=0 l(x(τ),u(τ))dτ has

been collected with time to go in Fig. 3, which shows that the
regulating cost of the RH-LC is the lowest one among all the

approaches. In Fig. 4, the convergence of the weights of the
actor-critic with the RH-LC can be verified. Also, the aver-
age computational time has been collected in Table 1, which
displays significant computational complexity reduction of the
RH-LC than the MPC.

Table 1. Comparison in terms of computational
time.

Algorithm RH-LC HDP MPC
Average computational time (s) 0.079 0.041 0.227

6. CONCLUSIONS

In this paper, a digital RH-LC has been proposed for continuous-
time nonlinear systems with control constraints. In each predic-
tion horizon, the actor adopted has been learned in discrete-time
and applied as piece-wise constant signal, while the critic has
evaluated the value function in continuous-time. In the learning
process, soft barrier functions are introduced for coping with
control constraints. The robustness of the actor-critic network
has been analyzed. The simulation tests on a Van der Pol oscil-
lator show that, the RH-LC outperforms the HDP and the MPC,
and exhibit an advantageous point in terms of computational
complexity reduction compared to the data-based MPC. Future
research will focus on the extension to robust control for sys-
tems with stochastic noise and with state and control possibility
constraints.

Appendix A. PROOF OF THEOREM 1

For the selected Lyapunov function Vj = Vc, j +Va, j, the differ-
ence of Vc, j can be computed as

∆Vc, j+1 =
∫ t j+1

τ=t j

W̃>c α
−1
1

˙̃Wcdτ

Note that,

W̃>c α
−1
1

˙̃Wc =

= W̃>c {
σ1(

σT
1 σ1 +1

)2

(
σ
>
1 Ŵc + l(x(t),u(t|tk))+µB(u(t|tk))

)
+

σ2(
σ>2 σ2 +1

)2

(
σ
>
2 Ŵc− J(x(t f ), t f )

)
}

We recall the fact that σ>1 Wc + l(x(t), û(t|tk))+ µB(û(t|tk)) =
εH < ∞. This requires û to be bounded, which can be fulfilled
via performing saturation on the estimated value function.
Hence, in view of (11)∫ t j+1

τ=t j

W̃>c α
−1
1

˙̃Wcdτ =

=
∫ t j+1

τ=t j

W̃>c
{ σ1(

σ>1 σ1 +1
)2

(
−σ

>
1 W̃c + εH

)
+

σ2(
σ>2 σ2 +1

)2

(
−σ

>
2 W̃c− εc,N(x(t f ), t f )

)}
dτ

=−
∫ t j+1

τ=t j

(W̃>c σ̄W̃c +W̃>c bε)dτ

(A.1)

where σ̄ =
σ1σ>1

(σ>1 σ1+1)
2 +

σ2σ>2

(σ>2 σ2+1)
2 , bε = − σ1

(σ>1 σ1+1)
2 εH +

σ2

(σ>2 σ2+1)
2 εc,N(x(t f ), t f ). The difference of the second term

Va( j) is
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∆Va, j+1 =

= tr
(

W̃>a, j+1α
−1
2 W̃a, j+1−W̃>a, jα

−1
2 W̃a, j

)
= tr

(
−2W̃>a, j

∂Ea, j

∂Ŵa, j
+α2

(
∂Ea, j

∂Ŵa, j

)>
∂Ea, j

∂Ŵa, j

)
Consider that B(u) = −∑

p
i=1 log(bi − a>i u) + bi − ai

bi
u, then

∂B(u)
∂u = ∑

p
i=1

a>i
bi−aiu

− a>i
bi

. Recalling the fact that ∂a>X>b
∂X = ba>

where X is a matrix, a and b are two vectors, one has
∂Ea, j

∂Ŵa, j
=

=
< ∂Gû j|k ,Gû j|k −Gud

j|k
>

∂Ŵa, j
= T 2(µ̄1ha(x j, j)ξ>a, jR− µ̄2ha(x j, j)ξ>a, j + εa,t)

where µ̄1 = 4− 2µl + 2µ , µ̄2 = µ2ll̄, l = ∑
p
i=1 a>i aiδ̂iδi, l̄ =

∑
p
i=1 a>i aiδ̂

2
i , δ = 1

(bi−a>i u)
, δ̂i = 1

(bi−a>i û)2 , εa,t =

µ̄1ha(x j, j)εa(x j, j)>R− µ̄2ha(x j, j)εa(x j, j)>.

Then, in view of the fact that tr(A>B) = tr(AB>) = tr(BA>) =
tr(B>A), it holds that

tr
(
−2W̃>a, j

∂Ea, j

∂Ŵa, j

)
= ‖ξa, j‖2

d1(T )
+ξ

>
a, jd1(T )εa(x j, j) (A.2)

where d1(T ) = 2T 2(−µ̄1R+ µ̄2I). Also, one can compute:

tr

(
α2

(
∂Ea, j

∂Ŵa, j

)>
∂Ea, j

∂Ŵa, j

)
=

‖ξa, j‖2
d2(T )

+2ξ
>
a, jd2(T )εa(x j, j)+‖εa(x j, j)‖2

d2(T )

(A.3)

where d2(T ) = α2T 4(µ̄2
1 h̄aR2 + µ̄2

2 h̄aI − 2µ̄1µ̄2Rh̄a), h̄a =

ha(x j, j)>ha(x j, j). Hence, one promptly has

∆Va, j+1 = ‖ξa, j‖2
c(T )+ξ

>
a, j c̄(T )εa(x j, j)+‖εa(x j, j)‖2

d2(T )
≤ ‖ξa(x j, j)‖2

c1(T )
+‖εa(x j, j)‖2

d2(T )−c2(T )−1 c̄(T )2

(A.4)
where c(T ) = d1(T )+d2(T ), c̄(T ) = d1(T )+2d2(T ), c2(T ) =
c(T )− c1(T ).

Also note that, in view of the definition of σ̄2, one can prove

−
∫ t j+1

τ=t j

(W̃>c σ̄2W̃c +W̃>c bε)dτ ≤
∫ t j+1

τ=t j b>ε bε dτ

4λmin(σ̄2)

In view of Assumption 2-3, it holds that∫ t j+1

τ=t j

b>ε bε dτ ≤ |εH |2γ1 + ε̄
2
c ε

2
h +2ε̄c|εH |γ2 := b̄ε < ∞, (A.5)

Therefore ∆Vj satisfies

∆Vj ≤−
∫ t j+1

τ=t j

W̃>c σ̄1W̃cdτ +‖ξa, j‖2
c1(T )

+ errort (A.6)

where

errort =
b̄ε

4λmin(σ̄2)
+‖ε̄a‖2

d2(T )−c2(T )−1 c̄(T )2

In view of (A.6), one can conclude that ∆Vj < 0 as long as the
following conditions hold:

‖W̃c, j‖ ≥
√

errort√
T λmin(σ̄1)

,

‖ξa, j‖ ≥
√

errort√
λmin(−c1(T ))

.
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